1
|
|
2
|
Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021; 26:6233. [PMID: 34684813 PMCID: PMC8540986 DOI: 10.3390/molecules26206233] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Abstract
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.
Collapse
Affiliation(s)
- Abbas J. Kadhem
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| | - Guillermina J. Gentile
- Department of Chemical Engineering, Instituto Tecnológico de Buenos Aires, Lavardén 315, Buenos Aires C1437FBG, Argentina;
| | - Maria M. Fidalgo de Cortalezzi
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| |
Collapse
|
3
|
Derazshamshir A, Göktürk I, Yılmaz F, Denizli A. S-citalopram imprinted monolithic columns for capillary electrochromatography enantioseparations. Electrophoresis 2021; 42:2672-2682. [PMID: 34406668 DOI: 10.1002/elps.202100222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 11/08/2022]
Abstract
In this study, the molecular imprinting method was used to separate enantiomeric forms of chiral antidepressant drug, R,S-citalopram (R,S-CIT) in aqueous solution by CEC system combining the advantages of capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC). For that, an amino acid-based molecularly imprinted monolithic capillary column was designed and used as a stationary phase for selective separation of S-citalopram (S-CIT) for the first time. S-CIT was selectively separated from the aqueous solution containing the other enantiomeric form of R-CIT, which is the same in size and shape as the template molecule. Morphology of the molecularly imprinted (MIP S-CIT) and non-imprinted (NIP S-CIT) monolithic capillary columns was observed by scanning electron microscopy. Imprinting efficiency of MIP S-CIT monolithic capillary column used for selective S-CIT separation was verified by comparing with NIP S-CIT and calculated imprinting factor (I.F:1.81) proved the high selectivity of the MIP S-CIT for S-CIT. Cavities formed for S-CIT form enabled selective (α = 2.08) separation of the target molecule from the other enantiomeric R-CIT form. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 7.68 × 10-6 m2 /Vs for R,S-CIT at pH 7.0 10 mM PB and 50% ACN ratio. The performance of both MIP S-CIT and NIP S-CIT columns was estimated by repeating the R,S-CIT separations with intra-batch and inter-batch studies for reproducibility of retention times of R,S-CITs. Estimated RSD values that are lower than 2% suggest that the monolithic columns separate R,S-CIT enantiomers without losing separation efficiency.
Collapse
Affiliation(s)
| | - Ilgım Göktürk
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatma Yılmaz
- Chemistry Technology Division, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
De Rycke E, Leman O, Dubruel P, Hedström M, Völker M, Beloglazova N, De Saeger S. Novel multiplex capacitive sensor based on molecularly imprinted polymers: A promising tool for tracing specific amphetamine synthesis markers in sewage water. Biosens Bioelectron 2021; 178:113006. [PMID: 33556808 DOI: 10.1016/j.bios.2021.113006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
The development of a sensing system for amphetamine (AMP), N-formyl amphetamine (NFA), and benzyl methyl ketone (BMK) in sewage is a strict requirement for enabling the on-site detection and tracing of the consumption of AMP, and the production and/or transportation of these target analytes. The present research is therefore devoted to the development of an on-site capacitive sensing system, based on molecularly imprinted polymers (MIPs) as recognition elements. To this end, the commercially available CapSenze capacitive sensor system was miniaturized by implementing an application-specific integrated circuit (ASIC), dedicated to the bias and read-out of the chemical sensor. MIPs towards AMP were purchased, whereas the ones towards NFA and BMK were synthesized in house. Gold transducers, consisting of six working electrodes with their corresponding reference electrodes and one common auxiliary electrode, were designed together with a flow cell to enable analyses. The applied water samples were filtered through a 20 micron filter before application in the sensors' flow cell. The limits of detection in filtered sewage water were determined to be 25 μM for NFA and BMK and 50 μM for AMP. The overall performance of the sensing system was tested by analysis of blind-coded sewage samples, provided by legal authorities. To the best of our knowledge, this is the first research presenting multiplex MIP-based detection of amphetamine synthesis markers using a capacitive sensor, miniaturized via ASIC technology. The presented technique is undoubtedly a potential solution for any analysis requiring constant reliable on-site monitoring of a substance of interest.
Collapse
Affiliation(s)
- Esther De Rycke
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B, 9000, Ghent, Belgium; Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B, 9000, Ghent, Belgium.
| | - Olivier Leman
- Fraunhofer Institute for Integrated Circuits IIS, Smart Sensing and Electronics Division, Department for Integrated Sensor Systems, D-91058, Erlangen, Germany
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B, 9000, Ghent, Belgium
| | | | - Matthias Völker
- Fraunhofer Institute for Integrated Circuits IIS, Smart Sensing and Electronics Division, Department for Integrated Sensor Systems, D-91058, Erlangen, Germany
| | - Natalia Beloglazova
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B, 9000, Ghent, Belgium; Nanotechnology Education and Research Center, South Ural State University, 454080, Chelyabinsk, Russia
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B, 9000, Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| |
Collapse
|
5
|
De Rycke E, Trynda A, Jaworowicz M, Dubruel P, De Saeger S, Beloglazova N. Capacitive sensing of an amphetamine drug precursor in aqueous samples: Application of novel molecularly imprinted polymers for benzyl methyl ketone detection. Biosens Bioelectron 2021; 172:112773. [DOI: 10.1016/j.bios.2020.112773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022]
|
6
|
El-Akaad S, Mohamed MA, Abdelwahab NS, Abdelaleem EA, De Saeger S, Beloglazova N. Capacitive sensor based on molecularly imprinted polymers for detection of the insecticide imidacloprid in water. Sci Rep 2020; 10:14479. [PMID: 32879399 PMCID: PMC7468110 DOI: 10.1038/s41598-020-71325-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
This manuscript reports on the development of a capacitive sensor for the detection of imidacloprid (IMD) in water samples based on molecularly imprinted polymers (MIPs). MIPs used as recognition elements were synthesized via a photo-initiated emulsion polymerization. The particles were carefully washed using a methanol (MeOH) /acetic acid mixture to ensure complete template removal and were then dried. The average size of the obtained particles was less than 1 µm. The imprinting factor (IF) for IMD was 6 and the selectivity factor (α) for acetamiprid, clothianidin, thiacloprid and thiamethoxam were 14.8, 6.8, 7.1 and 8.2, respectively. The particles were immobilized on the surface of a gold electrode by electropolymerization. The immobilized electrode could be spontaneously regenerated using a mixture of MeOH/10 mM of phosphate buffer (pH = 7.2)/triethylamine before each measurement and could be reused for 32 times. This is the first-time that automated regeneration was introduced as part of a sensing platform for IMD detection. The developed sensor was validated by the analysis of artificially spiked water samples. Under the optimal conditions, the linearity was in the range of 5-100 µM, with a limit of detection (LOD) of 4.61 µM.
Collapse
Affiliation(s)
- Suzan El-Akaad
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt.
| | - Mona A Mohamed
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Nada S Abdelwahab
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Beni-Suef University, Benisuef, Egypt
| | - Eglal A Abdelaleem
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Beni-Suef University, Benisuef, Egypt
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Natalia Beloglazova
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Nanotechnology Education and Research Center, South Ural State University, Chelyabinsk, Russia
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya, Saratov, Russia
| |
Collapse
|
7
|
Yaroshenko I, Kirsanov D, Marjanovic M, Lieberzeit PA, Korostynska O, Mason A, Frau I, Legin A. Real-Time Water Quality Monitoring with Chemical Sensors. SENSORS 2020; 20:s20123432. [PMID: 32560552 PMCID: PMC7349867 DOI: 10.3390/s20123432] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Water quality is one of the most critical indicators of environmental pollution and it affects all of us. Water contamination can be accidental or intentional and the consequences are drastic unless the appropriate measures are adopted on the spot. This review provides a critical assessment of the applicability of various technologies for real-time water quality monitoring, focusing on those that have been reportedly tested in real-life scenarios. Specifically, the performance of sensors based on molecularly imprinted polymers is evaluated in detail, also giving insights into their principle of operation, stability in real on-site applications and mass production options. Such characteristics as sensing range and limit of detection are given for the most promising systems, that were verified outside of laboratory conditions. Then, novel trends of using microwave spectroscopy and chemical materials integration for achieving a higher sensitivity to and selectivity of pollutants in water are described.
Collapse
Affiliation(s)
- Irina Yaroshenko
- Institute of Chemistry, St. Petersburg State University, Mendeleev Center, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (I.Y.); (A.L.)
| | - Dmitry Kirsanov
- Institute of Chemistry, St. Petersburg State University, Mendeleev Center, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (I.Y.); (A.L.)
- Correspondence: ; Tel.: +7-921-333-1246
| | - Monika Marjanovic
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria; (M.M.); (P.A.L.)
| | - Peter A. Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria; (M.M.); (P.A.L.)
| | - Olga Korostynska
- Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, Oslo Metropolitan University, 0166 Oslo, Norway;
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway;
| | - Alex Mason
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway;
- Animalia AS, Norwegian Meat and Poultry Research Centre, P.O. Box 396, 0513 Økern, Oslo, Norway
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Ilaria Frau
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Andrey Legin
- Institute of Chemistry, St. Petersburg State University, Mendeleev Center, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (I.Y.); (A.L.)
| |
Collapse
|
8
|
Brosel-Oliu S, Abramova N, Uria N, Bratov A. Impedimetric transducers based on interdigitated electrode arrays for bacterial detection - A review. Anal Chim Acta 2019; 1088:1-19. [PMID: 31623704 DOI: 10.1016/j.aca.2019.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 01/31/2023]
Abstract
Application of the impedance spectroscopy technique to detection of bacteria has advanced considerably over the last decade. This is reflected by the large amount of publications focused on basic research and applications of impedance biosensors. Employment of modern technologies to significantly reduce dimension of impedimetric devices enable on-chip integration of interdigitated electrode arrays for low-cost and easy-to-use sensors. This review is focused on publications dealing with interdigitated electrodes as a transducer unit and different bacteria detection systems using these devices. The first part of the review deals with the impedance technique principles, paying special attention to the use of interdigitated electrodes, while the main part of this work is focused on applications ranging from bacterial growth monitoring to label-free specific bacteria detection.
Collapse
Affiliation(s)
- Sergi Brosel-Oliu
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain
| | - Natalia Abramova
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain; Lab. Artificial Sensors Syst., ITMO University, Kronverskiy pr.49, 197101, St.Petersburg, Russia
| | - Naroa Uria
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain
| | - Andrey Bratov
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain.
| |
Collapse
|
9
|
Ermolayeva TN, Farafonova OV, Bessonov OI. Synthesis and Use of Thin Polymer Films with Molecular Imprints of Salbutamol in Quartz Crystal Microbalance Sensors. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s106193481909017x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bergdahl GE, Hedström M, Mattiasson B. Capacitive Sensor to Monitor Enzyme Activity by Following Degradation of Macromolecules in Real Time. Appl Biochem Biotechnol 2019; 189:374-383. [PMID: 31020512 PMCID: PMC6754820 DOI: 10.1007/s12010-019-03006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
A capacitive sensor was developed to analyze the presence and enzymatic activity of a model protease from standard solutions by following the degradation of the substrate in real time. The enzyme was chosen based on its specific digestion of the hinge region of immunoglobulin G (IgG). Real-time enzyme activity was monitored by measuring the change in capacitance (∆C) based on the release of IgG fragments after enzymatic digestion by the enzyme. The results indicated that the developed capacitive system might be used successfully for label-free and real-time monitoring of enzymatic activity of different enzymes in a sensitive, rapid, and inexpensive manner in biotechnological, environmental, and clinical applications.
Collapse
Affiliation(s)
- Gizem Ertürk Bergdahl
- CapSenze Biosystems AB, Lund, Sweden. .,Department of Biotechnology, Lund University, Lund, Sweden.
| | - Martin Hedström
- CapSenze Biosystems AB, Lund, Sweden.,Department of Biotechnology, Lund University, Lund, Sweden
| | - Bo Mattiasson
- CapSenze Biosystems AB, Lund, Sweden.,Department of Biotechnology, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Beloglazova NV, Lenain P, De Rycke E, Goryacheva IY, Knopp D, De Saeger S. Capacitive sensor for detection of benzo(a)pyrene in water. Talanta 2018; 190:219-225. [DOI: 10.1016/j.talanta.2018.07.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 01/02/2023]
|
12
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
13
|
Xiao D, Jiang Y, Bi Y. Molecularly imprinted polymers for the detection of illegal drugs and additives: a review. Mikrochim Acta 2018; 185:247. [PMID: 29619574 DOI: 10.1007/s00604-018-2735-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/16/2018] [Indexed: 11/28/2022]
Abstract
This review (with 154 refs.) describes the current status of using molecularly imprinted polymers in the extraction and quantitation of illicit drugs and additives. The review starts with an introduction into some synthesis methods (lump MIPs, spherical MIPs, surface imprinting) of MIPs using illicit drugs and additives as templates. The next section covers applications, with subsections on the detection of illegal additives in food, of doping in sports, and of illicit addictive drugs. A particular focus is directed towards current limitations and challenges, on the optimization of methods for preparation of MIPs, their applicability to aqueous samples, the leakage of template molecules, and the identification of the best balance between adsorption capacity and selectivity factor. At last, the need for convincing characterization methods, the lack of uniform parameters for defining selectivity, and the merits and demerits of MIPs prepared using nanomaterials are addressed. Strategies are suggested to solve existing problems, and future developments are discussed with respect to a more widespread use in relevant fields. Graphical abstract This review gives a comprehensive overview of the advances made in molecularly imprinting of polymers for use in the extraction and quantitation of illicit drugs and additives. Methods for syntheses, highlighted applications, limitations and current challenges are specifically addressed.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Yue Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanping Bi
- School of Pharmaceutical Sciences, Taishan Medical University, No. 619, Changcheng Road, Tai'an, 271016, People's Republic of China.
| |
Collapse
|
14
|
Ertürk G, Hedström M, Mattiasson B, Ruzgas T, Lood R. Highly sensitive detection and quantification of the secreted bacterial benevolence factor RoxP using a capacitive biosensor: A possible early detection system for oxidative skin diseases. PLoS One 2018; 13:e0193754. [PMID: 29494704 PMCID: PMC5833275 DOI: 10.1371/journal.pone.0193754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
The impact of the microbiota on our health is rapidly gaining interest. While several bacteria have been associated with disease, and others being indicated as having a probiotic effect, the individual biomolecules behind these alterations are often not known. A major problem in the study of these factors in vivo is their low abundance in complex environments. We recently identified the first secreted bacterial antioxidant protein, RoxP, from the skin commensal Propionibacterium acnes, suggesting its relevance for maintaining the redox homeostasis on the skin. In order to study the effect, and prevalence, of RoxP in vivo, a capacitive biosensor with a recognition surface based on molecular imprinting was used to detect RoxP on skin in vivo. In vitro analyses demonstrated the ability to detect and quantify RoxP in a concentration range of 1 x 10−13 M to 1 x 10−8 M from human skin swabs; with a limit of detection of 2.5 x 10−19 M in buffer systems. Further, the biosensor was highly selective, not responding to any other secreted protein from P. acnes. Thus, it was possible to demonstrate the presence, and quantity, of RoxP on human skin. Therefore, the developed biosensor is a very promising tool for the detection of RoxP from clinical samples, offering a rapid, cost-effective and sensitive means of detecting low-abundant bacterial proteins in vivo in complex milieus.
Collapse
Affiliation(s)
- Gizem Ertürk
- Department of Clinical Sciences Lund, Division of Infection Medicine, Biomedical Center B14, Lund University, Lund, Sweden
| | - Martin Hedström
- Department of Biotechnology, Lund University, Lund, Sweden
- CapSenze Biosystems AB, Lund, Sweden
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Lund, Sweden
- CapSenze Biosystems AB, Lund, Sweden
| | - Tautgirdas Ruzgas
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Biomedical Center B14, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
15
|
Graniczkowska K, Pütz M, Hauser FM, De Saeger S, Beloglazova NV. Capacitive sensing of N-formylamphetamine based on immobilized molecular imprinted polymers. Biosens Bioelectron 2017; 92:741-747. [DOI: 10.1016/j.bios.2016.09.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
|
16
|
Emir Diltemiz S, Keçili R, Ersöz A, Say R. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors. SENSORS 2017; 17:s17030454. [PMID: 28245588 PMCID: PMC5375740 DOI: 10.3390/s17030454] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/29/2023]
Abstract
Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.
Collapse
Affiliation(s)
- Sibel Emir Diltemiz
- Chemistry Department, Faculty of Science, Anadolu University, 26470 Eskisehir, Turkey.
| | - Rüstem Keçili
- Department of Medical Services and Techniques, Yunus Emre Vocational School of Health Services, Anadolu University, 26470 Eskisehir, Turkey.
| | - Arzu Ersöz
- Chemistry Department, Faculty of Science, Anadolu University, 26470 Eskisehir, Turkey.
| | - Rıdvan Say
- Chemistry Department, Faculty of Science, Anadolu University, 26470 Eskisehir, Turkey.
- Bionkit Co. Ltd., 26470 Eskisehir, Turkey.
| |
Collapse
|
17
|
Capacitive Biosensors and Molecularly Imprinted Electrodes. SENSORS 2017; 17:s17020390. [PMID: 28218689 PMCID: PMC5336051 DOI: 10.3390/s17020390] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 01/05/2023]
Abstract
Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.
Collapse
|
18
|
Ertürk G, Hedström M, Mattiasson B. A sensitive and real-time assay of trypsin by using molecular imprinting-based capacitive biosensor. Biosens Bioelectron 2016; 86:557-565. [DOI: 10.1016/j.bios.2016.07.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
|
19
|
Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles. Food Chem 2016; 200:215-22. [DOI: 10.1016/j.foodchem.2016.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/07/2015] [Accepted: 01/01/2016] [Indexed: 11/19/2022]
|
20
|
|
21
|
Yu Y, Zhang Q, Buscaglia J, Chang CC, Liu Y, Yang Z, Guo Y, Wang Y, Levon K, Rafailovich M. Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting. Analyst 2016; 141:4424-31. [DOI: 10.1039/c6an00375c] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, a real time potentiometric biosensor based on the 3D surface molecular imprinting was developed for CEA detection.
Collapse
Affiliation(s)
- Yingjie Yu
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Qi Zhang
- Department of Chemical and Biomolecular Engineering
- New York University Tandon School of Engineering
- Brooklyn
- USA
| | - Jonathan Buscaglia
- Department of Medicine
- Stony Brook University School of Medicine
- Stony Brook
- USA
| | | | - Ying Liu
- ThINC Facility
- Advanced Energy Center
- Stony Brook
- USA
| | - Zhenhua Yang
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yichen Guo
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Yantian Wang
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| | - Kalle Levon
- Department of Chemical and Biomolecular Engineering
- New York University Tandon School of Engineering
- Brooklyn
- USA
| | - Miriam Rafailovich
- Department of Materials Science and Engineering
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|
22
|
Ma P, Zhou Z, Dai J, Qin L, Ye X, Chen X, He J, Xie A, Yan Y, Li C. A biomimetic Setaria viridis-inspired imprinted nanoadsorbent: green synthesis and application to the highly selective and fast removal of sulfamethazine. RSC Adv 2016. [DOI: 10.1039/c5ra18715j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The preparation of biomimetic Setaria viridis-inspired hydrophilic magnetic imprinted nanoadsorbent, via a two-step surface-initiated ATRP in a green alcohol/water solvent at RT, with MHNTs used as nano-cores, was first reported.
Collapse
Affiliation(s)
- Ping Ma
- School of Material Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Zhiping Zhou
- School of Material Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jiangdong Dai
- School of Material Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
- School of Chemistry and Chemical Engineering
| | - Ling Qin
- School of Material Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xubo Ye
- School of Material Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiang Chen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jinsong He
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Atian Xie
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
23
|
Ertürk G, Mattiasson B. From imprinting to microcontact imprinting-A new tool to increase selectivity in analytical devices. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:30-44. [PMID: 26739371 DOI: 10.1016/j.jchromb.2015.12.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022]
Abstract
Molecular imprinting technology has been successfully applied to small molecular templates but a slow progress has been made in macromolecular imprinting owing to the challenges in natural properties of macromolecules, especially proteins. In this review, the macromolecular imprinting approaches are discussed with examples from recent publications. A new molecular imprinting strategy, microcontact imprinting is highlighted with its recent applications.
Collapse
Affiliation(s)
- Gizem Ertürk
- Hacettepe University, Department of Biology, Ankara, Turkey
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Lund, Sweden; CapSenze HB, Medicon Village, Lund, Sweden.
| |
Collapse
|
24
|
MIPs as Tools in Environmental Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 150:183-205. [DOI: 10.1007/10_2015_311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|