1
|
Colvin L, Tu D, Dunlap D, Rios A, Coté G. A Polarity-Sensitive Far-Red Fluorescent Probe for Glucose Sensing through Skin. BIOSENSORS 2023; 13:788. [PMID: 37622875 PMCID: PMC10452146 DOI: 10.3390/bios13080788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
The field of glucose biosensors for diabetes management has been of great interest over the past 60 years. Continuous glucose monitoring (CGM) is important to continuously track the glucose level to provide better management of the disease. Concanavalin A (ConA) can reversibly bind to glucose and mannose molecules and form a glucose biosensor via competitive binding. Here, we developed a glucose biosensor using ConA and a fluorescent probe, which generated a fluorescent intensity change based on solvatochromism, the reversible change in the emission spectrum dependent on the polarity of the solvent. The direction in which the wavelength shifts as the solvent polarity increases can be defined as positive (red-shift), negative (blue-shift), or a combination of the two, referred to as reverse. To translate this biosensor to a subcutaneously implanted format, Cyanine 5.5 (Cy5.5)-labeled small mannose molecules were used, which allows for the far-red excitation wavelength range to increase the skin penetration depth of the light source and returned emission. Three Cy5.5-labeled small mannose molecules were synthesized and compared when used as the competing ligand in the competitive binding biosensor. We explored the polarity-sensitive nature of the competing ligands and examined the biosensor's glucose response. Cy5.5-mannotetraose performed best as a biosensor, allowing for the detection of glucose from 25 to 400 mg/dL. Thus, this assay is responsive to glucose within the physiologic range when its concentration is increased to levels needed for an implantable design. The biosensor response is not statistically different when placed under different skin pigmentations when comparing the percent increase in fluorescence intensity. This shows the ability of the biosensor to produce a repeatable signal across the physiologic range for subcutaneous glucose monitoring under various skin tones.
Collapse
Affiliation(s)
- Lydia Colvin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dandan Tu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Darin Dunlap
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Alberto Rios
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Gerard Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX 77843, USA
| |
Collapse
|
2
|
Fine J, McShane MJ, Coté GL. Monte Carlo method for assessment of a multimodal insertable biosensor. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210299SSRR. [PMID: 35505461 PMCID: PMC9064117 DOI: 10.1117/1.jbo.27.8.083017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/12/2022] [Indexed: 05/25/2023]
Abstract
SIGNIFICANCE Continuous glucose monitors (CGMs) are increasingly utilized as a way to provide healthcare to the over 10% of Americans that have diabetes. Fully insertable and optically transduced biosensors are poised to further improve CGMs by extending the device lifetime and reducing cost. However, optical modeling of light propagation in tissue is necessary to ascertain device performance. AIM Monte Carlo modeling of photon transport through tissue was used to assess the luminescent output of a fully insertable glucose biosensor that uses a multimodal Förster resonance energy transfer competitive binding assay and a phosphorescence lifetime decay enzymatic assay. APPROACH A Monte Carlo simulation framework of biosensor luminescence and tissue autofluorescence was built using MCmatlab. Simulations were first validated against previous research and then applied to predict the response of a biosensor in development. RESULTS Our results suggest that a diode within the safety standards for light illumination on the skin, with far-red excitation, allows the luminescent biosensor to yield emission strong enough to be detectable by a common photodiode. CONCLUSIONS The computational model showed that the expected fluorescent power output of a near-infrared light actuated barcode was five orders of magnitude greater than a visible spectrum excited counterpart biosensor.
Collapse
Affiliation(s)
- Jesse Fine
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Michael J. McShane
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M University, Department of Materials Science and Engineering, College Station, Texas, United States
- Texas A&M University, Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, Texas, United States
| | - Gerard L. Coté
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M University, Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, Texas, United States
| |
Collapse
|
3
|
Means AK, Dong P, Clubb FJ, Friedemann MC, Colvin LE, Shrode CA, Coté GL, Grunlan MA. A self-cleaning, mechanically robust membrane for minimizing the foreign body reaction: towards extending the lifetime of sub-Q glucose biosensors. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:79. [PMID: 31240399 PMCID: PMC6988489 DOI: 10.1007/s10856-019-6282-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Long-term, subcutaneously implanted continuous glucose biosensors have the potential to improve diabetes management and reduce associated complications. However, the innate foreign body reaction (FBR) both alters the local glucose concentrations in the surrounding tissues and compromises glucose diffusion to the biosensor due to the recruitment of high-metabolizing inflammatory cells and the formation of a dense, collagenous fibrous capsule. Minimizing the FBR has mainly focused on "passively antifouling" materials that reduce initial cellular attachment, including poly(ethylene glycol) (PEG). Instead, the membrane reported herein utilizes an "actively antifouling" or "self-cleaning" mechanism to inhibit cellular attachment through continuous, cyclic deswelling/reswelling in response to normal temperature fluctuations of the subcutaneous tissue. This thermoresponsive double network (DN) membrane is based on N-isopropylacrylamide (NIPAAm) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) (75:25 and 100:0 NIPAAm:AMPS in the 1st and 2nd networks, respectively; "DN-25%"). The extent of the FBR reaction of a subcutaneously implanted DN-25% cylindrical membrane was evaluated in rodents in parallel with a PEG-diacrylate (PEG-DA) hydrogel as an established benchmark biocompatible control. Notably, the DN-25% implants were more than 25× stronger and tougher than the PEG-DA implants while maintaining a modulus near that of subcutaneous tissue. From examining the FBR at 7, 30 and 90 days after implantation, the thermoresponsive DN-25% implants demonstrated a rapid healing response and a minimal fibrous capsule (~20-25 µm), similar to the PEG-DA implants. Thus, the dynamic self-cleaning mechanism of the DN-25% membranes represents a new approach to limit the FBR while achieving the durability necessary for long-term implantable glucose biosensors.
Collapse
Affiliation(s)
- A Kristen Means
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| | - Ping Dong
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Fred J Clubb
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Molly C Friedemann
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lydia E Colvin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Courtney A Shrode
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
- Center for Remote Health Technologies Systems, Texas A&M University, College Station, TX, 77843-3120, USA
| | - Melissa A Grunlan
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, 77843-3003, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA.
- Center for Remote Health Technologies Systems, Texas A&M University, College Station, TX, 77843-3120, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA.
| |
Collapse
|
4
|
Locke A, Means AK, Dong P, Nichols TJ, Coté GL, Grunlan MA. A Layer-by-Layer Approach To Retain a Fluorescent Glucose Sensing Assay within the Cavity of a Hydrogel Membrane. ACS APPLIED BIO MATERIALS 2018; 1:1319-1327. [PMID: 30474080 PMCID: PMC6247246 DOI: 10.1021/acsabm.8b00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/10/2018] [Indexed: 02/03/2023]
Abstract
A continuous glucose monitoring device that resides fully in the subcutaneous tissue has the potential to greatly improve the management of diabetes. Toward this goal, we have developed a competitive binding glucose sensing assay based on fluorescently labeled PEGylated concanavalin-A (PEGylated-TRITC-ConA) and mannotetraose (APTS-MT). In the present work, we sought to contain this assay within the hollow central cavity of a cylindrical hydrogel membrane, permitting eventual subcutaneous implantation and optical probing through the skin. A "self-cleaning" hydrogel was utilized because of its ability to cyclically deswell/reswell in vivo, which is expected to reduce biofouling and therefore extend the sensor lifetime. Thus, we prepared a hollow, cylindrical hydrogel based on a thermoresponsive electrostatic double network design composed of N-isopropylacrylamide and 2-acrylamido-2-methylpropanesulfonic acid. Next, a layer-by-layer (LbL) coating was applied to the inner wall of the central cavity of the cylindrical membrane. It consisted of 5, 10, 15, 30, or 40 alternating bilayers of positively charged poly(diallyldimethylammonium chloride) and negatively charged poly(sodium 4-styrenesulfonate). With 30 bilayers, the leaching of the smaller-sized component of the assay (APTS-MT) from the membrane cavity was substantially reduced. Moreover, this LbL coating maintained glucose diffusion across the hydrogel membrane. In terms of sensor functionality, the assay housed in the hydrogel membrane cavity tracked changes in glucose concentration (0 to 600 mg/dL) with a mean absolute relative difference of ∼11%.
Collapse
Affiliation(s)
- Andrea
K. Locke
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Anna Kristen Means
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Ping Dong
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Tyler J. Nichols
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Gerard L. Coté
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| |
Collapse
|
5
|
Abraham AA, Means AK, Clubb FJ, Fei R, Locke AK, Gacasan EG, Coté GL, Grunlan MA. Foreign Body Reaction to a Subcutaneously Implanted Self-Cleaning, Thermoresponsive Hydrogel Membrane for Glucose Biosensors. ACS Biomater Sci Eng 2018; 4:4104-4111. [PMID: 31633011 DOI: 10.1021/acsbiomaterials.8b01061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Towards achieveing a subcutaneously implanted glucose biosensor with long-term functionality, a thermoresponsive membrane previously shown to have potential to house a glucose sensing assay was evaluated herein for its ability to minimize the foriegn body reaction (FBR) and the resulting fibrous capsule. The severity of the FBR proportionally reduces diffusion of glucose to the sensor and hence sensor lifetime. However, efforts to reduce the FBR have largedly focused on anti-fouling materials that passively inhibit cellular attachment, particularly poly(ethylene glycol) (PEG). Herein, the extent of the FBR of a subcutaneously implanted "self-cleaning" cylindrical membrane was analyzed in rodents. This membrane represents an "actively anti-fouling" approach to reduce cellular adhesion. It is a thermoresponsive double network nanocomposite hydrogel (DNNC) comprised of poly(N-isopropylacrylamide) (PNIPAAm) and embedded polysiloxane nanoparticles. The membrane's cyclical deswelling/reswelling response to local body temperature fluctuations was anticipated to limit cellular accumulation. Indeed, after 30 days, the self-cleaning membrane exhibited a notably thin fibrous capsule (~30 µm) and increased microvascular density within 1 mm of the implant surface in comparison to a non-thermoresponsive, benchmark biocompatible control (PEG diacrylate, PEG-DA).
Collapse
Affiliation(s)
- Alexander A Abraham
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA)
| | - A Kristen Means
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - Fred J Clubb
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA).,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467 (USA)
| | - Ruochong Fei
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA)
| | - Andrea K Locke
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA)
| | - Erica G Gacasan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA)
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA).,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843-3577 (USA)
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA).,Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843 (USA).,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843-3577 (USA)
| |
Collapse
|
6
|
Vasu AK, Paramasivam M, Kanvah S. Carbohydrate Tethered Cyanostilbene Fluorogen: Unique Emission and Preferential Protein Binding. ChemistrySelect 2017. [DOI: 10.1002/slct.201601709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anuji K Vasu
- Department of Chemistry; Indian Institute of Technology Gandhinagar, Palaj; Gandhinagar 382355, Gujarat
| | | | - Sriram Kanvah
- Department of Chemistry; Indian Institute of Technology Gandhinagar, Palaj; Gandhinagar 382355, Gujarat
| |
Collapse
|
7
|
Locke AK, Cummins BM, Coté GL. High Affinity Mannotetraose as an Alternative to Dextran in ConA Based Fluorescent Affinity Glucose Assay Due to Improved FRET Efficiency. ACS Sens 2016; 1:584-590. [PMID: 28529973 DOI: 10.1021/acssensors.5b00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus affects millions of people worldwide and requires that individuals tightly self-regulate their blood glucose levels to minimize the associated secondary complications. Continuous monitoring devices potentially offer patients a long-term means to tightly monitor their glucose levels. In recent years, fluorescent affinity sensors based on lectins (e.g., Concanavalin A (ConA)) have been implemented in such devices. Traditionally, these sensors pair the lectin with a multivalent ligand, like dextran, in order to develop a competitive binding assay that changes its fluorescent properties in response to the surrounding glucose concentrations. This work introduces a new type of fluorescent ligand for FRET-based assays in an attempt to improve the sensitivity of such assays. This ligand is rationally designed to present a core trimannose structure and a donor fluorophore in close proximity to one another. This design decreases the distance between the FRET donor and the FRET acceptors on ConA to maximize the FRET efficiency upon binding of the ligand to ConA. This work specifically compares the FRET efficiency and sensitivity of this new competing ligand with a traditional dextran ligand, showing that the new ligand has improved characteristics. This work also tested the long-term thermal stability of the assay based on this new competing ligand and displayed a MARD of less than 10% across the physiological range of glucose after 30 days incubation at 37 °C. Ultimately, this new type of fluorescent ligand has the potential to significantly improve the accuracy of continuous glucose monitoring devices based on the competitive binding sensing approach.
Collapse
Affiliation(s)
| | - Brian M. Cummins
- Department
of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
8
|
Glycodendrimers and Modified ELISAs: Tools to Elucidate Multivalent Interactions of Galectins 1 and 3. Molecules 2015; 20:7059-96. [PMID: 25903363 PMCID: PMC4513649 DOI: 10.3390/molecules20047059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/29/2015] [Accepted: 04/01/2015] [Indexed: 01/27/2023] Open
Abstract
Multivalent protein-carbohydrate interactions that are mediated by sugar-binding proteins, i.e., lectins, have been implicated in a myriad of intercellular recognition processes associated with tumor progression such as galectin-mediated cancer cellular migration/metastatic processes. Here, using a modified ELISA, we show that glycodendrimers bearing mixtures of galactosides, lactosides, and N-acetylgalactosaminosides, galectin-3 ligands, multivalently affect galectin-3 functions. We further demonstrate that lactose functionalized glycodendrimers multivalently bind a different member of the galectin family, i.e., galectin-1. In a modified ELISA, galectin-3 recruitment by glycodendrimers was shown to directly depend on the ratio of low to high affinity ligands on the dendrimers, with lactose-functionalized dendrimers having the highest activity and also binding well to galectin-1. The results depicted here indicate that synthetic multivalent systems and upfront assay formats will improve the understanding of the multivalent function of galectins during multivalent protein carbohydrate recognition/interaction.
Collapse
|
9
|
Locke AK, Cummins BM, Abraham A, Coté GL. PEGylation of concanavalin A to improve its stability for an in vivo glucose sensing assay. Anal Chem 2014; 86:9091-7. [PMID: 25133655 PMCID: PMC4165460 DOI: 10.1021/ac501791u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
Competitive binding assays utilizing concanavalin A (ConA) have the potential to be the basis of improved continuous glucose monitoring devices. However, the efficacy and lifetime of these assays have been limited, in part, by ConA's instability due to its thermal denaturation in the physiological environment (37 °C, pH 7.4, 0.15 M NaCl) and its electrostatic interaction with charged molecules or surfaces. These undesirable interactions change the constitution of the assay and the kinetics of its behavior over time, resulting in an unstable glucose response. In this work, poly(ethylene glycol) (PEG) chains are covalently attached to lysine groups on the surface of ConA (i.e., PEGylation) in an attempt to improve its stability in these environments. Dynamic light scattering measurements indicate that PEGylation significantly improved ConA's thermal stability at 37 °C, remaining stable for at least 30 days. Furthermore, after PEGylation, ConA's binding affinity to the fluorescent competing ligand previously designed for the assay was not significantly affected and remained at ~5.4 × 10(6) M(-1) even after incubation at 37 °C for 30 days. Moreover, PEGylated ConA maintained the ability to track glucose concentrations when implemented within a competitive binding assay system. Finally, PEGylation showed a reduction in electrostatic-induced aggregation of ConA with poly(allylamine), a positively charged polymer, by shielding ConA's charges. These results indicate that PEGylated ConA can overcome the instability issues from thermal denaturation and nonspecific electrostatic binding while maintaining the required sugar-binding characteristics. Therefore, the PEGylation of ConA can overcome major hurdles for ConA-based glucose sensing assays to be used for long-term continuous monitoring applications in vivo.
Collapse
Affiliation(s)
| | | | - Alexander
A. Abraham
- Department of Biomedical
Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Gerard L. Coté
- Department of Biomedical
Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|