1
|
Feng T, Chen Z, Cheng X. ZnS:Mn Quantum Dots Coated with a Silica Molecularly Imprinted Polymer for Trace Teflubenzuron Detection in Vegetable Samples. J Fluoresc 2024:10.1007/s10895-024-03634-8. [PMID: 38460097 DOI: 10.1007/s10895-024-03634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
A novel nanocomposite fluorescent probe consisting of quantum dots and a silica molecularly imprinted polymer (MIPs-capped ZnS:Mn QDs) was synthesized and applied for the rapid detection of teflubenzuron (TBZ) based on the fluorescence quenching of a composite probe via TBZ. The fluorescence quenching efficiency of MIP@SiO2@ZnS:Mn QDs displayed a linear relationship over the concentration range of 0-26.24 μmol/L with a correlation coefficient of 0.9857 and the limit of detection was 2.4 μg/L. The selectivity test showed that the nanocomposite had good selectively rebind TBZ with higher imprinting factor of 3.06 compared with four structurally similar compounds. In addition, the probe was successfully applied to the detection of TBZ in vegetable samples with a recovery of 90.3~97.1% and with a relative standard deviation below 3.2%. This developed method has the advantages of simple preparation, fast response and low toxicity for trace TBZ detection.
Collapse
Affiliation(s)
- Tian Feng
- Key Laboratory Environment-Friendly Polymer Materials of Anhui Province, School of Chemistry and Chemical Engineering, Hefei, 230601, China
| | - Zhenkun Chen
- Key Laboratory Environment-Friendly Polymer Materials of Anhui Province, School of Chemistry and Chemical Engineering, Hefei, 230601, China
| | - Xiaomin Cheng
- Key Laboratory Environment-Friendly Polymer Materials of Anhui Province, School of Chemistry and Chemical Engineering, Hefei, 230601, China.
| |
Collapse
|
2
|
Wen Y, Li J, Zhao S, Fan H, Li H, Wang J, Sun B. A highly efficient molecularly imprinted fluorescence sensor for assessing whole wheat grains by the rapid and sensitive detection of alkylresorcinols. Biosens Bioelectron 2023; 223:115032. [PMID: 36566597 DOI: 10.1016/j.bios.2022.115032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
To differentiate whole wheat foods from refined wheat foods is still challenging grain industry and confusing consumers. Alkylresorcinols (ARs), as biomarkers of whole wheat grains, can serve for assessing the authenticity of whole wheat foods. Herein, a highly efficient fluorescence sensing platform (CDs@MIP) for rapid and sensitive analysis of ARs was explored, using carbon dots (CDs) as fluorophores and 5-heneicosylresorcinol (C21:0 AR) as template molecules embedded in a molecularly imprinted polymer (MIP) coating. Benefiting from the specific cavities in the probe and a photo-induced electron transfer effect, the fluorescence intensity of CDs@MIP was significantly quenched in the presence of C21:0 AR, exhibiting a superior binding efficiency and selectivity. As a result, the fabricated optical sensor delivered a wide linear range of C21:0 AR from 0.015 to 60 μg mL-1 with an ultralow detection limit of 4 ng mL-1. It was noteworthy that the sensor was successfully applied for the rapid detection of C21:0 AR in commercial whole-wheat foods as well as visualization analysis on the test paper, comprehensively validating the practicality and efficacy of CDs@MIP based fluorescence assay. The study provides a rapid and sensitive detection method of C21:0 AR, paving a new way for guiding grain industry to effectively qualify the authenticity and to quantify the content of whole wheat in wheat-based foods.
Collapse
Affiliation(s)
- Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Jie Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Shichao Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Haoran Fan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China.
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
3
|
Kateshiya MR, Desai ML, Malek NI, Kailasa SK. Advances in Ultra-small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J Fluoresc 2022; 33:775-798. [PMID: 36538145 DOI: 10.1007/s10895-022-03115-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.
Collapse
|
4
|
Orbay S, Kocaturk O, Sanyal R, Sanyal A. Molecularly Imprinted Polymer-Coated Inorganic Nanoparticles: Fabrication and Biomedical Applications. MICROMACHINES 2022; 13:1464. [PMID: 36144087 PMCID: PMC9501141 DOI: 10.3390/mi13091464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) continue to gain increasing attention as functional materials due to their unique characteristics such as higher stability, simple preparation, robustness, better binding capacity, and low cost. In particular, MIP-coated inorganic nanoparticles have emerged as a promising platform for various biomedical applications ranging from drug delivery to bioimaging. The integration of MIPs with inorganic nanomaterials such as silica (SiO2), iron oxide (Fe3O4), gold (Au), silver (Ag), and quantum dots (QDs) combines several attributes from both components to yield highly multifunctional materials. These materials with a multicomponent hierarchical structure composed of an inorganic core and an imprinted polymer shell exhibit enhanced properties and new functionalities. This review aims to provide a general overview of key recent advances in the fabrication of MIPs-coated inorganic nanoparticles and highlight their biomedical applications, including drug delivery, biosensor, bioimaging, and bioseparation.
Collapse
Affiliation(s)
- Sinem Orbay
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Rana Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
5
|
Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices. ANALYTICA 2022. [DOI: 10.3390/analytica3030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, the challenges that analytical chemistry has to face are ever greater and more complex both from the point of view of the selectivity of analytical methods and their sensitivity. This is especially true in quantitative analysis, where various methods must include the development and validation of new materials, strategies, and procedures to meet the growing need for rapid, sensitive, selective, and green methods. In this context, given the International Guidelines, which over time, are updated and which set up increasingly stringent “limits”, constant innovation is required both in the pre-treatment procedures and in the instrumental configurations to obtain reliable, accurate, and reproducible information. In addition, the environmental field certainly represents the greatest challenge, as analytes are often present at trace and ultra-trace levels. These samples containing analytes at ultra-low concentration levels, therefore, require very labor-intensive sample preparation procedures and involve the high consumption of organic solvents that may not be considered “green”. In the literature, in recent years, there has been a strong development of increasingly high-performing sample preparation techniques, often “solvent-free”, as well as the development of hyphenated instrumental configurations that allow for reaching previously unimaginable levels of sensitivity. This review aims to provide an update of the most recent developments currently in use in sample pre-treatment and instrument configurations in the environmental field, also evaluating the role and future developments of analytical chemistry in light of upcoming challenges and new goals yet to be achieved.
Collapse
|
6
|
Özen F, Eraslan G. Toxicokinetic of cyphenothrin in rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31541-31550. [PMID: 35001279 DOI: 10.1007/s11356-021-17775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Type II pyrethroids, including cyphenothrin, have a wider efficacy and spectrum of action because they have a killing effect rather than a knockdown effect on pests. For this reason, they are among the most widely used pyrethroid groups today. In addition, this group also has repellent activity. Thus, cyphenothrin is a commonly used pyrethroid, which poses an exposure/toxicity risk for living organisms. Toxicokinetic studies have an important place in predicting the toxicity risks of compounds and evaluating viable treatment options. In this study, the toxicokinetics of cyphenothrin were investigated in rabbits. The animal material of the study comprised 6-month-old female 14 New Zealand rabbits, each weighing 2-2.5 kg. The animals were randomly assigned to two groups, each of 7 animals. The rabbits in group 1 were administered a single dose of 2.5 mg/kg bw cyphenothrin in dimethyl sulfoxide as an intravenous bolus, while the rabbits in group 2 were administered a single dose of 2.5 mg/kg bw cyphenothrin in the same vehicle as an oral bolus. Following the administration of cyphenothrin, blood samples were taken at certain intervals from the auricular vein into heparinized tubes. Plasma cyphenothrin levels were determined by gas chromatography, using a capillary column and a micro-electron capture detector. For orally administered cyphenothrin, the plasma maximum concentration (Cmax), time to reach the maximum value (tmax), half-life (t1/2β), mean residence time (MRT), area under the curve (AUC0→∞), and bioavailability (F) values were determined as 172.28 ± 47.30 ng/ml, 1.07 ± 0.42 h, 12.95 ± 1.11 h, 17.79 ± 1.69 h, 2220.07 ± 572.02 ng/h/ml, and 29.50%, respectively. For intravenous cyphenothrin, the t1/2β, MRT and AUC0→∞ values were ascertained as 7.66 ± 0.74 h, 9.28 ± 0.62 h, and 7524.31 ± 2988.44 ng/h/ml, respectively. Although the bioavailability of cyphenothrin was limited when taken orally, its half-life and mean residence time in the body were found to be long. This suggests that high doses of this pesticide may pose a poisoning risk.
Collapse
Affiliation(s)
- Ferhat Özen
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
7
|
Recent developments on nanomaterial probes for detection of pesticide residues: A review. Anal Chim Acta 2022; 1215:339974. [DOI: 10.1016/j.aca.2022.339974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
|
8
|
Xie Z, Feng Q, Fang X, Dai X, Yan Y, Ding CF. One-Pot Preparation of Hydrophilic Glucose Functionalized Quantum Dots for Diabetic Serum Glycopeptidome Analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
John BK, Abraham T, Mathew B. A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection. J Fluoresc 2022; 32:449-471. [DOI: 10.1007/s10895-021-02852-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
|
10
|
Mukunzi D, Habimana JDD, Li Z, Zou X. Mycotoxins detection: view in the lens of molecularly imprinted polymer and nanoparticles. Crit Rev Food Sci Nutr 2022; 63:6034-6068. [PMID: 35048762 DOI: 10.1080/10408398.2022.2027338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecularly imprinted polymers (MIPs) are tailor-made functional composites which selectively recognize and bind the target molecule of interest. MIP composites are products of the massively cross-linked polymer matrices, generated via polymerization, with bio-inspired recognition cavities that are morphologically similar in size, shape and spatial patterns to the target conformation. These features have enabled researchers to expand the field of molecular recognition, more specifically for target with peculiar requirements. Nevertheless, MIPs alone are characterized with weak sensitivity. Besides, nanoparticles (NPs) are remarkably sensitive but also suffer from poor selectivity. Intriguingly, the combination of the two results in a highly sensitive and selective MIP composite. For instance, the conjugation of different functional NPs with MIPs can generate new flexible target capture tools, either a dynamic sensor or a novel drug delivery system. In this regard, although the technology is considered an established and feasible approach, it is still perceived as a burgeoning technology for various fields, which makes it unceasingly worthy reviewing. Therefore, in this review, we attempt to give an update on various custom-made biosensors based on MIPs in combination with various NPs for the detection of mycotoxins, the toxic secondary metabolites of fungi. We first summarize the classification, prevalence, and toxicological characteristics of common mycotoxins. Next, we provide an overview of MIP composites and their characterization, and then segment the role of NPs with respect to common types of MIP-based sensors. At last, conclusions and outlook are discussed.
Collapse
Affiliation(s)
- Daniel Mukunzi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jean de Dieu Habimana
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021; 26:6233. [PMID: 34684813 PMCID: PMC8540986 DOI: 10.3390/molecules26206233] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Abstract
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.
Collapse
Affiliation(s)
- Abbas J. Kadhem
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| | - Guillermina J. Gentile
- Department of Chemical Engineering, Instituto Tecnológico de Buenos Aires, Lavardén 315, Buenos Aires C1437FBG, Argentina;
| | - Maria M. Fidalgo de Cortalezzi
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| |
Collapse
|
12
|
An eco-friendly near infrared fluorescence molecularly imprinted sensor based on zeolite imidazolate framework-8 for rapid determination of trace trypsin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
A novel ascorbic acid ratiometric fluorescent sensor based on ZnCdS quantum dots embedded molecularly imprinted polymer and silica-coated CdTeS quantum dots. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3856. [PMID: 34204853 PMCID: PMC8199770 DOI: 10.3390/s21113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
16
|
Chen S, Su X, Yuan C, Jia CQ, Qiao Y, Li Y, He L, Zou L, Ao X, Liu A, Liu S, Yang Y. A magnetic phosphorescence molecularly imprinted polymers probe based on manganese-doped ZnS quantum dots for rapid detection of trace norfloxacin residual in food. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119577. [PMID: 33636494 DOI: 10.1016/j.saa.2021.119577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
This paper reports the development of a novel probe based on magnetic room-temperature phosphorescence quantum dots with molecularly imprinted polymers (MQD-MIPs) for the rapid detection of trace norfloxacin (NFX) residual in complex food matrix. The highly selective probe was constructed by surface molecular imprinting technology using magnetic materials (Fe3O4 nanoparticles) as core, Mn-doped ZnS quantum dots (Mn-ZnS QDs) as phosphorescent materials, NFX as template, 3-aminopropyltriethoxysilane as functional monomer, and tetraethoxysilane as crosslinking agent. The as-obtained MQD-MIPs were characterized in detail by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometry, and vibrating sample magnetometer. A magnetic strength of 37.64 emu g-1 was recorded. Also, the probe displayed excellent room temperature phosphorescence properties with excitation/emission peaks at 300/590 nm. Under the optimized conditions, the detection time was less than 40 min, phosphorescence intensity varied linearly with concentration from 1 to 90 μg·L-1, and detection limit reached as low as 0.80 μg·L-1. Furthermore, the MQD-MIPs-based probe successfully detected norfloxacin residues in spiked fish and milk samples with recoveries of 90.92-111.53% and RSD <7%, outperforming the standard control method-HPLC-FLD (recoveries of 85.89-118.28%).
Collapse
Affiliation(s)
- Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| | - Xin Su
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Chengbo Yuan
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Charles Q Jia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Yan Qiao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yuzhu Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| |
Collapse
|
17
|
Thor HY, Teow YH, Ho KC. Synthesis and characterization of 2-mercaptoethanol-capped manganese-doped zinc sulfide quantum dots-embedded molecularly-imprinted membranes. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1903634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hui Ying Thor
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
- Research Centre of Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - Kah Chun Ho
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
- Faculty of Engineering, Built Environment, and Information Technology, SEGi University, Kota Damansara, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
18
|
Díaz-Álvarez M, Martín-Esteban A. Molecularly Imprinted Polymer-Quantum Dot Materials in Optical Sensors: An Overview of Their Synthesis and Applications. BIOSENSORS 2021; 11:bios11030079. [PMID: 33805669 PMCID: PMC7999655 DOI: 10.3390/bios11030079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 05/03/2023]
Abstract
In the last decades analytical methods have focused on the determination of target analytes at very low concentration levels. This has been accomplished through the use of traditional analytical methods that usually require high reagent consumption, expensive equipment and long pretreatment steps. Thus, there is a demand for simple, rapid, highly selective and user-friendly detection procedures. Quantum dots (QDs) are semiconductor fluorescent nanomaterials with unique optoelectronic properties that have shown great potential for the development of fluorescence probes. Besides, the combination of QDs with molecularly imprinted polymer (MIPs), synthetic materials with selective recognition, have been proposed as useful materials in the development of optical sensors. The resulting MIP-QDs optical sensors integrate the advantages of both techniques: the high sensitivity of QDs-based fluorescence sensors and the high selectivity of MIPs. This review gives a brief overview of the strategies for the synthesis of MIPs-QDs based optical sensors, highlighting the modifications in the synthesis procedure that improve the sensor performance. Finally, a revision of recent applications in sensing and bioimaging is presented.
Collapse
|
19
|
Yang Q, Li Q, Li H, Li F. pH-Response Quantum Dots with Orange-Red Emission for Monitoring the Residue, Distribution, and Variation of an Organophosphorus Pesticide in an Agricultural Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2689-2696. [PMID: 33635638 DOI: 10.1021/acs.jafc.0c08212] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of simple, sensitive, and reliable fluorescence sensors for monitoring the residue, distribution, and variation of organophosphorus pesticides (OPs) in agricultural crops is highly urgent but remains challenging, which is ascribed to deprivation of an ideal fluorophore and ingenious detection strategy. Herein, we report the fabrication of cadmium telluride quantum dots (CdTe QDs) with bright emission, good water dispersion, and long emission wavelength for OP screening based on the unique response of CdTe QDs to pH and the inhibition of OPs on acetylcholinesterase (AChE) activity. AChE catalyzed hydrolysis of acetylcholine (ACh) into CH3COOH, which protonated CdTe QDs to decline the fluorescence, whereas target OP impeded AChE from catalyzing hydrolysis of ACh into CH3COOH, making little influence in fluorescence of CdTe QDs. On the basis of the change in fluorescence, sensitive detection of OP was acquired, with the limit of detection at 0.027 ng/mL, which was comparable or lower than that of most known OP sensors. Furthermore, the CdTe-QD-based sensor was successfully applied for precisely monitoring the residue, distribution, and variation of methidathion in Chinese cabbage and cultivated soil. Therefore, the proposed sensor was anticipated to supply a promising alternative for food safety guarantee and was an valuable application for OP screening.
Collapse
Affiliation(s)
- Qiaoting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
20
|
Sawetwong P, Chairam S, Jarujamrus P, Amatatongchai M. Enhanced selectivity and sensitivity for colorimetric determination of glyphosate using Mn-ZnS quantum dot embedded molecularly imprinted polymers combined with a 3D-microfluidic paper-based analytical device. Talanta 2021; 225:122077. [PMID: 33592801 DOI: 10.1016/j.talanta.2020.122077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023]
Abstract
We report a novel three-dimensional microfluidic paper-based analytical device (3D-μPAD) with colorimetric detection, using Mn-ZnS quantum dot embedded molecularly imprinted polymer (Mn-ZnS QD-MIP), for selective glyphosate determination in whole grain samples. Detection is based on the catalytic activity of Mn-ZnS QD-MIP in the H2O2 oxidation of ABTS. Glyphosate imprinted polymer is successfully synthesized on the Mn-ZnS QD surface using a poly (N-isopropylacrylamide) (NIPAM) and N, N'-Methylenebisacrylamide (MBA) as the functional monomers. The catalytic activity depends on binding or non-binding of glyphosate molecules on the synthetic recognition sites of the Mn-ZnS QD-MIP. Glyphosate selectively binds to the cavities embedded on the Mn-ZnS QD surface, and subsequently turns-off or inhibits the ABTS oxidation and color change to light green. The change of reaction color from dark green to light green depends on the concentration of glyphosate. We report, for the first time, using the relatively new penguard enamel colour to create a hydrophobic barrier. The foldable 3D-μPAD comprises three layers (top/center/bottom), named as the detection zone, immobilized Mn-ZnS QD-MIP disc, and sample loading. Assay on the 3D-μPAD can determine glyphosate by ImageJ detection, over an operating range of 0.005-50 μg mL-1 and with a detection limit of 0.002 μg mL-1. Our 3D-μPAD exhibits high accuracy, with a 0.4% (intra-day) and 0.7% (inter-day) relative difference from the certified CRM value. Moreover, the fabricated 3D-μPAD provides good reproducibility (1.7% RSD for ten devices). The developed 3D-μPAD was successfully applied to determine the glyphosate concentration in whole grain samples and shows great promise as an alternative highly selective and sensitive colorimetric method. The 3D-μPAD is well suited to food-quality control and onsite environmental-monitoring applications, without sophisticated instrumentation.
Collapse
Affiliation(s)
- Pornchanok Sawetwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Sanoe Chairam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
21
|
Dehghani Z, Akhond M, Absalan G. Carbon quantum dots embedded silica molecular imprinted polymer as a novel and sensitive fluorescent nanoprobe for reproducible enantioselective quantification of naproxen enantiomers. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Su D, Li H, Yan X, Lin Y, Lu G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116126] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H, Mozafari M. Quantum Dots: A Review from Concept to Clinic. Biotechnol J 2020; 15:e2000117. [DOI: 10.1002/biot.202000117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre Iran University of Medical Sciences Tehran Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) Dankook University Cheonan Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Dankook University Cheonan Republic of Korea
- Department of Biomaterials Science, School of Dentistry Dankook University Cheonan Republic of Korea
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
24
|
Zhang Y, Yuan X, Jiang W, Liu H. Determination of nereistoxin-related insecticide via quantum-dots-doped covalent organic frameworks in a molecularly imprinted network. Mikrochim Acta 2020; 187:464. [DOI: 10.1007/s00604-020-04435-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
|
25
|
The Recent Advances of Fluorescent Sensors Based on Molecularly Imprinted Fluorescent Nanoparticles for Pharmaceutical Analysis. Curr Med Sci 2020; 40:407-421. [PMID: 32681246 PMCID: PMC7366466 DOI: 10.1007/s11596-020-2195-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/22/2020] [Indexed: 12/16/2022]
Abstract
Fluorescent nanoparticles have good chemical stability and photostability, controllable optical properties and larger stokes shift. In light of their designability and functionability, the fluorescent nanoparticles are widely used as the fluorescent probes for diverse applications. To enhance the sensitivity and selectivity, the combination of the fluorescent nanoparticles with the molecularly imprinted polymer, i.e. molecularly imprinted fluorescent nanoparticles (MIFN), was an effective way. The sensor based on MIFN (the MIFN sensor) could be more compatible with the complex sample matrix, which was especially widely adopted in medical and biological analysis. In this mini-review, the construction method, detective mechanism and types of MIFN sensors are elaborated. The current applications of MIFN sensors in pharmaceutical analysis, including pesticides/herbicide, veterinary drugs/drugs residues and human related proteins, are highlighted based on the literature in the recent three years. Finally, the research prospect and development trend of the MIFN sensor are forecasted.
Collapse
|
26
|
Halali VV, Shwetha Rani R, Geetha Balakrishna R, Budagumpi S. Ultra-trace level chemosensing of uranyl ions; scuffle between electron and energy transfer from perovskite quantum dots to adsorbed uranyl ions. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Fluorescent nanomaterials combined with molecular imprinting polymer: synthesis, analytical applications, and challenges. Mikrochim Acta 2020; 187:399. [PMID: 32572580 DOI: 10.1007/s00604-020-04353-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
Fluorescent nanomaterials (FNMs) and molecular imprinted polymers (MIPs) have been widely used in analytical chemistry for determination. However, low selectivity of FNMs and low sensitivity of MIPs hinder their applications. Combining the merits of FNMs and MIPs, FNMs coated with MIPs (FNMs@MIPs) were proposed to solve those problems. Carbon dots, semiconductor quantum dots, noble metal nanoparticles, silica nanoparticles, and covalent-organic frameworks have been reported to be coated with MIPs. In order to overcome challenges for FNMs@MIPs, such as the lack of handy synthesis routes, incompatibility with aqueous solutions, heterogeneous size of particles, leakage of template molecules, the biocompatibility of FNMs@MIPs, and the inference between FNMs and MIPs, scientists proposed some solutions in recent years. We comprehensively review the newest advances of the FNMs@MIPs, and predict the direction of the future development. Graphical abstract.
Collapse
|
28
|
Patel J, Jain B, Singh AK, Susan MABH, Jean-Paul L. Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Zhang Z, Yu X, Zhao J, Shi X, Sun A, Jiao H, Xiao T, Li D, Chen J. A fluorescence microplate assay based on molecularly imprinted silica coated quantum dot optosensing materials for the separation and detection of okadaic acid in shellfish. CHEMOSPHERE 2020; 246:125622. [PMID: 31918075 DOI: 10.1016/j.chemosphere.2019.125622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Molecularly imprinted polymers (MIPs) are attracting substantial interest as artificial plastic antibodies because of their biometric capability for targeting small molecules. In this study, molecularly imprinted silica material-coated quantum dots (MIS-QDs) with selective recognition capability to okadaic acid (OA) were developed and characterized. The synthesized MIS-QDs with specific imprinting cavities exhibited excellent recognition capability similar to those of biological antibodies and high fluorescence (FL) quenching selectivity for OA. Furthermore, the MIS-QDs with unsaturated bonds were immobilized onto the surface of 96-well microplates by cold plasma-induced grafting. A novel direct competitive microplate assay strategy was then proposed. The FL quenching properties of the developed microplate assay showed an excellent linear relationship with OA in the range of 10.0-100.0 μg/kg with a correlation coefficient of 0.9961. The limit of detection for OA was 0.25 μg/kg in the shellfish samples. The mean quantitative recoveries were 92.5%-101.0% and 92.9%-101.3%, with relative standard deviations of <7.7% and 7.6% for pure solvents and purified shellfish samples, respectively. The established microplate assay strategy can be used as a rapid and high-throughput method for analyzing OA marine toxins in biological samples.
Collapse
Affiliation(s)
- Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Xinru Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jian Zhao
- Ningbo Academy of Agricultural Sciences, 19 Houde Road, Ningbo, 315040, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Tingting Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Dexiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| |
Collapse
|
30
|
Masteri-Farahani M, Mashhadi-Ramezani S, Mosleh N. Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:118021. [PMID: 31923795 DOI: 10.1016/j.saa.2019.118021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 05/20/2023]
Abstract
A novel fluorescent nanosensor based on graphene quantum dots embedded within molecularly imprinted polymer (GQDs@MIP) was developed for detection and determination of methamphetamine (METH). The resulting GQDs@MIP nanocomposite exhibited higher methamphetamine selectivity in comparison with corresponding non-imprinted polymer (GQDs@NIP). Characterization of the GQDs@MIP nanocomposite was done by nitrogen adsorption and desorption analysis (BET method), transmission electron microscopy (TEM), photoluminescence (PL), ultraviolet-visible (UV-Vis), and Fourier transform infrared (FT-IR) spectroscopies. The fluorescence intensity of GQDs@MIP was efficiently quenched in the presence of methamphetamine template molecules while no quenching was observed in the presence of other analytes such as amphetamine, ibuprofen, codeine, and morphine. Using this method, the detection limit of 1.7 μg/L was obtained for methamphetamine determination.
Collapse
Affiliation(s)
| | | | - Nazanin Mosleh
- Faculty of Chemistry, Kharazmi University, Tehran, Islamic Republic of Iran
| |
Collapse
|
31
|
Highly Selective Electrochemiluminescence Sensor Based on Molecularly Imprinted-quantum Dots for the Sensitive Detection of Cyfluthrin. SENSORS 2020; 20:s20030884. [PMID: 32046019 PMCID: PMC7038674 DOI: 10.3390/s20030884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
A highly selective and sensitive molecularly imprinted electrochemiluminescence (MIECL) sensor was developed based on the multiwall carbon nanotube (MWCNT)-enhanced molecularly imprinted quantum dots (MIP-QDs) for the rapid determination of cyfluthrin (CYF). The MIP-QDs fabricated by surface grafting technique exhibited excellent selective recognition to CYF, resulting in a specific decrease of ECL signal at the MWCNT/MIP-QD modified electrode. Under optimal conditions, the MIECL signal was proportional to the logarithm of the CYF concentration in the range of 0.2 µg/L to 1.0 × 103 µg/L with a determination coefficient of 0.9983. The detection limit of CYF was 0.05 µg/L, and good recoveries ranging from 86.0% to 98.6% were obtained in practical samples. The proposed MIECL sensor provides a novel, rapid, high sensitivity detection strategy for successfully analyzing CYF in fish and seawater samples.
Collapse
|
32
|
Synthesis and application of a surface ionic imprinting polymer on silica-coated Mn-doped ZnS quantum dots as a chemosensor for the selective quantification of inorganic arsenic in fish. Anal Bioanal Chem 2020; 412:1663-1673. [DOI: 10.1007/s00216-020-02405-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 01/24/2023]
|
33
|
Yang C, Wang L, Zhang Z, Chen Y, Deng Q, Wang S. Fluorometric determination of fipronil by integrating the advantages of molecularly imprinted silica and carbon quantum dots. Mikrochim Acta 2019; 187:12. [DOI: 10.1007/s00604-019-4005-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
|
34
|
Gui R, Jin H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Liu H, Ding J, Zhang K, Ding L. Fabrication of carbon dots@restricted access molecularly imprinted polymers for selective detection of metronidazole in serum. Talanta 2019; 209:120508. [PMID: 31892057 DOI: 10.1016/j.talanta.2019.120508] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 02/08/2023]
Abstract
A custom-tailored design was proposed for the fabrication of carbon dots coupled with restricted access materials and molecularly imprinted polymers (CDs@RAM-MIPs) to detect metronidazole (MNZ). Biomass carbon dots (CDs) were derived from longan peels assisted with high pressure microwave, and had the merits of eco-friendly, excellent photostability and low toxicity. In this work, glycidyl methacrylate was used as a co-polymeric monomer to increase hydroxyl groups on the surface of synthetic materials, which eliminated the interference of biological macromolecules. The specific binding cavities of CDs@RAM-MIPs were formed after removing the template molecule (MNZ). The obtained CDs@RAM-MIPs can selectively capture MNZ through the specific interaction between recognition sites and MNZ, and obey photoinduced electron transfer fluorescence quenching mechanism. The highly sensitive and selective fluorescent sensor based CDs@RAM-MIPs had a wide linear range (50-1200 ng mL-1) and a low detection limit (17.4 ng mL-1) for MNZ. It has been utilized to detect MNZ in serum with recoveries of 93.5%-102.7%, and the relative standards (RSDs) were 1.9%-3.6%, respectively. This work provides a thoughtful strategy for preparation and application of CDs@RAM-MIPs, which presages its great potential for detecting trace compounds in real samples.
Collapse
Affiliation(s)
- Haochi Liu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Zhang
- Shandong Institute of Non-metallic Materials, Jinan, 250031, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
36
|
Aflatoxins screening in non-dairy beverages by Mn-doped ZnS quantum dots – Molecularly imprinted polymer fluorescent probe. Talanta 2019; 199:65-71. [DOI: 10.1016/j.talanta.2019.02.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/20/2022]
|
37
|
Molecularly Imprinted Polyacrylamide with Fluorescent Nanodiamond for Creatinine Detection. MATERIALS 2019; 12:ma12132097. [PMID: 31261849 PMCID: PMC6650869 DOI: 10.3390/ma12132097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 01/17/2023]
Abstract
Creatinine measurement in blood and urine is an important diagnostic test for assessing kidney health. In this study, a molecularly imprinted polymer was obtained by incorporating fluorescent nanodiamond into a creatinine-imprinted polyacrylamide hydrogel. The quenching of peak nanodiamond fluorescence was significantly higher in the creatinine-imprinted polymer compared to the non-imprinted polymer, indicative of higher creatinine affinity in the imprinted polymer. Fourier transform infrared spectroscopy and microscopic imaging was used to investigate the nature of chemical bonding and distribution of nanodiamonds inside the hydrogel network. Nanodiamonds bind strongly to the hydrogel network, but as aggregates with average particle diameter of 3.4 ± 1.8 µm and 3.1 ± 1.9 µm for the non-imprinted and molecularly imprinted polymer, respectively. Nanodiamond fluorescence from nitrogen-vacancy color centers (NV- and NV0) was also used to detect creatinine based on nanodiamond-creatinine surface charge interaction. Results show a 15% decrease of NV-/NV0 emission ratio for the creatinine-imprinted polymer compared to the non-imprinted polymer, and are explained in terms of changes in the near-surface band structure of diamond with addition of creatinine. With further improvement of sensor design to better disperse nanodiamond within the hydrogel, fluorescent sensing from nitrogen-vacancy centers is expected to yield higher sensitivity with a longer range (Coulombic) interaction to imprinted sites than that for a sensor based on acceptor/donor resonance energy transfer.
Collapse
|
38
|
Cao Y, Feng T, Xu J, Xue C. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens Bioelectron 2019; 141:111447. [PMID: 31238279 DOI: 10.1016/j.bios.2019.111447] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
With increasing economic globalization, food safety is becoming the most serious concern in the food production and distribution system. Food safety hazard factors (FSHFs) can be categorized into chemical hazards, biological hazards and physical hazards, with the detection of the former two having fascinated interdisciplinary research areas spanning chemistry, material science and biological science. Molecularly imprinted polymer (MIP) -based sensors overcome many limitations of traditional detection methods and provide opportunities for efficient, sensitive and low-cost detection using smart miniaturized equipment. With highly specific molecular recognition capacity and high stability in harsh chemical and physical conditions, MIPs have been used in sensing platforms such as electrochemical, optical and mass-sensitive sensors as promising alternatives to bio-receptors for food analysis. In this systemic review, we summarize recent advances of MIPs and MIP-based sensors, such as popular monomers, usual polymerization strategies, fresh modification materials and advanced sensing mechanisms. The applications of MIP-based sensors in FSHF detection are discussed according to sensing mechanisms, including electrochemistry, optics and mass-sensitivity. Finally, future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China.
| | - Tingyu Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China.
| |
Collapse
|
39
|
Synthesis of molecularly imprinted fluorescent probe based on biomass-derived carbon quantum dots for detection of mesotrione. Anal Bioanal Chem 2019; 411:5519-5530. [PMID: 31147761 DOI: 10.1007/s00216-019-01930-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
A novel fluorescent probe based on molecularly imprinted polymers (MIPs) coupled with carbon quantum dots (CQDs) was fabricated and successfully used for selective recognition of mesotrione. In this probe, the biomass-derived CQDs were prepared through a hydrothermal method using mango peels as carbon source, and the whole synthesis procedure was green without chemical reagents. The CQDs were encapsulated into MIPs by using sol-gel technology. After removal of the template molecule mesotrione, specific binding sites are formed and there is electrostatic attraction between the probe and the template molecule. The synthetic CQDs@MIPs were able to selectively capture the target mesotrione with fluorescence quenching via the specific interaction between mesotrione and the recognition cavities. The probe was used for determination of mesotrione in corn to verify the practicality of the proposed method. The detection limit of mesotrione was 4.7 nmol L-1, and the linear range was 15 nmol L-1 to 3000 nmol L-1. Meanwhile, the recoveries of this method for mesotrione were 91.4-96.2%, and the relative standard deviations (RSDs) were 3.2-6.1%. This work provides a novel research method to synthesize CQDs@MIPs with high selectivity (imprinting factor = 5.6), and which can be used for convenient, rapid recognition and sensitive detection of trace compounds from complex matrices.
Collapse
|
40
|
Determination of Sulfonylurea Herbicides in Grain Samples by Matrix Solid-Phase Dispersion with Mesoporous Structured Molecularly Imprinted Polymer. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01539-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Characterization and application of molecularly imprinted polymer-coated quantum dots for sensitive fluorescent determination of diethylstilbestrol in water samples. Talanta 2019; 197:98-104. [DOI: 10.1016/j.talanta.2019.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 02/04/2023]
|
42
|
Guo P, Yang W, Hu H, Wang Y, Li P. Rapid detection of aflatoxin B 1 by dummy template molecularly imprinted polymer capped CdTe quantum dots. Anal Bioanal Chem 2019; 411:2607-2617. [PMID: 30877344 DOI: 10.1007/s00216-019-01708-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
A novel and sensitive fluorescent sensor was synthesized for the rapid and specific recognition of aflatoxin B1 (AFB1) by our combining molecular imprinting techniques with quantum dot technology. Molecularly imprinted polymers coated CdTe quantum dots (MIP@CdTe QDs) were prepared through the Stöber method with 5,7-dimethoxycoumarin as a dummy template. 3-Aminopropyltriethoxysilane was selected as the functional monomer, and tetraethyl orthosilicate was used as the cross-linking agent. The best molar ratio of 5,7-dimethoxycoumarin to functional monomer to cross-linker was 4:20:15. The MIP@CdTe QD composites were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and fluorescence spectroscopy. Under the optimum conditions, the relative fluorescence intensity of the MIP@CdTe QDs showed adequate linearity with AFB1 concentration over the range from 80 to 400 ng/g. The detection limit is 4 ng/g, according to 3s/K. Finally, the method was successfully applied to the quantitative determination of AFB1 in real samples. The spike recoveries at different spiking levels ranged from 99.20% to 101.78%, which were consistent with those measured by ultrahigh-performance liquid chromatography-mass spectrometry. The method developed for AFB1 detection lays the foundation for rapid detection of trace amounts of other exogenous harmful substances in a complicated matrix.
Collapse
Affiliation(s)
- Pengqi Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,School of Chemical Engineering, Northwest University, Xi'an, China
| | - Wu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
43
|
Lin ZZ, Li WJ, Chen QC, Peng AH, Huang ZY. Rapid detection of malachite green in fish with a fluorescence probe of molecularly imprinted polymer. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2018.1558560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zheng-zhong Lin
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Wen-Jing Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Qing-Chou Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Ai-hong Peng
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zhi-yong Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| |
Collapse
|
44
|
Mehrzad-Samarin M, Faridbod F, Ganjali MR. A luminescence nanosensor for Ornidazole detection using graphene quantum dots entrapped in silica molecular imprinted polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:430-436. [PMID: 30172239 DOI: 10.1016/j.saa.2018.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 08/05/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
A luminescence nanosensor has been developed for analysis of Ornidazole in biological samples using graphene-quantum-dot-embedded silica molecular imprinted polymer (GQD-SMIP) as a selective probe for this analyte. The GQD-SMIP was found to possess a strong fluorescent emission at 450 nm upon excitation at 365 nm. This emission was found to linearly quench in the presence of Ornidazole in a concentration range of 0.75 to 30 μM. A detection limit of 0.24 μM was reached using the probe and the sensor was successfully used in the determination of the analyte in plasma samples.
Collapse
Affiliation(s)
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Luo L, Feng W, Hu W, Chen C, Gong H, Cai C. Molecularly imprinted polymer based hybrid structure SiO2@MPS-CdTe/CdS: a novel fluorescence probe for hepatitis A virus. Methods Appl Fluoresc 2018; 7:015006. [DOI: 10.1088/2050-6120/aaf0b2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Chawla P, Kaushik R, Shiva Swaraj V, Kumar N. Organophosphorus pesticides residues in food and their colorimetric detection. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Huang S, Guo M, Tan J, Geng Y, Wu J, Tang Y, Su C, Lin CC, Liang Y. Novel Fluorescence Sensor Based on All-Inorganic Perovskite Quantum Dots Coated with Molecularly Imprinted Polymers for Highly Selective and Sensitive Detection of Omethoate. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39056-39063. [PMID: 30346125 DOI: 10.1021/acsami.8b14472] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
All-inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) have attracted considerable attention with superior electrical and photophysical properties. In this study, luminescent perovskite (CsPbBr3) quantum dots (QDs) as sensing elements combined with molecularly imprinted polymers (MIPs) are used for the detection of omethoate (OMT). The new MIPs@CsPbBr3 QDs were synthesized successfully through the imprinting technology with a sol-gel reaction. The fluorescence (FL) of the MIPs@CsPbBr3 QDs was quenched obviously on loading the MIPs with OMT, the linear range of OMT was from 50 to 400 ng/mL, and the detection limit was 18.8 ng/mL. The imprinting factor was 3.2, which indicated excellent specificity of the MIPs for the inorganic metal halide (IMH) perovskites. The novel composite possesses the outstanding FL capability of CsPbBr3 QDs and the high selectivity of molecular imprinting technology, which can convert the specific interactions between template and the imprinted cavities to apparent changes in the FL intensity. Hence, a selective and simple FL sensor for direct and fast detection of organophosphorus pesticide in vegetable and soil samples was developed here. The present work also illustrates the potential of IMH perovskites for sensor applications in biological and environmental detection.
Collapse
Affiliation(s)
- Shuyi Huang
- School of Chemistry and Environment , South China Normal University , 510631 Guangzhou , China
| | - Manli Guo
- School of Chemistry and Environment , South China Normal University , 510631 Guangzhou , China
| | - Jiean Tan
- School of Chemistry and Environment , South China Normal University , 510631 Guangzhou , China
| | - Yuanyuan Geng
- School of Chemistry and Environment , South China Normal University , 510631 Guangzhou , China
| | - Jinyi Wu
- School of Chemistry and Environment , South China Normal University , 510631 Guangzhou , China
| | - Youwen Tang
- School of Chemistry and Environment , South China Normal University , 510631 Guangzhou , China
| | | | - Chun Che Lin
- Graduate Institute of Nanomedicine and Medical Engineering and International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering , Taipei Medical University , Taipei 110 , Taiwan
| | - Yong Liang
- School of Chemistry and Environment , South China Normal University , 510631 Guangzhou , China
| |
Collapse
|
48
|
Habimana JDD, Ji J, Pi F, Karangwa E, Sun J, Guo W, Cui F, Shao J, Ntakirutimana C, Sun X. A class-specific artificial receptor-based on molecularly imprinted polymer-coated quantum dot centers for the detection of signaling molecules, N-acyl-homoserine lactones present in gram-negative bacteria. Anal Chim Acta 2018; 1031:134-144. [DOI: 10.1016/j.aca.2018.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/19/2018] [Accepted: 05/04/2018] [Indexed: 01/27/2023]
|
49
|
Xu S, Chen L, Ma L. Fluorometric determination of quercetin by using graphitic carbon nitride nanoparticles modified with a molecularly imprinted polymer. Mikrochim Acta 2018; 185:492. [PMID: 30284027 DOI: 10.1007/s00604-018-3016-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
The authors describe a fluorescent probe for sensitive and selective determination of quercetin, an indicator for the freshness of drinks. The probe consists of silica ball encapsulated graphitic carbon nitride (g-C3N4) modified with a molecularly imprinted polymer (MIP). It was synthesized via reverse microemulsion. The resulting MIP@g-C3N4 nanocomposite was characterized by fluorescence spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. Quercetin quenches the fluorescence of the MIP@g-C3N4 probe. The effect was used to quantify quercetin in grape juice, tea juice, black tea, and red wine by fluorometry (λexc = 350 nm, λem = 460 nm). Response is linear in the 10-1000 ng mL-1 quercetin concentration range. The detection limit is 2.5 ng mL-1, recoveries range between 90.7 and 94.1%, and relative standard deviations are between 2.1 and 5.5%. Graphical abstract Schematic of the synthesis of the MIP@g-C3N4 by a reverse microemulsion method. The probe was applied for the selective recognition and fluorometric determination of quercetin.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China
| | - Ligang Chen
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China.
| | - Ling Ma
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China.
| |
Collapse
|
50
|
Preparation of molecularly imprinted polymer/Au nanohybrids as an effective biosensing material. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|