1
|
Gong Y, Han H, Ma Z. Faraday cage-type self-powered immunosensor based on hybrid enzymatic biofuel cell. Anal Bioanal Chem 2023; 415:7223-7233. [PMID: 37870585 DOI: 10.1007/s00216-023-04990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Self-powered immunosensors (SPIs) based on enzymatic biofuel cell (EBFC) have low sensitivity and poor stability due to the high impedance of the immune sandwich and the vulnerability of enzymes to environmental factors. Here, we applied the Faraday cage-type sensing mode on a hybrid biofuel cell (HBFC)-based SPI for the first time, which exhibited high sensitivity and stability. Cytokeratin 19 fragment (CYFRA 21-1) was used as a model analyte. Au nanoparticle-reduced graphene oxide (Au-rGO) composite was used as the supporting matrix for immunoprobe immobilized with detection antibody and glucose dehydrogenase (GDH), also the builder for Faraday cage structure on the bioanode in the presence of antigen. After the combination of immunoprobe, antigen, and the antibody on the bioanode, the Faraday cage was constructed in case the AuNP-rGO was applied as a conductive cage for electron transfer from GDH to the bioanode without passing through the poorly conductive protein. With the assistance of the Faraday cage structure, the impedance of the bioanode decreased significantly from 4000 to 300 Ω, representing a decline of over 90%. The sensitivity of the SPI, defined as the changes of open circuit voltage (OCV) per unit concentration of the CYFRA 21-1, was 68 mV [log (ng mL-1)]-1. In addition, Fe-N-C was used as an inorganic cathode material to replace enzyme for oxygen reduction reaction (ORR), which endowed the sensor with 4-week long-term stability. This work demonstrates a novel sensing platform with high sensitivity and stability, bringing the concept of hybrid biofuel cell-based self-powered sensor.
Collapse
Affiliation(s)
- Yichen Gong
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Galyamin D, Liébana S, Esquivel JP, Sabaté N. Immuno-battery: A single use self-powered immunosensor for REASSURED diagnostics. Biosens Bioelectron 2023; 220:114868. [DOI: 10.1016/j.bios.2022.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
|
3
|
Wang L, Wu X, Su BSQ, Song R, Zhang JR, Zhu JJ. Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications. ADVANCED ENERGY AND SUSTAINABILITY RESEARCH 2021. [DOI: 10.1002/aesr.202100031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Xiaoge Wu
- Environment Science and Engineering College Yangzhou University Yangzhou 225009 China
| | - B. S. Qi‐wen Su
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rongbin Song
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
4
|
Komatsu T, Sato Y, Maeki M, Ishida A, Tani H, Tokeshi M. Rapid, sensitive universal paper-based device enhances competitive immunoassays of small molecules. Anal Chim Acta 2021; 1144:85-95. [PMID: 33453801 DOI: 10.1016/j.aca.2020.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023]
Abstract
Competitive immunoassays comprise the standard means of detecting small molecules. However, conventional methods using microwells are difficult to apply during point-of-care tests (POCT) because they require complicated handling and are time consuming. Although paper-based analytical devices (PAD) have received considerable focus because of their rapid and straightforward operation, only a few devices have been proposed for competitive immunoassays. Herein, we describe a novel universal PAD format with a 3-dimensional configuration for competitive immunoassays that rapidly and sensitively detects small molecules. The proposed device comprised a layered structure with uniform color formation and high capture efficiency between antigen and antibody that results in rapid and reproducible results. The device rapidly (90 s) assayed biotin as a model target, with a limit of detection (LOD) of 5.08 ng mL-1, and detected progesterone with an LOD of 84 pg mL-1 within 5 min. Moreover, sample volumes and reagent consumption rates were minimized. Thus, our device could be applied to competitive immunoassays of various small molecules in POCT.
Collapse
Affiliation(s)
- Takeshi Komatsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan
| | - Yuki Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan.
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan; Innovative Research Centre for Preventive Medical Engineering, Nagoya University, Furo-cho Chikusa, Nagoya, 464-8601, Japan; Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
5
|
|
6
|
Hao S, Sun X, Zhang H, Zhai J, Dong S. Recent development of biofuel cell based self-powered biosensors. J Mater Chem B 2020; 8:3393-3407. [DOI: 10.1039/c9tb02428j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BFC-based SPBs have been used as power sources for other devices and as sensors for detecting toxicity and BOM.
Collapse
Affiliation(s)
- Shuai Hao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaoxuan Sun
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
7
|
Wang FT, Wang YH, Xu J, Huang KJ. A high-energy sandwich-type self-powered biosensor based on DNA bioconjugates and a nitrogen doped ultra-thin carbon shell. J Mater Chem B 2020; 8:1389-1395. [DOI: 10.1039/c9tb02574j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A high-energy self-powered sensing platform for the ultrasensitive detection of proteins is developed based on enzymatic biofuel cells (EBFCs) by using DNA bioconjugate assisted signal amplification.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yi-Han Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Jing Xu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
8
|
Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, Yu J, Liu H. Flexible Electronics Based on Micro/Nanostructured Paper. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801588. [PMID: 30066444 DOI: 10.1002/adma.201801588] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/02/2018] [Indexed: 05/26/2023]
Abstract
Over the past several years, a new surge of interest in paper electronics has arisen due to the numerous merits of simple micro/nanostructured substrates. Herein, the latest advances and principal issues in the design and fabrication of paper-based flexible electronics are highlighted. Following an introduction of the fascinating properties of paper matrixes, the construction of paper substrates from diverse functional materials for flexible electronics and their underlying principles are described. Then, notable progress related to the development of versatile electronic devices is discussed. Finally, future opportunities and the remaining challenges are examined. It is envisioned that more design concepts, working principles, and advanced papermaking techniques will be developed in the near future for the advanced functionalization of paper, paving the way for the mass production and commercial applications of flexible paper-based electronic devices.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Xin Cheng
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| |
Collapse
|
9
|
Fu L, Liu J, Hu Z, Zhou M. Recent Advances in the Construction of Biofuel Cells Based Self-powered Electrochemical Biosensors: A Review. ELECTROANAL 2018. [DOI: 10.1002/elan.201800487] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangying Fu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| | - Jingju Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine; Beijing 100850 P.R. China
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| |
Collapse
|
10
|
Gu C, Gai P, Hou T, Li H, Xue C, Li F. Enzymatic Fuel Cell-Based Self-Powered Homogeneous Immunosensing Platform via Target-Induced Glucose Release: An Appealing Alternative Strategy for Turn-On Melamine Assay. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35721-35728. [PMID: 28948777 DOI: 10.1021/acsami.7b07104] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enzymatic fuel cell (EFC)-based self-powered biosensors have attracted considerable attention because of their unique feature of no need for extra power sources during the entire detection process, which endows them with the merits of simplicity, rapidness, low cost, anti-interference, and ease of use. Herein, we proposed, for the first time, an EFC-based self-powered homogeneous immunosensing platform by integrating the target-induced biofuel release and bioconjugate immunoassay for ultrasensitive melamine (ME) detection. In this design, the biofuel, i.e., glucose molecules, was entrapped in the pores of positively charged mesoporous silica nanoparticles and capped by the biogate AuNPs-labeled anti-ME antibody (AuNPs-Ab). The presence of the target ME triggered the entrapped glucose release due to the removal of the biogate via immunoreaction, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode, and thus, the open-circuit voltage of the EFC-based self-powered immunosensor dramatically increased, realizing the ultrasensitive turn-on assay for ME. The limit of detection for ME assay was down to 2.1 pM (S/N = 3), superior to those previously reported in the literature. Notably, real milk samples need no special sample pretreatment for the detection of ME because of the good anti-interference ability of EFC-based self-powered biosensors and the excellent selectivity of the homogeneous immunoassay. Therefore, this appealing self-powered homogeneous immunosensing platform holds great promise as a successful prototype of portable and on-site bioassay in the field of food safety.
Collapse
Affiliation(s)
- Chengcheng Gu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Changhui Xue
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| |
Collapse
|
11
|
Li L, Zhang Y, Zhang L, Ge S, Yan M, Yu J. Steric paper based ratio-type electrochemical biosensor with hollow-channel for sensitive detection of Zn 2. Sci Bull (Beijing) 2017; 62:1114-1121. [PMID: 36659342 DOI: 10.1016/j.scib.2017.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 01/21/2023]
Abstract
The construction of flexible platform possessing the functions of immobilizing, separating, rinsing, and high-throughput analysis plays a significant role in biological and clinical research. Herein, hollow-channel technique was integrated with lab-on-paper for the simultaneous determination of two different concentrations of Zn2+ based on the origami principle, in which microfluidic channels were first patterned on a cellulose paper using commercial solid-state wax printer. Hollow-channels were created by laser cutting method as the role of both injecting ending and reaction tank. After screen printing three electrodes system, the resulting planar paper sheets were then folded into steric structures and functionalized by in-situ synthesized reduced graphene oxide. As a proof-of-concept, such lab-on-paper device was employed in the ratiometric electrochemical monitoring of zinc ion from the environment and HepG2 cells extract, by combining with co-catalysis of porous metal-organic frameworks and hemin/G-quadruplex toward H2O2 in the linear range of 0.1-7,000nmol/L. The results indicated that integrating hollow-channel with steric lab-on-paper offered a new methodological approach for the development of metal ions monitoring research. It is believed that it could be useful for various point-of-care related research fields, such as, on-site environmental monitoring, food safety, and disease diagnosis.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
| | - Shenguang Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
12
|
Shitanda I, Momiyama M, Watanabe N, Tanaka T, Tsujimura S, Hoshi Y, Itagaki M. Toward Wearable Energy Storage Devices: Paper-Based Biofuel Cells based on a Screen-Printing Array Structure. ChemElectroChem 2017; 4:2460-2463. [PMID: 29214125 PMCID: PMC5708273 DOI: 10.1002/celc.201700561] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 11/07/2022]
Abstract
A novel paper-based biofuel cell with a series/parallel array structure has been fabricated, in which the cell voltage and output power can easily be adjusted as required by printing. The output of the fabricated 4-series/4-parallel biofuel cell reached 0.97±0.02 mW at 1.4 V, which is the highest output power reported to date for a paper-based biofuel cell. This work contributes to the development of flexible, wearable energy storage device.
Collapse
Affiliation(s)
- Isao Shitanda
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science2641, Yamazaki Noda, Chiba 278-8510 Japan.,Research Institute for Science and Technology Tokyo University of Science2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Misaki Momiyama
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science2641, Yamazaki Noda, Chiba 278-8510 Japan
| | - Naoto Watanabe
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science2641, Yamazaki Noda, Chiba 278-8510 Japan
| | - Tomohiro Tanaka
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science2641, Yamazaki Noda, Chiba 278-8510 Japan
| | - Seiya Tsujimura
- Research Institute for Science and Technology Tokyo University of Science2641 Yamazaki Noda, Chiba 278-8510 Japan.,Division of Material Science Faculty of Pure and Applied Science University of Tsukuba1-1-1, Tennodai Tsukuba, Ibaraki305-8573 Japan
| | - Yoshinao Hoshi
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science2641, Yamazaki Noda, Chiba 278-8510 Japan.,Research Institute for Science and Technology Tokyo University of Science2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Masayuki Itagaki
- Department of Pure and Applied Chemistry Faculty of Science and Technology Tokyo University of Science2641, Yamazaki Noda, Chiba 278-8510 Japan.,Research Institute for Science and Technology Tokyo University of Science2641 Yamazaki Noda, Chiba 278-8510 Japan
| |
Collapse
|
13
|
Ge S, Zhang L, Zhang Y, Lan F, Yan M, Yu J. Nanomaterials-modified cellulose paper as a platform for biosensing applications. NANOSCALE 2017; 9:4366-4382. [PMID: 28155933 DOI: 10.1039/c6nr08846e] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, paper substrates have attracted tremendous interest from both academia and industry. Not only is paper highly abundant and portable, it is lightweight, disposable, easy-to-use, and can be rolled or folded into 3D configurations. More importantly, with a unique porous bulk structure and rough and absorptive surface properties, the construction of nanomaterials-functionalized cellulose has enabled cellulose paper to be applied for point-of-care (POC) paper devices with reasonably good performance at low cost. In this review, the latest advances in the modification of nanomaterials on paper cellulose are summed up. To begin with, the attractive properties of paper-based analytical devices are described. Then, fabricating methods for the functionalization of cellulose with diverse materials, including noble metals, bimetals, metal oxides, carbon nanomaterials, and molecular imprinting polymer nanoparticles, as well as their applications, are introduced in detail. Finally, the current critical issues, challenges, and future prospectives for exploring a paper-based analytical system based on nanomaterials-modified cellulose are discussed. It is believed that more strategies will be developed in the future to construct nanomaterials-functionalized cellulose, paving the way for the mass production of POC paper devices with a satisfactory performance.
Collapse
Affiliation(s)
- Shenguang Ge
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yan Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Feifei Lan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Mei Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
14
|
Narang J, Malhotra N, Singhal C, Mathur A, Chakraborty D, Anil A, Ingle A, Pundir CS. Point of care with micro fluidic paper based device integrated with nano zeolite–graphene oxide nanoflakes for electrochemical sensing of ketamine. Biosens Bioelectron 2017; 88:249-257. [DOI: 10.1016/j.bios.2016.08.043] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 01/06/2023]
|
15
|
Gai P, Gu C, Hou T, Li F. Ultrasensitive Self-Powered Aptasensor Based on Enzyme Biofuel Cell and DNA Bioconjugate: A Facile and Powerful Tool for Antibiotic Residue Detection. Anal Chem 2017; 89:2163-2169. [PMID: 28208296 DOI: 10.1021/acs.analchem.6b05109] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein, we reported a novel ultrasensitive one-compartment enzyme biofuel cells (EBFCs)-based self-powered aptasensing platform for antibiotic residue detection. By taking full advantage of the unique features of both EBFCs-based self-powered sensors and aptamers, the as-proposed aptasensing platform has the merits of simple instrumentation, anti-interference ability, high selectivity, and low cost. In this study, DNA bioconjugate, i.e., SiO2@gold nanoparticles-complementary strand of aptamer (SiO2@AuNPs-csDNA), was elaborately designed and played a key role in blocking the mass transport of glucose to the bioanode. While in the presence of the target antibiotic, SiO2@AuNPs-csDNA bioconjugate broke away from the bioanode due to the aptamer recognition of the target. Without the blocking of glucose by the DNA bioconjugate, a significantly elevated open circuit voltage of the EBFCs-based aptasensor was obtained, whose amplitude was dependent on the antibiotic concentration. In addition, this proposed aptasensor was the first reported self-powered aptasensing platform for antibiotic determination and featured high sensitivity owing to the elaborate design of the DNA bioconjugate modified bioanode of EBFC, which was superior to those previously reported in the literature. Furthermore, due to the anti-interference ability and the excellent selectivity of the aptasensor, no special sample pretreatment was needed for the detection of antibiotics in milk samples. Therefore, the proposed EBFCs-based self-powered aptasensor has a great promise to be applied as a powerful tool for on-site assay in the field of food safety.
Collapse
Affiliation(s)
- Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, People's Republic of China
| | - Chengcheng Gu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, People's Republic of China
| |
Collapse
|
16
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
17
|
Narvaez Villarrubia CW, Soavi F, Santoro C, Arbizzani C, Serov A, Rojas-Carbonell S, Gupta G, Atanassov P. Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system. Biosens Bioelectron 2016; 86:459-465. [DOI: 10.1016/j.bios.2016.06.084] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
18
|
Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens Bioelectron 2016; 87:607-614. [PMID: 27616286 DOI: 10.1016/j.bios.2016.08.104] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 11/23/2022]
Abstract
Serious brain disorders, such as the Alzheimer's Disease (AD), are associated with a marked drop in the levels of important neurotransmitters, such as acetylcholine (ACh). Real time monitoring of such biomarkers can therefore play a critical role in enhancing AD therapies by allowing timely diagnosis, verifications of treatment effectiveness, and developments of new medicines. In this study, we present the first acetylcholine/oxygen hybrid enzymatic fuel cell for the self-powered on site detection of ACh in plasma, which is based on the combination of an enzymatic anode with a Pt cathode. Firstly, an effective acetylcholinesterase immobilized electrode was developed and its electrochemical performance evaluated. Highly porous gold was used as the electrode material, and the enzyme was immobilized via a one step rapid and simple procedure that does not require the use of harsh chemicals or any electrode/enzyme pre-treatments. The resulting enzymatic electrode was subsequently used as the anode of a miniature flow-through membrane-less fuel cell and showed excellent response to varying concentrations of ACh. The peak power generated by the fuel cell was 4nW at a voltage of 260mV and with a current density of 9μAcm-2. The limit of detection of the fuel cell sensor was 10μM, with an average response time as short as 3min. These exciting results open new horizons for point-of-care Alzheimer diagnosis and provide an attractive potential alternative to established methods that require laborious and time-consuming sample treatments and expensive instruments.
Collapse
|
19
|
Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. Biosens Bioelectron 2016; 89:384-389. [PMID: 27297188 DOI: 10.1016/j.bios.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/16/2023]
Abstract
Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (kS) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm-2 and the highest Γ of (23.6±0.9)pmolcm-2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest kS of (79.4±4.6)s-1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells.
Collapse
|
20
|
|
21
|
Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens Bioelectron 2016; 77:774-89. [DOI: 10.1016/j.bios.2015.10.032] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/27/2015] [Accepted: 10/10/2015] [Indexed: 01/06/2023]
|
22
|
Wang J, Wang X, Wu S, Song J, Zhao Y, Ge Y, Meng C. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay. Anal Chim Acta 2016; 906:80-88. [DOI: 10.1016/j.aca.2015.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/07/2015] [Accepted: 12/12/2015] [Indexed: 01/03/2023]
|
23
|
Yu Y, Han Y, Lou B, Zhang L, Han L, Dong S. A miniature origami biofuel cell based on a consumed cathode. Chem Commun (Camb) 2016; 52:13499-13502. [DOI: 10.1039/c6cc07466a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A miniature origami BFC has been fabricated from a MnO2–graphite flake consumed solid-state cathode.
Collapse
Affiliation(s)
- You Yu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Yujie Han
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Lingling Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Lei Han
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
24
|
Gai P, Song R, Zhu C, Ji Y, Wang W, Zhang JR, Zhu JJ. Ultrasensitive self-powered cytosensors based on exogenous redox-free enzyme biofuel cells as point-of-care tools for early cancer diagnosis. Chem Commun (Camb) 2015; 51:16763-6. [DOI: 10.1039/c5cc07520c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An exogenous redox-free, membraneless enzyme biofuel cell-based ultrasensitive self-powered cytosensor was constructed as a point-of-care tool for early diagnosis of cancer.
Collapse
Affiliation(s)
- Panpan Gai
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Rongbin Song
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Yusheng Ji
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Wengjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|