1
|
Wei D, Wang L, Poopal RK, Ren Z. IR-based device to acquire real-time online heart ECG signals of fish (Cyprinus carpio) to evaluate the water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122564. [PMID: 37717894 DOI: 10.1016/j.envpol.2023.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Water quality monitoring is a challenging task due to continuous pollution. The rapid development of engineering technologies has paved the way for the development of efficient and convenient computer-based online continuous water-quality assessment techniques. Techniques based on biological-responses are gaining attention, worldwide. Different biosensors have been developed in recent years to monitor real-time biological responses to evaluate water-quality. The survival and function of various organs of the organism depends on the cardiac system. Alterations in the cardiac system could signify the occurrence/initiation of stress in the organism. We developed a real-time online cardiac function assessment system-OCFAS to acquire fish ECG-signals. We obtained P-wave, R-wave, T-wave, PR-intervals, QT-intervals and QRS-complex continuously, which did not affect the normal activities of carp. We exposed Cyprinus carpio to different concentrations (National Environmental Quality Standards) of ammonia for 48 h. Our OCFAS has precisely acquired the required ECG-signals. A real-time dataset reveals sensitivity to ammonia in carp ECG-indexes. Compared with the control group the P-wave, R-wave and T-wave were weaker in ammonia-treated groups. In contrast, the PR-intervals, QT-intervals and QRS-complex were prolonged in the ammonia-treatment groups. The self-organizing map signifies that the PR-intervals, the QRS-complex and the QT-intervals are consistent with environmental stress. Linear regression analysis also quantitatively signifies that the PR interval has the highest R2 value and the lowest SSE-value, followed by the QRS complex and the QT interval. A concentration-related effect was observed in the ammonia treated groups. The integrated biomarker response (IBRv2) index was used to determine the overall stress of ammonia on carp heart ECG-indexes. IBRv2 also supports the real-time response of carp to ammonia stress. Ammonia levels in the aquaculture and water environment require special attention to avoid its adverse effects on the health of aquatic biota. Our study emphasizes the importance of online real-time fish ECG for water-quality assessment.
Collapse
Affiliation(s)
- Danxian Wei
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Lei Wang
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China; Jinan Central Hospital, No. 105, Jiefang Road, Jinan, Shandong, 250013, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
2
|
Dulhare UN, Taj STA. Water Quality Risk Analysis for Sustainable Smart Water Supply Using Adaptive Frequency and BiLSTM. LECTURE NOTES IN ELECTRICAL ENGINEERING 2023:67-82. [DOI: 10.1007/978-981-19-9989-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Ashun E, Kang W, Thapa BS, Gurung A, Rahimnejad M, Jang M, Jeon BH, Kim JR, Oh SE. A novel gas production bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) for the toxicity assessment of heavy metals contaminated water. CHEMOSPHERE 2022; 303:134902. [PMID: 35561773 DOI: 10.1016/j.chemosphere.2022.134902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
This study reports for the first-time the possibility of deploying gas production by thiosulfate utilizing denitrifying bacteria (TUDB) as a proxy to evaluate water toxicity. The test relies on gas production by TUDB due to inhibited metabolic activity in the presence of toxicants. Gas production was measured using a bubble-type respirometer. Optimization studies indicated that 300 mg NO3--N/L, 0.5 mL acclimated culture, and 2100 mg S2O32-/L were the ideal conditions facilitating the necessary volume of gas production for sensitive data generation. Determined EC50 values of the selected heavy metals were: Cr6+, 0.51 mg/L; Ag+, 2.90 mg/L; Cu2+, 2.90 mg/L; Ni2+, 3.60 mg/L; As3+, 4.10 mg/L; Cd2+, 5.56 mg/L; Hg2+, 8.06 mg/L; and Pb2+, 19.3 mg/L. The advantages of this method include operational simplicity through the elimination of cumbersome preprocessing procedures which are used to eliminate interferences caused by turbidity when the toxicity of turbid samples is determined via spectrophotometry.
Collapse
Affiliation(s)
- Ebenezer Ashun
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Woochang Kang
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Bhim Sen Thapa
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Anup Gurung
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Islamic Republic of Iran
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea.
| |
Collapse
|
4
|
Zhang Y, Zhu Y, Zeng Z, Zeng G, Xiao R, Wang Y, Hu Y, Tang L, Feng C. Sensors for the environmental pollutant detection: Are we already there? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Zhu Q, Liu L, Wang R, Zhou X. A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123941. [PMID: 33264988 DOI: 10.1016/j.jhazmat.2020.123941] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
As antibiotic pollution is gaining prominence as a global issue, the demand for detection of streptomycin (STR), which is a widely used antibiotic with potential human health and ecological risks, has attracted increasing attention. Aptamer-based biosensors have been developed for the detection of STR in buffers and samples, however, the non-target signals due to the conformational variation of free aptamers possibly affect their sensitivity and stability. In this study, by introducing the STR-specific split aptamer (SPA), a sensitive evanescent wave fluorescent (EWF) biosensor is developed for the sandwich-type based detection of STR. The standard calibration curve obtained for STR has a detection limit of 33 nM with a linear range of 60-526 nM. This biosensor exhibited good selectivity, reliable reusability for at least 100 times measurements, and high recovery rates for spiked water samples; moreover, all detection steps are easy-to-operate and can be completed in 5 min. Therefore, it exhibits great promise for actual on-site environmental monitoring. Additionally, without introducing any other oligonucleotides or auxiliary materials, this SPA-based biosensing method shows potential as a simple, sensitive, and low-cost manner for the detection of other small molecular targets.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ruoyu Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China; National Engineering Laboratory for Advanced Technology and Equipment of Water Environment Pollution Monitoring, Changsha, 410205, China.
| |
Collapse
|
6
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Kuznetsov SA, Popik VM, Peltek SE. Fluorescent bacterial biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz radiation. BIOMEDICAL OPTICS EXPRESS 2021; 12:705-721. [PMID: 33680537 PMCID: PMC7901329 DOI: 10.1364/boe.412074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/05/2023]
Abstract
A fluorescent biosensor E. coli/pTdcR-TurboYFP sensitive to terahertz (THz) radiation was developed via transformation of Escherichia coli (E. coli) cells with plasmid, in which the promotor of the tdcR gene controls the expression of yellow fluorescent protein TurboYFP. The biosensor was exposed to THz radiation in various vessels and nutrient media. The threshold and dynamics of fluorescence were found to depend on irradiation conditions. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensor is applicable to studying influence of THz radiation on the activity of tdcR promotor that is involved in the transport and metabolism of threonine and serine in E. coli.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department of Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Technological Design Institute of Applied Microelectronics — Novosibirsk Branch of Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Aven., Novosibirsk, 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
- Kurchatov Genomics Center of Federal research center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Aven., Novosibirsk, 630090, Russia
| |
Collapse
|
7
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Bannikova SV, Kuznetsov SA, Cherkasova OP, Popik VM, Peltek SE. Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. BIOMEDICAL OPTICS EXPRESS 2020; 11:5258-5273. [PMID: 33014613 PMCID: PMC7510871 DOI: 10.1364/boe.400432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 05/03/2023]
Abstract
Three novel fluorescent biosensors sensitive to terahertz (THz) radiation were developed via transformation of Escherichia coli (E. coli) cells with plasmids, in which a promotor of genes matA, safA, or chbB controls the expression of a fluorescent protein. The biosensors were exposed to THz radiation from two sources: a high-intensity pulsed short-wave free electron laser and a low-intensity continuous long-wave IMPATT-diode-based device. The threshold and dynamics of fluorescence were found to depend on radiation parameters and exposure time. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensors are evaluated to be suitable for studying influence of THz radiation on the activity of gene networks related with considered gene promoters.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Svetlana V. Bannikova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
- Technological Design Institute of Applied Microelectronics, Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Hicks M, Bachmann TT, Wang B. Synthetic Biology Enables Programmable Cell-Based Biosensors. Chemphyschem 2020; 21:132-144. [PMID: 31585026 PMCID: PMC7004036 DOI: 10.1002/cphc.201900739] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/03/2019] [Indexed: 01/10/2023]
Abstract
Cell-based biosensors offer cheap, portable and simple methods of detecting molecules of interest but have yet to be truly adopted commercially. Issues with their performance and specificity initially slowed the development of cell-based biosensors. With the development of rational approaches to tune response curves, the performance of biosensors has rapidly improved and there are now many biosensors capable of sensing with the required performance. This has stimulated an increased interest in biosensors and their commercial potential. However the reliability, long term stability and biosecurity of these sensors are still barriers to commercial application and public acceptance. Research into overcoming these issues remains active. Here we present the state-of-the-art tools offered by synthetic biology to allow construction of cell-based biosensors with customisable performance to meet the real world requirements in terms of sensitivity and dynamic range and discuss the research progress to overcome the challenges in terms of the sensor stability and biosecurity fears.
Collapse
Affiliation(s)
- Maggie Hicks
- School of Biological SciencesUniversity of EdinburghEdinburghUK
- Centre for Synthetic and Systems BiologyUniversity of EdinburghEdinburghUK
| | - Till T. Bachmann
- Infection MedicineEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Baojun Wang
- School of Biological SciencesUniversity of EdinburghEdinburghUK
- Centre for Synthetic and Systems BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
9
|
Gupta N, Renugopalakrishnan V, Liepmann D, Paulmurugan R, Malhotra BD. Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens Bioelectron 2019; 141:111435. [PMID: 31238280 DOI: 10.1016/j.bios.2019.111435] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Existing at the interface of biology and electronics, living cells have been in use as biorecognition elements (bioreceptors) in biosensors since the early 1970s. They are an interesting choice of bioreceptors as they allow flexibility in determining the sensing strategy, are cheaper than purified enzymes and antibodies and make the fabrication relatively simple and cost-effective. And with advances in the field of synthetic biology, microfluidics and lithography, many exciting developments have been made in the design of cell-based biosensors in the last about five years. 3D cell culture systems integrated with electrodes are now providing new insights into disease pathogenesis and physiology, while cardiomyocyte-integrated microelectrode array (MEA) technology is set to be standardized for the assessment of drug-induced cardiac toxicity. From cell microarrays for high-throughput applications to plasmonic devices for anti-microbial susceptibility testing and advent of microbial fuel cell biosensors, cell-based biosensors have evolved from being mere tools for detection of specific analytes to multi-parametric devices for real time monitoring and assessment. However, despite these advancements, challenges such as regeneration and storage life, heterogeneity in cell populations, high interference and high costs due to accessory instrumentation need to be addressed before the full potential of cell-based biosensors can be realized at a larger scale. This review summarizes results of the studies that have been conducted in the last five years toward the fabrication of cell-based biosensors for different applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Collapse
Affiliation(s)
- Niharika Gupta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | | | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Cellular Pathway Imaging Laboratory, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, CA, 94304, USA
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India.
| |
Collapse
|
10
|
Handheld Enzymatic Luminescent Biosensor for Rapid Detection of Heavy Metals in Water Samples. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7010016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enzymatic luminescent systems are a promising tool for rapid detection of heavy metals ions for water quality assessment. Nevertheless, their widespread use is limited by the lack of test procedure automation and available sensitive handheld luminometers. Herein we describe integration of disposable microfluidic chips for bioluminescent enzyme-inhibition based assay with a handheld luminometer, which detection system is based on a thermally stabilized silicon photomultiplier (SiPM). Microfluidic chips were made of poly(methyl methacrylate) by micro-milling method and sealed using a solvent bonding technique. The composition of the bioluminescent system in microfluidic chip was optimized to achieve higher luminescence intensity and storage time. Results indicate that developed device provided comparable sensitivity with bench-scale PMT-based commercial luminometers. Limit of detection for copper (II) sulfate reached 2.5 mg/L for developed biosensor. Hereby we proved the concept of handheld enzymatic optical biosensors with disposable chips for bioassay. The proposed biosensor can be used as an early warning field-deployable system for rapid detection of heavy metals salts and other toxic chemicals, which affect bioluminescent signal of enzymatic reaction.
Collapse
|
11
|
Acosta LK, Bertó-Roselló F, Xifre-Perez E, Santos A, Ferré-Borrull J, Marsal LF. Stacked Nanoporous Anodic Alumina Gradient-Index Filters with Tunable Multispectral Photonic Stopbands as Sensing Platforms. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3360-3371. [PMID: 30590008 DOI: 10.1021/acsami.8b19411] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study presents the development and optical engineering of stacked nanoporous anodic alumina gradient-index (NAA-GIFs) filters with tunable multispectral photonic stopbands for sensing applications. The structure of these photonic crystals (PC) is formed by stacked layers of NAA produced with sinusoidally modified effective medium. The progressive modification of the sinusoidal period during the anodization process enables the generation and precise tuning of the characteristic photonic stopbands (PSB) (i.e., one per sinusoidal period in the anodization profile) of these PC structures. Four types of NAA-GIFs featuring three distinctive PSBs positioned within the visible spectral region are developed. The sensitivity of the effective medium of these NAA-GIFs is systematically assessed by measuring spectral shifts in the characteristic PSBs upon infiltration of their nanoporous structure with analytical solutions of d-glucose with several concentrations (0.025-1 M). This study provides new insights into the intrinsic relationship between the nanoporous architecture of these PCs and their optical properties, generating opportunities to fabricate advanced optical sensing systems for high-throughput and multiplexed detection of analytes in a single sensing platform.
Collapse
Affiliation(s)
- Laura K Acosta
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| | - Francesc Bertó-Roselló
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| | - Elisabet Xifre-Perez
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| | - Abel Santos
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- Institute for Photonics and Advanced Sensing (IPAS) , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Josep Ferré-Borrull
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| | - Lluis F Marsal
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica , Universitat Rovira i Virgili , Avinguda Països Catalans 26 , 43007 Tarragona , Spain
| |
Collapse
|
12
|
Chowdhury AKMRH, Tan B, Venkatakrishnan K. SERS-Active 3D Interconnected Nanocarbon Web toward Nonplasmonic in Vitro Sensing of HeLa Cells and Fibroblasts. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35715-35733. [PMID: 30264558 DOI: 10.1021/acsami.8b10308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A noninvasive intracellular component analysis technique is important in cancer treatment and the initial identification of cancer. Carbon nanomaterials/nanostructures, such as carbon nanotubes and graphene, have little to no surface enhanced Raman scattering (SERS) ability. Because of these structures' low Raman responses, they are conjugated with gold or silver to attain the SERS-active ability to detect normal fibroblasts and HeLa cancer cells. To the best of our knowledge, the effectiveness of the individual use of carbon nanomaterials as a nonplasmonic SERS-active platform for in vitro cancer/normal cell detection has not been investigated to date. Here, for the first time, we introduce a unique nonplasmonic SERS-based biosensing platform that uses a biocompatible self-assembled three-dimensional interconnected nanocarbon web (INW) for in vitro detection and differentiation of HeLa cells and fibroblasts. The sub-10-nm morphology of the INW facilitates the endocytic uptake of INW clusters to the cells, and its SERS functionality introduces live cell Raman sensing. The INW platform has achieved an enhancement factor (EF) of 3.66 × 104 and 9.10 × 103 with crystal violet and Rhodamine 6G dyes, respectively, significant in comparison to the EF of graphene surfaces (2-17). The results of the time-based Raman spectroscopy of live HeLa cells and fibroblasts revealed chemical fingerprints of intracellular components, such as DNA/RNA, proteins, and lipids. The components' spectroscopic differences facilitate and elucidate the specification of each cell. The highest Raman enhancement achieved was fourfold for fibroblasts (protein) and sixfold for HeLa cells (DNA). Furthermore, the SERS spectra along with scanning electron microscopy and fluorescence microscopy analysis of the immobilized cells after 24 and 48 h shed light on the health of fibroblasts and HeLa cells. A photon energy-induced ionization achieved with a femtosecond laser fabricated a biocompatible INW platform with the designated unique attributes. This simple, label-free, in vitro diagnosis approach for HeLa cells and fibroblasts has strong potential for cancer research.
Collapse
Affiliation(s)
| | | | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science , St. Michael's Hospital , Toronto , Ontario , Canada M5B 1W8
| |
Collapse
|
13
|
Schirmer C, Posseckardt J, Kick A, Rebatschek K, Fichtner W, Ostermann K, Schuller A, Rödel G, Mertig M. Encapsulating genetically modified Saccharomyces cerevisiae cells in a flow-through device towards the detection of diclofenac in wastewater. J Biotechnol 2018; 284:75-83. [PMID: 30110597 DOI: 10.1016/j.jbiotec.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
Recently it has been proposed to use sensors based on genetically engineered reporter cells to perform continuous online water monitoring. Here we describe the design, assembly and performance of a novel flow-through device with immobilized genetically modified yeast cells that produce a fluorescent protein upon stimulation with diclofenac whose intensity is then detected by fluorescence microscopy. Although other devices employing immobilized cells for the detection of various analytes have already been described before, as novelty our system allows safe enclosure of the sensor cells, and thus, to obtain fluorescent signals that are not falsified by a loss of cells. Furthermore, the yeast cells are prevented from being released into the environment. Despite the safe containment, the immobilized reporter cells are accessible to nutrients and analytes. They thus have both the ability to grow and respond to the analyte. Both in cell culture medium and standardized synthetic wastewater, we are able to differentiate between diclofenac concentrations in a range from 10 to 100 μM. As particularly interesting feature, we show that only the biologically active fraction of diclofenac is detected. Nowadays, contamination of wastewater with diclofenac and other pharmaceutical residues is becoming a severe problem. Our investigations may pave the way for an easy-to-use and cost-efficient wastewater monitoring method.
Collapse
Affiliation(s)
- C Schirmer
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - J Posseckardt
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - A Kick
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - K Rebatschek
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - W Fichtner
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany.
| | - K Ostermann
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - A Schuller
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - G Rödel
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - M Mertig
- Kurt-Schwabe-Institut Meinsberg, Kurt-Schwabe-Str.4, 04736 Waldheim, Germany; Professur für Physikalische Chemie, Mess-und Sensortechnik, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
14
|
Denisov I, Lukyanenko K, Yakimov A, Kukhtevich I, Esimbekova E, Belobrov P. Disposable luciferase-based microfluidic chip for rapid assay of water pollution. LUMINESCENCE 2018; 33:1054-1061. [DOI: 10.1002/bio.3508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Elena Esimbekova
- Siberian Federal University; Krasnoyarsk Russia
- Institute of Biophysics SB RAS Federal Research Center'Krasnoyarsk Science Center SB RAS’; Krasnoyarsk Russia
| | | |
Collapse
|
15
|
Lotan O, Bar-David J, Smith CLC, Yagur-Kroll S, Belkin S, Kristensen A, Levy U. Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells. NANO LETTERS 2017; 17:5481-5488. [PMID: 28771367 DOI: 10.1021/acs.nanolett.7b02132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.
Collapse
Affiliation(s)
| | | | - Cameron L C Smith
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | | | | | - Anders Kristensen
- Department of Micro- and Nanotechnology, Technical University of Denmark , DK-2800 Kongens Lyngby, Denmark
| | | |
Collapse
|
16
|
New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta 2017; 175:435-442. [PMID: 28842013 DOI: 10.1016/j.talanta.2017.07.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Antibiotics are leading medicine asset for fighting against microbial infection, but also one of the important causes of death worldwide. Many antibiotics used as therapeutics and growth promotion agents in animals can lead to antibiotic residues in animal-derived food which harm the health of people. Hence, it is vital to screen antibiotic residues in animal derived foods. Typical methods for screening antibiotic residues are based on microbiological growth inhibition and immunological analyses. However these two methods have some disadvantages, such as poor sensitive, lack of specificity and etc. Therefore, it is necessary to develop simple, more efficient and high sensitive screening methods of antibiotic residues. These assays have been introduced for the screening of numerous food samples. Biosensors are emerging methods, applied in screening antibiotic residues in animal-derived foods. Two types of biosensors, whole-cell based biosensors and surface plasmon resonance-based sensors have been extensively used. Their advantages include portability, small sample requirement, high sensitivity and good specificity over the traditional screening methods.
Collapse
|
17
|
Sharifian S, Homaei A, Hemmati R, Khajeh K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:115-128. [DOI: 10.1016/j.jphotobiol.2017.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
|
18
|
Sample treatment procedures for environmental sensing and biosensing. Curr Opin Biotechnol 2017; 45:170-174. [DOI: 10.1016/j.copbio.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 01/15/2023]
|
19
|
Roggo C, van der Meer JR. Miniaturized and integrated whole cell living bacterial sensors in field applicable autonomous devices. Curr Opin Biotechnol 2017; 45:24-33. [PMID: 28088093 DOI: 10.1016/j.copbio.2016.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022]
Abstract
Live-cell based bioreporters are increasingly being deployed in microstructures, which facilitates their handling and permits the development of instruments that could perform autonomous environmental monitoring. Here we review recent developments of on-chip integration of live-cell bioreporters, the coupling of their reporter signal to the devices, their longer term preservation and multi-analyte capacity. We show examples of instruments that have attempted to fully integrate bioreporters as their sensing elements.
Collapse
Affiliation(s)
- Clémence Roggo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
20
|
Yeast Biosensors for Detection of Environmental Pollutants: Current State and Limitations. Trends Biotechnol 2016; 34:408-419. [DOI: 10.1016/j.tibtech.2016.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/17/2023]
|
21
|
Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Appl Microbiol Biotechnol 2015; 100:1109-1119. [PMID: 26615397 DOI: 10.1007/s00253-015-7160-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.
Collapse
|
22
|
Jouanneau S, Durand MJ, Lahmar A, Thouand G. Main Technological Advancements in Bacterial Bioluminescent Biosensors Over the Last Two Decades. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015:101-116. [PMID: 26475467 DOI: 10.1007/10_2015_333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Environmental quality assessment is an extensive field of research due to the permanent increase of the stringency imposed by the legislative framework. To complete the wide panel of measurement methods, essentially based on physicochemical tools, some scientists focused on the development of alternative biological methods such as those based on the use of bioluminescent bacteria biosensors. The first report dedicated to the development of such biosensors dates back to 1967 and describes an analytical system designed to address the problem of air toxicity assessment. Nevertheless the available technologies in the photosensitive sensors field were not mature enough and, as a result, limited biosensor development possibilities. For about 20 years, the wide democratisation of photosensors coupled with advances in the genetic engineering field have allowed the expansion of the scope of possibilities of bioluminescent bacterial biosensors, allowing a significant emergence of these biotechnologies. This chapter retraces the history of the main technological evolutions that bacterial bioluminescent biosensors have known over the last two decades. Graphical Abstract.
Collapse
Affiliation(s)
- S Jouanneau
- University of Nantes, UMR CNRS GEPEA 6144, 18 Bd Gaston Defferre, Nantes, 85000, La Roche sur Yon, France.
| | - M J Durand
- University of Nantes, UMR CNRS GEPEA 6144, 18 Bd Gaston Defferre, Nantes, 85000, La Roche sur Yon, France
| | - A Lahmar
- University of Nantes, UMR CNRS GEPEA 6144, 18 Bd Gaston Defferre, Nantes, 85000, La Roche sur Yon, France
| | - G Thouand
- University of Nantes, UMR CNRS GEPEA 6144, 18 Bd Gaston Defferre, Nantes, 85000, La Roche sur Yon, France
| |
Collapse
|
23
|
Bragazzi NL, Gasparini R, Amicizia D, Panatto D, Larosa C. Porous Alumina as a Promising Biomaterial for Public Health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:213-29. [PMID: 26572980 DOI: 10.1016/bs.apcsb.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Porous aluminum is a nanostructured material characterized by unique properties, such as chemical stability, regular uniformity, dense hexagonal porous lattice with high aspect ratio nanopores, excellent mechanical strength, and biocompatibility. This overview examines how the structure and properties of porous alumina can be exploited in the field of public health. Porous alumina can be employed for fabricating membranes and filters for bioremediation, water ultrafiltration, and microfiltration/nanofiltration, being a promising technique for having clean and fresh water, which is essential for human health. Porous alumina-based nanobiosensor coated with specific antibodies or peptides seem to be a useful tool to detect and remove pathogens both in food and in water, as well as for environmental monitoring. Further, these applications, being low-energy demanding and cost-effective, are particularly valuable in resource-limited settings and contexts, and can be employed as point of use devices in developing countries, where there is an urgent need of hygiene and safety assurance.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Roberto Gasparini
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy.
| | - Daniela Amicizia
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Claudio Larosa
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
24
|
The substrate matters in the Raman spectroscopy analysis of cells. Sci Rep 2015; 5:13150. [PMID: 26310910 PMCID: PMC4550836 DOI: 10.1038/srep13150] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/21/2015] [Indexed: 11/08/2022] Open
Abstract
Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.
Collapse
|