1
|
Xue J, Wang Y, Jing Y, Li X, Chen S, Xu Y, Song RB. Recent advances in microbial fuel cell-based self-powered biosensors: a comprehensive exploration of sensing strategies in both anode and cathode modes. Anal Bioanal Chem 2024; 416:4649-4662. [PMID: 38457006 DOI: 10.1007/s00216-024-05230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
With the rapid development of society, it is of paramount importance to expeditiously assess environmental pollution and provide early warning of toxicity risks. Microbial fuel cell-based self-powered biosensors (MFC-SPBs) have emerged as a pivotal technology, obviating the necessity for external power sources and aligning with the prevailing trends toward miniaturization and simplification in biosensor development. In this case, vigorous advancements in MFC-SPBs have been acquired in past years, irrespective of whether the target identification event transpires at the anode or cathode. The present article undertakes a comprehensive review of developed MFC-SPBs, categorizing them into substrate effect and microbial activity effect based on the nature of the target identification event. Furthermore, various enhancement strategies to improve the analytical performance like accuracy and sensitivity are also outlined, along with a discussion of future research trends and application prospects of MFC-SPBs for their better developments.
Collapse
Affiliation(s)
- Junjun Xue
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Yuxin Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Jing
- Henan Joint International Research Laboratory of Intelligent Water Treatment System, Qingshuiyuan Technology Co., Ltd., Jiyuan, China
| | - Xiaoxuan Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Suping Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Ying Xu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| | - Rong-Bin Song
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Das A, Peu SD, Hossain MS, Akanda MAM, Salah MM, Akanda MMH, Rahman M, Das BK. Metal Oxide Nanosheet: Synthesis Approaches and Applications in Energy Storage Devices (Batteries, Fuel Cells, and Supercapacitors). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1066. [PMID: 36985960 PMCID: PMC10057665 DOI: 10.3390/nano13061066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the increasing energy requirement and consumption necessitates further improvement in energy storage technologies to obtain high cycling stability, power and energy density, and specific capacitance. Two-dimensional metal oxide nanosheets have gained much interest due to their attractive features, such as composition, tunable structure, and large surface area which make them potential materials for energy storage applications. This review focuses on the establishment of synthesis approaches of metal oxide nanosheets (MO nanosheets) and their advancements over time, as well as their applicability in several electrochemical energy storage systems, such as fuel cells, batteries, and supercapacitors. This review provides a comprehensive comparison of different synthesis approaches of MO nanosheets, as well their suitability in several energy storage applications. Among recent improvements in energy storage systems, micro-supercapacitors, and several hybrid storage systems are rapidly emerging. MO nanosheets can be employed as electrode and catalyst material to improve the performance parameters of energy storage devices. Finally, this review outlines and discusses the prospects, future challenges, and further direction for research and applications of metal oxide nanosheets.
Collapse
Affiliation(s)
- Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Sanowar Hossain
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Md Abdul Mannan Akanda
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Mostafa M. Salah
- Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt
| | | | - Mahbubur Rahman
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Barun K. Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| |
Collapse
|
3
|
Dhilllon SK, Kundu PP, Jain R. Catalytic advancements in carbonaceous materials for bio-energy generation in microbial fuel cells: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24815-24841. [PMID: 34993799 DOI: 10.1007/s11356-021-17529-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Microbial fuel cells (MFCs) are a sustainable alternative for wastewater treatment and clean energy generation. The efficiency of the technology is dependent on the cathodic oxygen reduction reaction, where the sluggish reaction kinetics hampers its propensity. Carbonaceous materials with high electrical conductivity have been widely explored for oxygen reduction reaction (ORR) catalysts. Here, incorporating transition metal (TM) and heteroatom into carbon could further enhance the ORR activity and power generation in MFCs. Nitrogen (N)-doped carbons have also been a popular research hotspot due to abundant active sites formed, resulting in superior conductivity, stability, and catalytic activity over carbons. This review summarizes the progress in the carbon-based materials (primary focus on the cathode) for ORR and their utilization in MFCs. Furthermore, we discussed the conceptualization of MFCs and carbonaceous materials to instigate the ORR kinetics and power generation in MFC. Furthermore, prospects of carbon-based materials for actual application in bio-energy generation have been discussed. Carbonaceous catalysts and biomass-derived carbons exhibit good potential to replace precious Pt catalysts for ORR. M-N-C catalysts were found to be the most suitable catalysts. Electrocatalysts with MNx sites are able to achieve excellent activity and high-power output by taking advantage of the active site exposure and rapid mass transfer rate. Moreover, the use of biomass-derived carbons/self-doped carbons could further reduce the overall cost of catalysts. It is anticipated that the research gaps and future perspectives discussed will show new avenues to develop excellent electrocatalysts for better performance and transformation of technology to industrial applications.
Collapse
Affiliation(s)
- Simran Kaur Dhilllon
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| | - Rahul Jain
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
4
|
Raeisi‐Kheirabadi N, Nezamzadeh‐Ejhieh A. The Experimental Design Approach in Square‐Wave Voltammetric Determination of Tamoxifen by NiO‐CPE**. ChemistrySelect 2022. [DOI: 10.1002/slct.202203788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Neda Raeisi‐Kheirabadi
- Department of Chemistry Shahreza Branch Islamic Azad University, P.O. Box 311- 86145 Shahreza Isfahan Iran
| | - Alireza Nezamzadeh‐Ejhieh
- Department of Chemistry Shahreza Branch Islamic Azad University, P.O. Box 311- 86145 Shahreza Isfahan Iran
| |
Collapse
|
5
|
Meng S, Mi W, Liu J, Xu W, Kong X. Preparation of Titanium Dioxide/Graphitic Carbon Nitride Hybrid and Its Catalytic Effect on Ammonium Perchlorate Decomposition. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Dhillon SK, Chaturvedi A, Gupta D, Nagaiah TC, Kundu PP. Copper nanoparticles embedded in polyaniline derived nitrogen-doped carbon as electrocatalyst for bio-energy generation in microbial fuel cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80787-80804. [PMID: 35729378 DOI: 10.1007/s11356-022-21437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (SC-MFCs) have emerged as green energy devices to resolve the growing energy and environmental crisis. However, the technology's application depends on the sluggish oxygen reduction reaction (ORR) kinetics. Among the electrocatalysts explored, transition metal-nitrogen-carbon composites exhibit satisfactory ORR activity. Herein, we investigate the performance of copper-nitrogen-carbon (Cu/NC) electrocatalysts for ORR, highlighting the effect of temperature, role of nitrogen functionalities, and Cu-Nx sites in catalyst performance. Cu/NC-700 demonstrated satisfactory ORR activity with an onset potential of 0.7 V (vs. RHE) and a limiting current density of 3.4 mA cm-2. Cu/NC-700 modified MFC exhibited a maximum power density of 489.2 mW m-2, higher than NC-700 (107.3 mW m-2). These observations could result from synergistic interaction between copper and nitrogen atoms, high density of Cu-Nx sites, and high pyridinic-N content. Moreover, the catalyst exhibited superior stability, implying its use in long-term operations. The electrocatalytic performance of the catalyst suggests that copper-doped carbon catalysts could be potential metal-nitrogen-carbon material for scaled-up MFC applications.
Collapse
Affiliation(s)
- Simran Kaur Dhillon
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Amit Chaturvedi
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Divyani Gupta
- Department of Chemistry, Indian Institute of Technology, Ropar, 140001, India
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology, Ropar, 140001, India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
7
|
Zhou Q, Li R, Zhang X, Li T. Innovative Cost-Effective Nano-NiCo 2O 4 Cathode Catalysts for Oxygen Reduction in Air-Cathode Microbial Electrochemical Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811609. [PMID: 36141886 PMCID: PMC9517631 DOI: 10.3390/ijerph191811609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 05/26/2023]
Abstract
Microbial electrochemical systems (MESs) can harvest bioelectricity from varieties of organic matter in wastewater through electroactive microorganisms. Oxygen reduction reaction (ORR) in a cathode plays an important role in guaranteeing high power generation, which can be enhanced by cathode catalysts. Herein, the tiny crystalline grain nanocrystal NiCo2O4 is prepared via the economic method and utilized as an effective catalyst in air-cathode MESs. The linear sweep voltammetry results indicate that the current density of 2% nano-NiCo2O4/AC cathode (5.05 A/m2) at 0 V increases by 20% compared to the control (4.21 A/m2). The cyclic voltammetries (CVs) and the electrochemical impedance spectroscopy (EIS) showed that the addition of nano-NiCo2O4 (2%) is efficient in boosting the redox activity. The polarization curves showed that the MESs with 2% nano-NiCo2O4/AC achieved the highest maximum power density (1661 ± 28 mW/m2), which was 1.11 and 1.22 times as much as that of AC and 5% nano-NiCo2O4. Moreover, the adulteration of nano-NiCo2O4 with a content of 2% can not only enable the electrical activity of the electrode to be more stable, but also reduce the cost for the same power generation in MESs. The synthetic nano-NiCo2O4 undoubtedly has great benefits for large-scale MESs in wastewater treatment.
Collapse
|
8
|
Raeisi-Kheirabadi N, Nezamzadeh-Ejhieh A, Aghaei H. Cyclic and Linear Sweep Voltammetric Studies of a Modified Carbon Paste Electrode with Nickel Oxide Nanoparticles toward Tamoxifen: Effects of Surface Modification on Electrode Response Kinetics. ACS OMEGA 2022; 7:31413-31423. [PMID: 36092618 PMCID: PMC9454271 DOI: 10.1021/acsomega.2c03441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 05/29/2023]
Abstract
Due to the serious adverse futures of some anticancer drugs, the determination of trace amounts of these drugs by simple analytical techniques is of great interest. In this regard, knowing about the mechanism of the analyte with the sensing material plays an important role. Nickel oxide nanoparticles (NiO NPs) modified by a carbon paste electrode (NiO-CPE) showed an irreversible cyclic voltammetric (CV) behavior in the NaOH (pH 13) supporting electrolyte based on the peak separation of 311 mV. Its peak current was decreased by adding tamoxifen (TAM), confirming that TAM molecules can consume NiO before participating in the electrode reaction. For this goal, TAM can be oxidized or reduced, and the corresponding mechanisms are schematically illustrated in the text. This study focused on the kinetic aspects of the process. Based on the CV results, a surface coverage (Γ) value of 2.72 × 10-5 mol NiO per cm2 was obtained with charge transfer coefficients αa and αc of 0.317 and 0.563, respectively. αa and αc values were changed to 0.08 and 0.72 in the presence of TAM. Further, the rate constant (k s) value was 0.021 ± 0.01 s-1 in the presence of TAM. In linear sweep voltammetry (LSV), an α value of about 0.636 ± 0.023 and an exchange rate constant (k o) value of about 0.097 ± 0.031 s-1 were obtained in the absence of TAM, which changed to 0.62 ± 0.081 and 0.089 ± 0.021 s-1 in the presence of TAM, respectively. Despite more published papers, when the TAM analyte was added to the NaOH supporting electrolyte, both anodic and cathodic peak currents of the modified NiO-CPE decreased. We suggested some reasons for this decreased peak current, and four mechanisms were illustrated for the electrode response in the presence of TAM.
Collapse
|
9
|
Priya AK, Subha C, Kumar PS, Suresh R, Rajendran S, Vasseghian Y, Soto-Moscoso M. Advancements on sustainable microbial fuel cells and their future prospects: A review. ENVIRONMENTAL RESEARCH 2022; 210:112930. [PMID: 35182595 DOI: 10.1016/j.envres.2022.112930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A microbial fuel cell (MFC) is a sustainable device that produces electricity. The main components of MFC are electrodes (anode & cathode) and separators. The MFC's performance is ascertained by measuring its power density. Its components and other parameters, such as cell design and configuration, operation parameters (pH, salinity, and temperature), substrate characteristics, and microbes present in the substrate, all influence its performance. MFC can be scaled up and commercialized using low-cost materials without affecting its performance. Hence the choice of materials plays a significant role. In the past, precious and non-precious metals were mostly used. These were replaced by a variety of low-cost carbonaceous and non-carbonaceous materials. Nano materials, activated compounds, composite materials, have also found their way as components of MFC materials. This review describes the recently reported modified electrodes (anode and cathode), their improvisation, their merits, pollutant removal efficiency, and associated power density.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - C Subha
- Department of Civil Engineering, Ramco Institute of Technology, Rajapalayam, 626 117, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, avenida Collao 1202, casilla 15-C, Concepción, Chile
| |
Collapse
|
10
|
Fernandez Bats I, Carinelli S, Gonzales Mora JL, Villalonga R, Salazar P. Nickel oxide nanoparticles/carbon nanotubes nanocomposite for non‐enzymatic determination of hydrogen peroxide. ELECTROANAL 2022. [DOI: 10.1002/elan.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Zhang Y, Zheng Y, Zhang Q, Sun J, Wang S, An L, Liu L. Catalytic Membrane Cathode Integrated in a Proton Exchange Membrane-free Microbial Fuel Cell for Coking Wastewater Treatment. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Khater DZ, Amin RS, Zhran MO, Abd El-Aziz ZK, Mahmoud M, Hassan HM, El-Khatib KM. The enhancement of microbial fuel cell performance by anodic bacterial community adaptation and cathodic mixed nickel–copper oxides on a graphene electrocatalyst. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:12. [PMID: 35072828 PMCID: PMC8787007 DOI: 10.1186/s43141-021-00292-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Abstract
Background
Although microbial fuel cells (MFCs) represent a promising technology for capturing renewable energy from wastewater, their scaling-up is significantly limited by a slow-rate cathodic oxygen reduction reaction (ORR) and the development of a resilient anodic microbial community. In this study, mixed transition metal oxides of nickel and copper (Ni and Cu), supported on a graphene (G) (NiO–CuO/G) electrocatalyst, were synthesized and tested as a cost-effective cathode for ORR in MFCs. Electrochemical measurements of electrocatalyst were conducted using a rotating disk electrode (RDE) and linear sweep voltammetry (LSV) in a neutral electrolyte, and compared with a benchmark Pt/C catalyst. Furthermore, the long-term performance of the as-synthesized electrocatalyst was evaluated in a single-chamber MFC by measuring organic matter removal and polarization behavior. The successful enrichment of electroactive biofilm was also monitored using transmission electron microscopy and the Vitek2 compact system technique.
Results
When compared with the benchmark platinum cathode, the NiO–CuO/G electrocatalyst exhibited high selectivity toward ORR. The rotating disk electrode (RDE) experiments reveal that ORR proceeds via a 4-electron ORR mechanism. Furthermore, the NiO–CuO/G electrocatalyst also exhibited a high power density of 21.25 mW m−2 in an air-cathode MFC, which was slightly lower than that of Pt/C-based MFC (i.e., 50.4 mW m−2). Biochemical characterization of the most abundant bacteria on anodic biofilms identified four genera (i.e., Escherichia coli, Shewanella putrefaciens, Bacillus cereus, and Bacillus Thuringiensis/mycoides) that belonged to Gammaproteobacteria, and Firmicutesphyla.
Conclusions
This study demonstrates that the NiO–CuO/G cathode had an enhanced electrocatalytic activity toward ORR in a pH-neutral solution. This novel mixed transition metal oxide electrocatalyst could replace expensive Pt-based catalysts for MFC applications.
Collapse
|
13
|
Thiyagarajan P. A review on three-dimensional graphene: Synthesis, electronic and biotechnology applications-The Unknown Riddles. IET Nanobiotechnol 2021; 15:348-357. [PMID: 34694709 PMCID: PMC8675775 DOI: 10.1049/nbt2.12045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
In the last decade, carbon‐based nanostructures such as buckyball (C60), carbon nanotube (CNT), graphene and three‐dimensional (3D) graphene have been identified as promising materials for electronic, electrochemical energy storage (batteries and supercapacitors), optical and sensing applications. Since the discovery of graphene in 2004, scientists have devised mass production techniques and explored graphene as a promising material for a wide range of applications. Most of the electronic and solar cell applications require materials with good electronic conductivity, mobility and finite bandgap. Graphene is a zero bandgap material which prevents it from the mainstream applications. On the other hand, 3D graphene has good electronic conductivity, mobility, bandgap and electrochemical properties. This review article will focus on the synthesis of the 3D graphene, its structure‐property relationships, biotechnology and electronic applications and the hidden properties that are yet to be explored fully.
Collapse
Affiliation(s)
- Pradheep Thiyagarajan
- Department of Micro & Nano Electronics, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, India
| |
Collapse
|
14
|
Jia Z, Rondiya SR, Cross RW, Wang C, Dzade NY, Zhang C. Highly active methanol oxidation electrocatalyst based on 2D NiO porous nanosheets:a combined computational and experimental study. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Fabrication of the macro and micro-scale microbial fuel cells to monitor oxalate biodegradation in human urine. Sci Rep 2021; 11:14346. [PMID: 34253836 PMCID: PMC8275799 DOI: 10.1038/s41598-021-93844-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
This study presented the fabrication of macro and micro-scale microbial fuel cells (MFCs) to generate bioelectricity from oxalate solution and monitor the biodegradation in a micro-scale MFC for the first time. The maximum generated power density of 44.16 W m-3 in the micro-scale MFC elucidated its application as a micro-sized power generator for implantable medical devices (IMDs). It is also worthwhile noting that for the macro-scale MFC, the significant amounts of open circuit voltage, oxalate removal, and coulombic efficiency were about 935 mV, 99%, and 44.2%, respectively. These values compared to previously published studies indicate successful oxalate biodegradation in the macro-scale MFC. Regarding critical challenges to determine the substrate concentration in microfluidic outlets, sample collection in a suitable time and online data reporting, an analogy was made between macro and micro-scale MFCs to elicit correlations defining the output current density as the inlet and the outlet oxalate concentration. Another use of the system as an IMD is to be a platform to identify urolithiasis and hyperoxaluria diseases. As a versatile device for power generation and oxalate biodegradation monitoring, the use of facile and cheap materials (< $1.5 per device) and utilization of human excreta are exceptional features of the manufactured micro-scale MFC.
Collapse
|
16
|
Adekunle A, Rickwood C, Tartakovsky B. On-line monitoring of water quality with a floating microbial fuel cell biosensor: field test results. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:851-862. [PMID: 33851335 DOI: 10.1007/s10646-021-02409-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Real-time biomonitoring using microbial fuel cell (MFC) based biosensors have been demonstrated in several laboratory studies, but field validation is lacking. This study describes the long-term performance of an MFC based biosensor developed for real-time monitoring of changes in the water quality of a metal-contaminated stream. After a startup in the laboratory, biosensors were deployed in a stream close to an active mining complex in Sudbury, ON, Canada. Three sites within the stream were selected for biosensors installation based on their positions relative to the mining complex discharge points - upstream (lowest heavy metals concentration), midpoint and downstream. The biosensors installed at these sites were able to detect, in real-time, temporal changes in the water quality over a 2-month period. The biosensor response was confirmed by the results of a conventional toxicity assay (48-h acute Daphnia magna) as well as analytical measurements of heavy metals concentration in the stream. We conclude that the biosensor could detect changes in the overall water quality of the stream despite the uncontrolled situations typical for field operations as compared to laboratory conditions. To further explain the results observed during the field test, the rapid Microtox bioassay and D. magna assay were used to investigate the possible contributions of the two dominant mining metals (Nickel and Copper) to water toxicity in the test area.
Collapse
Affiliation(s)
- Ademola Adekunle
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, H4P 2R2, Canada.
| | - Carrie Rickwood
- Natural Resources Canada, 555 Booth Street, Ottawa, ON, K1A 0G1, Canada
| | - Boris Tartakovsky
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, H4P 2R2, Canada
| |
Collapse
|
17
|
Dessie Y, Tadesse S, Eswaramoorthy R, Adimasu Y. Biosynthesized α-MnO2-based polyaniline binary composite as efficient bioanode catalyst for high-performance microbial fuel cell. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1934123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yilkal Dessie
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
| | - Sisay Tadesse
- Department of Chemistry, Hawassa University, Hawassa, Ethiopia
| | | | - Yeshaneh Adimasu
- Department of Applied Biology, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
18
|
Qiu S, Guo Z, Naz F, Yang Z, Yu C. An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells. Bioelectrochemistry 2021; 141:107834. [PMID: 34022579 DOI: 10.1016/j.bioelechem.2021.107834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022]
Abstract
Since the high cost and low power generation hinder the overall practical application of microbial fuel cells (MFCs), numerous attempts have been made in the field of cathode materials to enhance the electrical performance of MFCs because they directly catalyze the oxygen reduction reactions (ORR). To choose a proper cathode material, following principles such as ORR activity, conductivity, cost-efficiency, durability, surface area, and accessibility should be taken into consideration. In preparation of cathode materials, versatile materials have been chosen, synthesized, or modified to achieve an improvement in power generation of MFCs. The most widely applied cathode materials could be categorized into three classes, namely carbon-base materials, metal-based materials, and biocatalysts. This review summarizes the utilization, development, and the cost of cathode materials applied in MFCs and tries to highlight the effective modification methods of cathode materials which have helped in achieving enhanced power generation of MFCs in recent years.
Collapse
Affiliation(s)
- Song Qiu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenyu Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science, Engineering Laboratory of South Xinjiang Chemical Resources Utilization of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Electrical explosion of nickel wire as an efficient method for large-scale preparation of nickel oxide nanopowders: evaluation of operational key factors on the average crystallite size and average size distribution using response surface methodology (RSM). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02026-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Wang X, Gong X, Chen L, Li S, Xie J, Liu Y. Ti 3C 2 supported transition metal oxides and silver as catalysts toward efficient electricity generation in microbial fuel cells. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00464f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The improved electricity generation performance of MFCs could be attributed to the Ti3C2 support and the synergistic effect between transition metal oxides and silver for ORR.
Collapse
Affiliation(s)
- Xinghong Wang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- China
| | - Xiaobo Gong
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- China
- Key Laboratory of Special Waste Water Treatment
| | - Liu Chen
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- China
| | - Siyu Li
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- China
| | - Jinlin Xie
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- China
| | - Yong Liu
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu
- China
- Key Laboratory of Special Waste Water Treatment
| |
Collapse
|
21
|
Stainless steel weld metal enhanced with carbon nanotubes. Sci Rep 2020; 10:17977. [PMID: 33087806 PMCID: PMC7578026 DOI: 10.1038/s41598-020-75136-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022] Open
Abstract
This paper aims to establish the most indicated route to manufacture a nanostructured powder composed of 5 wt% Multi-walled Carbon Nanotubes and 304LSS powder. Four specimens were prepared using Mechanical Alloying and Chemical Treatment (CT) with Hydrogen Peroxide (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$\end{document}H2O2) as the main processes. A thermal treatment post-processing was used in half of the samples to remove the remaining amorphous carbon and to evaluate its effects. Regarding the powder analysis, attachment, amorphous carbon degree, crystallinity, and doping of the CNT throughout the metal matrix were investigated. The nanostructured powders were then inserted as a core in a 304LSS tubular rod to perform the arc welding process. The CT route eliminated the amorphous carbon and generated more refiner grains, which provided a cross-section hardness gain of more than 40% regarding the 304LSS joint. In summary, the CT route, combined with the GTAW process, provided a new method for nanocomposite manufacturing by combining shorter preparation steps, obtaining an improvement in the microstructural and hardness performance.
Collapse
|
22
|
Ibrahim RSB, Zainon Noor Z, Baharuddin NH, Ahmad Mutamim NS, Yuniarto A. Microbial Fuel Cell Membrane Bioreactor in Wastewater Treatment, Electricity Generation and Fouling Mitigation. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rabialtu Sulihah Binti Ibrahim
- Universiti Teknologi Malaysia School of Chemical and Energy Engineering Faculty of Engineering 81310 Skudai Johor Malaysia
| | - Zainura Zainon Noor
- Universiti Teknologi Malaysia School of Chemical and Energy Engineering Faculty of Engineering 81310 Skudai Johor Malaysia
- Universiti Teknologi Malaysia Centre of Environmental Sustainability and Water Security 81310 Skudai Johor Malaysia
| | - Nurul Huda Baharuddin
- Universiti Teknologi Malaysia School of Chemical and Energy Engineering Faculty of Engineering 81310 Skudai Johor Malaysia
| | - Noor Sabrina Ahmad Mutamim
- Universiti Malaysia Pahang Department of Chemical Engineering Faculty of Chemical and Natural Resources Engineering LebuhrayaTun Razak 26300 Gambang Kuantan, Pahang Malaysia
| | - Adhi Yuniarto
- Institut Teknologi Sepuluh Nopember Department of Environmental Engineering Faculty of Civil, Environmental and Geo-Engineering Kampus ITS Sukolilo 60111 Surabaya Indonesia
| |
Collapse
|
23
|
Ficca VCA, Santoro C, D'Epifanio A, Licoccia S, Serov A, Atanassov P, Mecheri B. Effect of Active Site Poisoning on Iron−Nitrogen−Carbon Platinum‐Group‐Metal‐Free Oxygen Reduction Reaction Catalysts Operating in Neutral Media: A Rotating Disk Electrode Study. ChemElectroChem 2020. [DOI: 10.1002/celc.202000754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Valerio C. A. Ficca
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Carlo Santoro
- Department of Chemical Engineering and Analytical ScienceThe University of Manchester The Mill Sackville Street Manchester M13PAL UK
| | - Alessandra D'Epifanio
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Silvia Licoccia
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Alexey Serov
- Pajarito Powder, LLC 3600 Osuna Rd NE Ste 309 Albuquerque, NM 87109 USA
| | - Plamen Atanassov
- Chemical and Biomolecular EngineeringNational Fuel Cell Research CenterUniversity of California Irvine CA 92697 USA
| | - Barbara Mecheri
- Department of Chemical Science and TechnologiesUniversity of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
24
|
Zhang X, Wang Q, Tang C, Wang HF, Liang P, Huang X, Zhang Q. High-Power Microbial Fuel Cells Based on a Carbon-Carbon Composite Air Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905240. [PMID: 31755227 DOI: 10.1002/smll.201905240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Microbial fuel cells (MFCs) can convert organics in wastewater directly to electricity, and improving oxygen reduction reaction (ORR) performance is critical to their development and future applications. Electrocatalytic ORR performance is determined by the intrinsic activity and accessible amounts of active sites. A surface nitrogen-enriched carbon coaxial nanocable (NCCN) is applied as an ORR electrocatalyst and combined with activated carbon (AC) with 80 wt% addition as a carbon-carbon composite air cathode in MFCs. The fully exposed nitrogen active sites of NCCN contribute to the enhanced ORR activity, while the graphitized core affords a rapid pathway for electron transportation. AC serves as a spacer to construct a porous framework with interconnected ion diffusion channels. This cathode thus exhibits a maximum power density of 2090 mW m-2 , 120% higher than commercial Pt/C electrocatalysts, and also 6% higher than the pure NCCN, indicating a synergistic effect between NCCN and AC. A high-performance NCCN-AC air cathode with a great promise for future MFC applications is reported and an effective strategy to bridge the electrocatalytic performance from nanomaterials to practical devices is presented.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiuying Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Hao-Fan Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
25
|
Diao G, Li H, Ivanenko I, Dontsova T. Nickel and cobalt effect on properties of MWCNT-based anode for Li-ion batteries. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01310-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Li X, Wang L, You W, Li X, Yang L, Zhang J, Wang M, Che R. Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs via confined space synthesis. NANOSCALE 2019; 11:22539-22549. [PMID: 31746897 DOI: 10.1039/c9nr07895a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dielectric composites constructed using carbon and metal oxides have become a hot research topic; however, the strategy to strengthen the coupling of components still needs to be optimized to enhance dielectric loss. Herein, ultra-fine ZnO derived from ZIF-8 was uniformly distributed and tightly embedded in multi-wall carbon nanotubes (C-ZnO@CNTs) via a novel confined space synthesis. Due to the presence of a polypyrrole coating, ZnO nanocrystals could be formed in the space of the original polyhedron and inserted into the CNTs, promoting the generation of polarized CNTs and providing abundant polarization centers on the CNTs. The composites exhibited superior microwave absorption capacity with a reflection loss value of up to -48.2 dB at 6.0 GHz, and the effective bandwidth reached 14.9 GHz by adjusting their thickness. According to the geometric phase analysis, the strain driven by the tight-coupling between ZnO-CNTs was confirmed to exist in the interfaces, boosting their inherent electromagnetic properties. The improved dielectric loss was caused by the strong interfacial polarization among ZnO-ZnO or ZnO-CNTs and the conductive loss among intertwined CNTs network, as revealed by electron holography. Therefore, the overall electrical properties could be improved by the polarized C-ZnO@CNTs with high electron conductivity. The confined space strategy may have promising potential for the synthesis of new composites of polarized carbon materials tightly coupled with metal oxides nanocrystals.
Collapse
Affiliation(s)
- Xiaohui Li
- Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, 220 Handan Road, Shanghai 200433, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tan H, Wang D, Guo Y, Han Z, Zhou X, Liu C. Production and characterization of Cu/graphite composite by electrical explosion. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01196-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Khairnar SD, Shrivastava VS. Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2019. [DOI: 10.1080/16583655.2019.1686248] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Tian X, Pan T, Deng B, Zhang H, Li Y, Li Q, Li Y. Synthesis of Sandwich-Like Nanostructure Fillers and Their Use in Different Types of Thermal Composites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40694-40703. [PMID: 31591881 DOI: 10.1021/acsami.9b15674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermally conductive yet electrically insulating two-dimensional boron nitride nanosheets (BNNSs) have been an ideal choice for the enhanced fillers for improving thermal properties of polymer-based composites. As a nanofiller with an ultrahigh aspect ratio, BNNSs result in conspicuous stacking along the planar direction in the preparation of composites, which results in strong anisotropy of heat transfer and suppresses out-plane thermal dissipation. Thus, it is necessary to facilitate the out-plane heat transfer by building a favorable microstructure. Focusing on the structural design of the nanofiller itself here, we have fabricated a novel three-dimensional nanofiller with improved out-plane connections. Carbon nanotubes (CNTs) have been grown in situ on the surface of BNNSs using chemical vapor deposition. Utilizing these sandwich-like nanostructure BNNSs/CNTs as fillers in the composites, we have assembled diverse sorts of composites, such as flexible films, scleroid 3D mats, painted ink, and viscous grease. Simultaneously, their thermal and insulating properties have been evaluated. A nearly 330% enhancement of out-plane thermal conductivity from the control sample filled with pristine BNNS is achieved, and the composite also exhibits good electrical resistivity of above 7.5 × 1010 Ω mm. The results indicate that the BNNS/CNT filler has superior thermal performance over the original BNNS while maintaining a satisfactory electrical resistivity to avoid short-circuits in high-power electronics. Furthermore, the prepared grease used as a thermal interface material shows impressive heat dissipation performance when applied on a running computer.
Collapse
Affiliation(s)
- Xiaojuan Tian
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping , 102249 Beijing , China
| | - Ting Pan
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping , 102249 Beijing , China
| | - Bijian Deng
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping , 102249 Beijing , China
| | - Hailong Zhang
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping , 102249 Beijing , China
| | - Yun Li
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping , 102249 Beijing , China
| | - Qi Li
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping , 102249 Beijing , China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping , 102249 Beijing , China
| |
Collapse
|
30
|
Cui X, Cao D, Djellabi R, Qiao M, Wang Y, Zhao S, Mao R, Gong Y, Zhao X, Yang B. Enhancement of Ni/NiO/graphitized carbon and β-Cyclodextrin/reduced graphene oxide for the electrochemical detection of norfloxacin in water sample. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Gul MM, Ahmad KS. Bioelectrochemical systems: Sustainable bio-energy powerhouses. Biosens Bioelectron 2019; 142:111576. [DOI: 10.1016/j.bios.2019.111576] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023]
|
32
|
Zhang S, Wang X, Li Y, Mu X, Zhang Y, Du J, Liu G, Hua X, Sheng Y, Xie E, Zhang Z. Facile synthesis of carbon nanotube-supported NiO//Fe 2O 3 for all-solid-state supercapacitor s. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1923-1932. [PMID: 31598459 PMCID: PMC6774069 DOI: 10.3762/bjnano.10.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
We have successfully prepared iron oxide and nickel oxide on carbon nanotubes on carbon cloth for the use in supercapacitors via a simple aqueous reduction method. The obtained carbon cloth-carbon nanotube@metal oxide (CC-CNT@MO) three-dimensional structures combine the high specific capacitance and rich redox sites of metal oxides with the large specific area and high electrical conductivity of carbon nanotubes. The prepared CC-CNT@Fe2O3 anode reaches a high capacity of 226 mAh·g-1 at 2 A·g-1 with a capacitance retention of 40% at 40 A·g-1. The obtained CC-CNT@NiO cathode exhibits a high capacity of 527 mAh·g-1 at 2 A·g-1 and an excellent rate capability with a capacitance retention of 78% even at 40 A·g-1. The all-solid-state asymmetric supercapacitor fabricated with these two electrodes delivers a high energy density of 63.3 Wh·kg-1 at 1.6 kW·kg-1 and retains 83% of its initial capacitance after 5000 cycles. These results demonstrate that our simple aqueous reduction method to combine CNT and metal oxides reveals an exciting future in constructing high-performance supercapacitors.
Collapse
Affiliation(s)
- Shengming Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xuhui Wang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yan Li
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xuemei Mu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yaxiong Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jingwei Du
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Guo Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiaohui Hua
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yingzhuo Sheng
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhenxing Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Bhowmick G, Chakraborty I, Ghangrekar M, Mitra A. TiO2/Activated carbon photo cathode catalyst exposed to ultraviolet radiation to enhance the efficacy of integrated microbial fuel cell-membrane bioreactor. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Liu J, Wei L, Cao C, Zhang F, Lang F, Wang H, Yang H, Shen J. Salt-induced silk gel-derived N and trace Fe co-doped 3D porous carbon as an oxygen reduction catalyst in microbial fuel cells. NANOSCALE 2019; 11:13431-13439. [PMID: 31281907 DOI: 10.1039/c9nr03778k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inexpensive and high-efficiency oxygen reduction reaction (ORR) catalysts play a significant role in achieving practical applications of microbial fuel cells (MFCs). Hence, herein, novel nitrogen (N) and trace iron (Fe) co-doped three-dimensional (3D) porous carbon (NFex-C) was synthesized as an excellent ORR catalyst from an interesting salt-induced silk gel, which was beneficial to the spontaneously formation of porosity and boosted the ORR activity. Among the series of NFex-C, NFe0.5-C (1.20% N-ORR/C, 0.07 at% Fe) possessed a higher specific surface area (538.94 m2 g-1) and pore volume (2.158 cm3 g-1). Note that NFe0.5-C exhibited a significantly higher positive initial potential (0.274 V vs. Ag/AgCl) and half-wave potential (0.095 V vs. Ag/AgCl) than other catalysts and commercial Pt/C (20 wt%); this implied that it possessed prominent ORR catalytic activity. In the MFC tests, the output-voltage and maximum power density of NFe0.5-C were enhanced to 517.37 ± 7.87 mV and 605.35 ± 15.39 mW m-2, respectively. Moreover, NFe0.5-C (0.15 $ g-1) exhibits excellent anti-poisoning ability and is thousands of times cheaper than commercial Pt/C (20 wt%, 220.04 $ g-1); therefore, NFe0.5-C should be a prospective catalyst to substitute precious commercial Pt/C in MFCs and even for application in other types of fuel cells.
Collapse
Affiliation(s)
- Jianting Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liling Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China.
| | - Chun Cao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengzheng Lang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huiqiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haijun Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China.
| | - Jianquan Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China.
| |
Collapse
|
35
|
Ma CY, Hou CH. Enhancing the water desalination and electricity generation of a microbial desalination cell with a three-dimensional macroporous carbon nanotube-chitosan sponge anode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:41-50. [PMID: 31026642 DOI: 10.1016/j.scitotenv.2019.04.174] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Microbial desalination cells (MDCs) are promising bioelectrochemical systems that are being investigated for simultaneous seawater desalination, electricity generation, and wastewater treatment. Anode materials play an important role in determining the performance of MDCs. In this study, a three-dimensional (3D) macroporous sponge was coated with compatible and conductive carbon nanotube-chitosan (CNT-CS) as a composite electrode for MDCs. Experimental results showed that the flexible CNT-CS sponge exhibited a high capacitance (159.4F/g at 20mVs-1), good cycling stability (96% specific capacitance retention after 1000 cyclic voltammetry cycles) and low resistance. Moreover, the MDC with a CNT-CS sponge anode generated a high power density of 1776.6mW/m2 (per electrode area) and desalination rate of 16.5mgh-1, which are significantly higher than those of commercial carbon felt electrodes under the same conditions. The improved MDC performance can be attributed to the continuous 3D macroporous structure of the sponge anode promoting the bacterial loading capacity on the electrode surface. Moreover, the presence of CNTs also further enhances extracellular electron transfer. Our results demonstrate that an MDC operating with a 3D CNT-CS sponge anode offers an effective means for manufacturing high-performance MDCs with wide applicability to bioelectrochemical systems.
Collapse
Affiliation(s)
- Chih-Yu Ma
- Graduate Institute of Environmental Engineering, National Taiwan University, No.1, Sec. 4. Roosevelt Rd., Taipei 10617, Taiwan
| | - Chia-Hung Hou
- Graduate Institute of Environmental Engineering, National Taiwan University, No.1, Sec. 4. Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
36
|
Yang W, Lu JE, Zhang Y, Peng Y, Mercado R, Li J, Zhu X, Chen S. Cobalt oxides nanoparticles supported on nitrogen-doped carbon nanotubes as high-efficiency cathode catalysts for microbial fuel cells. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Salar Garcia MJ, Santoro C, Kodali M, Serov A, Artyushkova K, Atanassov P, Ieropoulos I. Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine. JOURNAL OF POWER SOURCES 2019; 425:50-59. [PMID: 31217667 PMCID: PMC6559230 DOI: 10.1016/j.jpowsour.2019.03.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 05/05/2023]
Abstract
In recent years, the microbial fuel cell (MFC) technology has drawn the attention of the scientific community due to its ability to produce clean energy and treat different types of waste at the same time. Often, expensive catalysts are required to facilitate the oxygen reduction reaction (ORR) and this hinders their large-scale commercialisation. In this work, a novel iron-based catalyst (Fe-STR) synthesised from iron salt and streptomycin as a nitrogen-rich organic precursor was chemically, morphologically and electrochemically studied. The kinetics of Fe-STR with and without being doped with carbon nanotubes (CNT) was initially screened through rotating disk electrode (RDE) analysis. Then, the catalysts were integrated into air-breathing cathodes and placed into ceramic-type MFCs continuously fed with human urine. The half-wave potential showed the following trend Fe-STR > Fe-STR-CNT ≫ AC, indicating better kinetics towards ORR in the case of Fe-STR. In terms of MFC performance, the results showed that cathodes containing Fe-based catalyst outperformed AC-based cathodes after 3 months of operation. The long-term test reported that Fe-STR-based cathodes allow MFCs to reach a stable power output of 104.5 ± 0.0 μW cm-2, 74% higher than AC-based cathodes (60.4 ± 3.9 μW cm-2). To the best of the Authors' knowledge, this power performance is the highest recorded from ceramic-type MFCs fed with human urine.
Collapse
Affiliation(s)
- Maria Jose Salar Garcia
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, University of New Mexico, USA
| | - Alexey Serov
- Pajarito Powder, LLC, 3600 Osuna Rd NE Ste 309, Albuquerque, NM, 87109, USA
| | - Kateryna Artyushkova
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, University of New Mexico, USA
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, NM, 87131, University of New Mexico, USA
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
38
|
Li M, Zhong K, Zhang L, Wang S, Zhang H, Huang Y, Chen S, Mai H, Zhang N. Cobalt‐based Catalysts Modified Cathode for Enhancing Bioelectricity Generation and Wastewater Treatment in Air‐breathing Cathode Microbial Fuel Cells. ELECTROANAL 2019. [DOI: 10.1002/elan.201900161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Li
- School of Environmental Science and EngineeringGuangzhou University, Guangzhou Higher Education Mega Center Guangzhou 510006 PR China
- School of Environment and EnergySouth China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 PR China
| | - Kengqiang Zhong
- School of Environmental Science and EngineeringGuangzhou University, Guangzhou Higher Education Mega Center Guangzhou 510006 PR China
| | - Liqiu Zhang
- School of Civil EngineeringGuangzhou University Guangzhou 510006 PR China
| | - Shengdan Wang
- School of Environmental Science and EngineeringGuangzhou University, Guangzhou Higher Education Mega Center Guangzhou 510006 PR China
| | - Hongguo Zhang
- School of Environmental Science and EngineeringGuangzhou University, Guangzhou Higher Education Mega Center Guangzhou 510006 PR China
- Guangzhou University-Linköping University Research Center on Urban Sustainable DevelopmentGuangzhou University Guangzhou 510006 PR China
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and EngineeringGuangzhou University Guangzhou 510006 PR China
| | - Yu Huang
- School of Environmental Science and EngineeringGuangzhou University, Guangzhou Higher Education Mega Center Guangzhou 510006 PR China
| | - Shi Chen
- School of Environmental Science and EngineeringGuangzhou University, Guangzhou Higher Education Mega Center Guangzhou 510006 PR China
| | - Hanjian Mai
- School of Environmental Science and EngineeringGuangzhou University, Guangzhou Higher Education Mega Center Guangzhou 510006 PR China
| | - Nan Zhang
- School of Environmental Science and EngineeringGuangzhou University, Guangzhou Higher Education Mega Center Guangzhou 510006 PR China
| |
Collapse
|
39
|
Activated carbon-supported multi-doped graphene as high-efficient catalyst to modify air cathode in microbial fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Mukherjee P, Saravanan P. Perspective View on Materialistic, Mechanistic and Operating Challenges of Microbial Fuel Cell on Commercialisation and Their Way Ahead. ChemistrySelect 2019. [DOI: 10.1002/slct.201802694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Priya Mukherjee
- Environmental Nanotechnology LaboratoryDepartment of Environmental Science and EngineeringIndian Institute of Technology [ISM], Dhanbad Dhanbad- 826004 Jharkhand India
| | - Pichiah Saravanan
- Environmental Nanotechnology LaboratoryDepartment of Environmental Science and EngineeringIndian Institute of Technology [ISM], Dhanbad Dhanbad- 826004 Jharkhand India
| |
Collapse
|
41
|
Bimetallic metal-organic frameworks derived cobalt nanoparticles embedded in nitrogen-doped carbon nanotube nanopolyhedra as advanced electrocatalyst for high-performance of activated carbon air-cathode microbial fuel cell. Biosens Bioelectron 2019; 127:181-187. [DOI: 10.1016/j.bios.2018.12.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 11/20/2022]
|
42
|
Noori MT, Tiwari BR, Ghangrekar MM, Min B. Azadirachta indica leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst. SUSTAINABLE ENERGY & FUELS 2019. [DOI: 10.1039/c9se00661c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, a highly efficient yet low-cost mixed transition metal oxide of Ni and Co as CoO–NiO was synthesized using Azadirachta indica leaf extract as a bioactive chelating agent.
Collapse
Affiliation(s)
- Md. T. Noori
- Department of Environmental Science and Engineering
- Kyung Hee University
- Yongin-si
- South Korea
| | - B. R. Tiwari
- Department of Civil Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| | - M. M. Ghangrekar
- Department of Civil Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| | - Booki Min
- Department of Environmental Science and Engineering
- Kyung Hee University
- Yongin-si
- South Korea
| |
Collapse
|
43
|
NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal Chim Acta 2018; 1031:47-59. [DOI: 10.1016/j.aca.2018.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 11/18/2022]
|
44
|
Wang QY, Tong YC, Yan PJ, Xu XJ, Li Z. Attachment of CO to a (6, 6) CNT with a Sc adsorbate atom. Struct Chem 2018. [DOI: 10.1007/s11224-018-1202-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Mecheri B, Gokhale R, Santoro C, Costa de Oliveira MA, D’Epifanio A, Licoccia S, Serov A, Artyushkova K, Atanassov P. Oxygen Reduction Reaction Electrocatalysts Derived from Iron Salt and Benzimidazole and Aminobenzimidazole Precursors and Their Application in Microbial Fuel Cell Cathodes. ACS APPLIED ENERGY MATERIALS 2018; 1:5755-5765. [PMID: 30406217 PMCID: PMC6199672 DOI: 10.1021/acsaem.8b01360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/25/2018] [Indexed: 05/20/2023]
Abstract
In this work, benzimidazole (BZIM) and aminobenzimidazole (ABZIM) were used as organic-rich in nitrogen precursors during the synthesis of iron-nitrogen-carbon (Fe-N-C) based catalysts by sacrificial support method (SSM) technique. The catalysts obtained, denoted Fe-ABZIM and Fe-BZIM, were characterized morphologically and chemically through SEM, TEM, and XPS. Moreover, these catalysts were initially tested in rotating ring disk electrode (RRDE) configuration, resulting in similar high electrocatalytic activity toward oxygen reduction reaction (ORR) having low hydrogen peroxide generated (<3%). The ORR performance was significantly higher compared to activated carbon (AC) that was the control. The catalysts were then integrated into air-breathing (AB) and gas diffusion layer (GDL) cathode electrode and tested in operating microbial fuel cells (MFCs). The presence of Fe-N-C catalysts boosted the power output compared to AC cathode MFC. The AB-type cathode outperformed the GDL type cathode probably because of reduced catalyst layer flooding. The highest performance obtained in this work was 162 ± 3 μWcm-2. Fe-ABZIM and Fe-BZIM had similar performance when incorporated to the same type of cathode configuration. Long-term operations show a decrease up to 50% of the performance in two months operations. Despite the power output decrease, the Fe-BZIM/Fe-ABZIM catalysts gave a significant advantage in fuel cell performance compared to the bare AC.
Collapse
Affiliation(s)
- Barbara Mecheri
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- E-mail: . Phone: +39 06 7259 4488
| | - Rohan Gokhale
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
| | - Carlo Santoro
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
- E-mail: . Phone: +1 505 277 2640
| | - Maida Aysla Costa de Oliveira
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandra D’Epifanio
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Silvia Licoccia
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alexey Serov
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
| | - Kateryna Artyushkova
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
| | - Plamen Atanassov
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
46
|
Mathuriya AS, Jadhav DA, Ghangrekar MM. Architectural adaptations of microbial fuel cells. Appl Microbiol Biotechnol 2018; 102:9419-9432. [PMID: 30259099 DOI: 10.1007/s00253-018-9339-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/29/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Abhilasha S Mathuriya
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306, India.
| | - Dipak A Jadhav
- School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
47
|
Erable B, Oliot M, Lacroix R, Bergel A, Serov A, Kodali M, Santoro C, Atanassov P. Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells. Electrochim Acta 2018; 277:127-135. [PMID: 29970929 PMCID: PMC6004532 DOI: 10.1016/j.electacta.2018.04.190] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, a platinum group metal-free (PGM-free) catalyst based on iron as transitional metal and Nicarbazin (NCB) as low cost organic precursor was synthesized using Sacrificial Support Method (SSM). The catalyst was then incorporated into a large area air-breathing cathode fabricated by pressing with a large diameter pellet die. The electrochemical tests in abiotic conditions revealed that after a couple of weeks of successful operation, the electrode experienced drop in performances in reason of electrolyte leakage, which was not an issue with the smaller electrodes. A decrease in the hydrophobic properties over time and a consequent cathode flooding was suspected to be the cause. On the other side, in the present work, for the first time, it was demonstrated the proof of principle and provided initial guidance for manufacturing MFC electrodes with large geometric areas. The tests in MFCs showed a maximum power density of 1.85 W m-2. The MFCs performances due to the addition of Fe-NCB were much higher compared to the iron-free material. A numerical model using Nernst-Monod and Butler-Volmer equations were used to predict the effect of electrolyte solution conductivity and distance anode-cathode on the overall MFC power output. Considering the existing conditions, the higher overall power predicted was 3.6 mW at 22.2 S m-1 and at inter-electrode distance of 1 cm.
Collapse
Affiliation(s)
- Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Manon Oliot
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Rémy Lacroix
- 6T-MIC Ingénieries, 9 rue du développement, 31320, Castanet-Tolosan, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, University of New Mexico Albuquerque, NM, 87131, USA
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, University of New Mexico Albuquerque, NM, 87131, USA
| | - Carlo Santoro
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, University of New Mexico Albuquerque, NM, 87131, USA
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, University of New Mexico Albuquerque, NM, 87131, USA
| |
Collapse
|
48
|
Kumar R, Singh L, Wahid ZA, Mahapatra DM, Liu H. Novel mesoporous MnCo 2O 4 nanorods as oxygen reduction catalyst at neutral pH in microbial fuel cells. BIORESOURCE TECHNOLOGY 2018; 254:1-6. [PMID: 29413909 DOI: 10.1016/j.biortech.2018.01.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to evaluate the comparative performance of hybrid metal oxide nanorods i.e. MnCo2O4 nanorods (MCON) and single metal oxide nanorods i.e. Co3O4 nanorods (CON) as oxygen reduction catalyst in microbial fuel cells (MFC). Compared to the single metal oxide, the hybrid MCON exhibited a higher BET surface area and provided additional positively charged ions, i.e., Co2+/Co3+ and Mn3+/Mn4+ on its surfaces, which increased the electro-conductivity of the cathode and improved the oxygen reduction kinetics significantly, achieved an io of 6.01 A/m2 that was 12.4% higher than CON. Moreover, the porous architecture of MCON facilitated the diffusion of electrolyte, reactants and electrons during the oxygen reduction, suggested by lower diffusion (Rd), activation (Ract) and ohmic resistance (Rohm) values. This enhanced oxygen reduction by MCON boosted the power generation in MFC, achieving a maximum power density of 587 mW/m2 that was ∼29% higher than CON.
Collapse
Affiliation(s)
- Ravinder Kumar
- Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia
| | - Lakhveer Singh
- Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia; Biological and Ecological Engineering, 116 Gilmore Hall, Oregon State University, Corvallis, OR 97331, USA.
| | - Zularisam Ab Wahid
- Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia
| | - Durga Madhab Mahapatra
- Biological and Ecological Engineering, 116 Gilmore Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Hong Liu
- Biological and Ecological Engineering, 116 Gilmore Hall, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
49
|
Abstract
Iron aminoantipyrine (Fe-AAPyr), graphene nanosheets (GNSs) derived catalysts and their physical mixture Fe-AAPyr-GNS were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR) with the activated carbon (AC) as a baseline. Fe-AAPyr catalyst was prepared by Sacrificial Support Method (SSM) with silica as a template and aminoantipyrine (AAPyr) as the organic precursor. 3D-GNS was prepared using modified Hummers method technique. The Oxygen Reduction Reaction (ORR) activity of these catalysts at different loadings was investigated by using rotating ring disk (RRDE) electrode setup in the neutral electrolyte. The performance of the catalysts integrated into air-breathing cathode was also investigated. The co-presence of GNS (2 mg cm−2) and Fe-AAPyr (2 mg cm−2) catalyst within the air-breathing cathode resulted in the higher power generation recorded in MFC of 235 ± 1 μW cm−2. Fe-AAPyr catalyst itself showed high performance (217 ± 1 μW cm−2), higher compared to GNS (150 ± 5 μW cm−2) while AC generated power of roughly 104 μW cm−2. Fe-AAPyr and GNS were synthesized and characterized. Rotating ring disk electrode (RRDE) setup was performed in the neutral electrolyte. Fe-AAPyr had higher half wave potential and lower H2O2 production. The combination of Fe-AAPyr and GNS led to a power generation of 235 ± 1 μWcm−2. Both Fe-AAPyr and GNS outperformed compared to activated carbon control.
Collapse
|
50
|
Santoro C, Kodali M, Herrera S, Serov A, Ieropoulos I, Atanassov P. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs. JOURNAL OF POWER SOURCES 2018; 378:169-175. [PMID: 29527091 PMCID: PMC5840685 DOI: 10.1016/j.jpowsour.2017.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 05/05/2023]
Abstract
Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e- transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm-2 and 10 mgcm-2. Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm-2 and 262 ± 4 μWcm-2 with catalyst loading of 0.1 mgcm-2 and 10 mgcm-2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| | - Sergio Herrera
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| |
Collapse
|