1
|
Moorthy DN, Dhinasekaran D, Rebecca PNB, Rajendran AR. Optical Biosensors for Detection of Cancer Biomarkers: Current and Future Perspectives. JOURNAL OF BIOPHOTONICS 2024; 17:e202400243. [PMID: 39442779 DOI: 10.1002/jbio.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
Optical biosensors are emerging as a promising technique for the sensitive and accurate detection of cancer biomarkers, enabling significant advancements in the field of early diagnosis. This study elaborates on the latest developments in optical biosensors designed for detecting cancer biomarkers, highlighting their vital significance in early cancer diagnosis. When combined with targeted nanoparticles, the bio-fluids can help in the molecular stage diagnosis of cancer. This enhances the discrimination of disease from the normal subjects drastically. The optical sensor methods that are involved in the disease diagnosis and imaging of cancer taken for the present review are surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, surface-enhanced Raman spectroscopy and colorimetric sensing. The article meticulously describes the specific biomarkers and analytes that optical biosensors target. Beyond elucidating the underlying principles and applications, this article furnishes an overview of recent breakthroughs and emerging trends in the field. This encompasses the evolution of innovative nanomaterials and nanostructures designed to augment sensitivity and the incorporation of microfluidics for facilitating point-of-care testing, thereby charting a course towards prospective advancements.
Collapse
Affiliation(s)
| | | | - P N Blessy Rebecca
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Rakkesh Rajendran
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
2
|
Sun B, Li G, Wu Y, Gai J, Zhu M, Ji W, Wang X, Zhang F, Li W, Hu J, Lou Y, Feng G, Han X, Dong J, Peng J, Pei J, Wan Y, Li Y, Ma L. Ce-MOF@Au-Based Electrochemical Immunosensor for Apolipoprotein A1 Detection Using Nanobody Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58405-58416. [PMID: 39413767 DOI: 10.1021/acsami.4c14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Apolipoprotein A1 (Apo-A1) is a well-recognized biomarker in tissues, closely associated with cardiovascular diseases such as atherosclerosis, coronary artery disease, and heart failure. However, existing methods for Apo-A1 determination are limited by costly equipment and intricate operational procedures. Given the distinct advantages of electrochemical immunosensors, including affordability and high sensitivity, along with the unique attributes of nanobodies (Nbs), such as enhanced specificity and better tissue permeability, we developed an electrochemical immunosensor for Apo-A1 detection utilizing Nb technology. In our study, Ce-MOF@AuNPs nanocomposites were synthesized by using ultrasonic methods and applied to modify a glassy carbon electrode. The Nb6, screened from an Apo-A1 immunized phage library, was immobilized onto the nanocomposite material, establishing a robust binding interaction with Apo-A1. The recorded peak current values demonstrated a logarithmic increase corresponding to Apo-A1 concentrations ranging from 1 to 100,000 pg/mL, with a detection limit of 36 fg/mL. Additionally, the developed immunosensors demonstrated high selectivity, good stability, and reproducibility. Our methodology was also effectively utilized for serum sample analysis, showing good performance in clinical assessments. This electrochemical immunosensor represents a promising tool for Apo-A1 detection, with significant potential for advancing cardiovascular disease diagnostics.
Collapse
Affiliation(s)
- Baihe Sun
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Yue Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Weiwei Ji
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Xiaoying Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fenghua Zhang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Wanting Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jingjin Hu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yuxin Lou
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Gusheng Feng
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xijun Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jinwen Dong
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jiayuan Peng
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jiawei Pei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Linlin Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
3
|
Khetan R, Eldi P, Lokman NA, Ricciardelli C, Oehler MK, Blencowe A, Garg S, Pillman K, Albrecht H. Unveiling G-protein coupled receptors as potential targets for ovarian cancer nanomedicines: from RNA sequencing data analysis to in vitro validation. J Ovarian Res 2024; 17:156. [PMID: 39068454 PMCID: PMC11282829 DOI: 10.1186/s13048-024-01479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Genetic heterogeneity in ovarian cancer indicates the need for personalised treatment approaches. Currently, very few G-protein coupled receptors (GPCRs) have been investigated for active targeting with nanomedicines such as antibody-conjugated drugs and drug-loaded nanoparticles, highlighting a neglected potential to develop personalised treatment. To address the genetic heterogeneity of ovarian cancer, a future personalised approach could include the identification of unique GPCRs expressed in cancer biopsies, matched with personalised GPCR-targeted nanomedicines, for the delivery of lethal drugs to tumour tissue before, during and after surgery. Here we report on the systematic analysis of public ribonucleic acid-sequencing (RNA-seq) gene expression data, which led to prioritisation of 13 GPCRs as candidates with frequent overexpression in ovarian cancer tissues. Subsequently, primary ovarian cancer cells derived from ascites and ovarian cancer cell lines were used to confirm frequent gene expression for the selected GPCRs. However, the expression levels showed high variability within our selection of samples, therefore, supporting and emphasising the need for the future development of case-to-case personalised targeting approaches.
Collapse
Affiliation(s)
- Riya Khetan
- Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Preethi Eldi
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sanjay Garg
- Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Katherine Pillman
- Centre for Cancer Biology, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Hugo Albrecht
- Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
4
|
Khan H, Shahab U, Alshammari A, Alyahyawi AR, Akasha R, Alharazi T, Ahmad R, Khanam A, Habib S, Kaur K, Ahmad S, Moinuddin. Nano-therapeutics: The upcoming nanomedicine to treat cancer. IUBMB Life 2024. [PMID: 38440959 DOI: 10.1002/iub.2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Abstract
Nanotechnology is considered a successful approach for cancer diagnosis and treatment. Preferentially, cancer cell recognition and drug targeting via nano-delivery system include the penetration of anticancer agents into the cell membrane to damage the cancer cell by protein modification, DNA oxidation, or mitochondrial dysfunction. The past research on nano-delivery systems and their target has proven the beneficial achievement in a malignant tumor. Modern perceptions using inventive nanomaterials for cancer management have been offered by a multifunctional platform based on various nano-carriers with the probability of imaging and cancer therapy simultaneously. Emerging nano-delivery systems in cancer therapy still lack knowledge of the biological functions behind the interaction between nanoparticles and cancer cells. Since the potential of engineered nanoparticles addresses the various challenges, limiting the success of cancer therapy subsequently, it is a must to review the molecular targeting of a nano-delivery system to enhance the therapeutic efficacy of cancer. This review focuses on using a nano-delivery system, an imaging system, and encapsulated nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Ahmed Alshammari
- Department of Internal Medicine, College of Medicine, University of Hail, Ha'il, Saudi Arabia
| | - Amjad R Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha'il, Saudi Arabia
- Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, UK
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Rizwan Ahmad
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Afreen Khanam
- Department of Biotechnology & Life Science, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Moinuddin
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Yılmaz M, Bilgi M. A disposable impedimetric immunosensor for the analysis of CA125 in human serum samples. Biomed Microdevices 2024; 26:8. [PMID: 38180587 DOI: 10.1007/s10544-023-00691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Cancer antigen 125 (CA125) is the most common biomarker used to diagnose and monitor ovarian cancer progression for the last four decades, and precise detection of its levels in blood serum is crucial. In this work, label-free impedimetric CA125 immunosensors were fabricated by using screen-printed carbon electrodes modified with poly toluidine blue (PTB) (in deep eutectic solvent)/gold nanoparticles (AuNP) for the sensitive, environmentally friendly, economical, and practical analysis of CA125. The materials of PTBDES and AuNP were characterized by Fourier Transform Infrared (FT-IR), Scanning Electron Microscope (FE-SEM), and X-ray Diffraction (XRD). The analysis of the CA125 was performed by electrochemical impedance spectroscopy and the developed immunosensor. The immunosensor's repeatability, reproducibility, reusability, selectivity, and storage stability were examined. The developed label-free immunosensor allowed the determination of CA125 in fast, good repeatability and a low limit of detection (1.20 pg mL-1) in the linear range of 5-100 pg mL-1. The stable surface of the fabricated immunosensor was successfully regenerated ten times. The application of immunosensors in commercial human blood serum was performed, and good recoveries were achieved. The disposable label-free impedimetric CA125 immunosensor developed for the rapid and practical detection of CA125 is a candidate for use in point-of-care tests in clinical applications of ovarian cancer.
Collapse
Affiliation(s)
- Merve Yılmaz
- Faculty of Science, Chemistry Department, Çankırı Karatekin University, Çankırı, 18100, Türkiye
| | - Melike Bilgi
- Faculty of Science, Chemistry Department, Çankırı Karatekin University, Çankırı, 18100, Türkiye.
| |
Collapse
|
6
|
Andone BA, Handrea-Dragan IM, Botiz I, Boca S. State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102709. [PMID: 37717928 DOI: 10.1016/j.nano.2023.102709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
According to the latest World Health Organization statistics, around 50 to 80 million people worldwide suffer from infertility, amongst which male factors are responsible for around 20 to 30 % of all infertility cases while 50 % were attributed to the female ones. As it is becoming a recurrent health problem worldwide, clinicians require more accurate methods for the improvement of both diagnosis and treatment schemes. By emphasizing the potential use of innovative methods for the rapid identification of the infertility causes, this review presents the news from this dynamic domain and highlights the benefits brought by emerging research fields. A systematic description of the standard techniques used in clinical protocols for diagnosing infertility in both genders is firstly provided, followed by the presentation of more accurate and comprehensive nanotechnology-related analysis methods such as nanoscopic-resolution imaging, biosensing approaches and assays that employ nanomaterials in their design. Consequently, the implementation of nanotechnology related tools in clinical practice, as recently demonstrated in the selection of spermatozoa, the detection of key proteins in the fertilization process or the testing of DNA integrity or the evaluation of oocyte quality, might confer excellent advantages both for improving the assessment of infertility, and for the success of the fertilization process.
Collapse
Affiliation(s)
- Bianca-Astrid Andone
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Iuliana M Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Tripathi A, Bonilla-Cruz J. Review on Healthcare Biosensing Nanomaterials. ACS APPLIED NANO MATERIALS 2023; 6:5042-5074. [DOI: 10.1021/acsanm.3c00941] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Alok Tripathi
- Department of Chemical and Biochemical Engineering, School of Engineering, Indrashil University, Rajpur 382715, Gujarat India
| | - José Bonilla-Cruz
- Advanced Functional Materials and Nanotechnology Group, Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Avenida Alianza Norte Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca, Nuevo León, México C.P. 66628
| |
Collapse
|
8
|
Ain QU, Muhammad S, Hai Y, Peiling L. The role of urine and serum biomarkers in the early detection of ovarian epithelial tumours. J OBSTET GYNAECOL 2023; 42:3441-3449. [PMID: 36757337 DOI: 10.1080/01443615.2022.2151352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Ovarian cancer (OC) is one of the leading causes of gynaecological cancer mortality in women worldwide. If detected at an early stage (I, II), OC has a 90% 5-year survival rate; nevertheless, symptoms are often hidden, leading to late-stage (III, IV) diagnosis and a poor prognosis. The current diagnostic procedures, such as a pelvic exam, transvaginal ultrasound, CA-125 blood tests, serum HE4 tests and multivariate index assays (MIA), are insufficient. Sadly, surgery is frequently required to confirm a positive diagnosis. Therefore, there has been an increased interest in different biomarkers using a non-invasive test as a tool for the earlier diagnosis of OC to resolve the need for precise and non-invasive diagnostic methods. This review article aims to investigate how biomarkers influence early OC detection and to emphasise the role of using a combination of serum biomarkers panel rather than a single biomarker. In addition, this review provides insights into the current serum biomarkers, urine biomarkers and other emerging biomarkers in the early detection of OC for better specificity and sensitivity and to improve the overall survival (OS) rate.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin medical university, Harbin, PR China
| | - Shan Muhammad
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yang Hai
- Department of International Education, Harbin Medical University, Harbin, PR China
| | - Li Peiling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin medical university, Harbin, PR China
| |
Collapse
|
9
|
Husna R, Kurup CP, Ansari MA, Mohd-Naim NF, Ahmed MU. An electrochemical aptasensor based on AuNRs/AuNWs for sensitive detection of apolipoprotein A-1 (ApoA1) from human serum. RSC Adv 2023; 13:3890-3898. [PMID: 36756582 PMCID: PMC9890643 DOI: 10.1039/d2ra06600a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
For early detection and diagnosis of cancer, it is essential to develop an electrochemical biosensor that is quick, accurate, and sensitive. Here, we use gold nanorod (AuNR) and gold nanowire (AuNW) nanocomposites (AuNR/AuNW/CS) as electrode modifiers on a glassy carbon electrode (GCE) to construct a sensitive label-free electrochemical aptasensor to detect ApoA1. The thiolated ApoA1-specific aptamers were immobilized onto the modified electrode surface through self-assembled monolayers. Electrochemical techniques, such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV), were used to analyze the fabrication steps. The concentration of ApoA1 was measured with DPV on the aptasensor, with a linear range of 0.1 to 1000 pg mL-1 and a detection limit of 0.04 pg mL-1. When compared to results from ELISA tests (which have a detection limit of 80 pg mL-1), the results achieved here were over 2000 times better. The aptasensor's performance was successfully evaluated using human serum spiked with ApoA1, suggesting that it has great potential for practical application. The electrochemical apatsensor additionally demonstrated outstanding selectivity responses and strong stability toward the target analyte.
Collapse
Affiliation(s)
- Raudhatul Husna
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Chitra Padmakumari Kurup
- PAPRSB Institute of Health Sciences, Universiti Brunei DarussalamJalan Tungku LinkGadong BE 1410Brunei Darussalam
| | - Mohd Afaque Ansari
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam .,PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
10
|
Pourmadadi M, Moammeri A, Shamsabadipour A, Moghaddam YF, Rahdar A, Pandey S. Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review. BIOSENSORS 2023; 13:99. [PMID: 36671934 PMCID: PMC9856029 DOI: 10.3390/bios13010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, diagnosing early-stage cancers can be vital for saving patients and dramatically decreases mortality rates. Therefore, specificity and sensitivity in the detection of cancer antigens should be elaborately ensured. Some early-stage cancers can be diagnosed via detecting the cancer antigen CA-125, such as ovarian cancer, and required treatments can be applied more efficiently. Thus, detection of CA-125 by employing various optical or electrochemical biosensors is a preliminary and crucial step to treating cancers. In this review, a diverse range of optical and electrochemical means of detecting CA-125 are reviewed. Furthermore, an applicable comparison of their performance and sensitivity is provided, several commercial detection kits are investigated, and their applications are compared and discussed to determine whether they are applicable and accurate enough.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Kurup C, Mohd-Naim NF, Keasberry NA, Zakaria SNA, Bansal V, Ahmed MU. Label-Free Electrochemiluminescence Nano-aptasensor for the Ultrasensitive Detection of ApoA1 in Human Serum. ACS OMEGA 2022; 7:38709-38716. [PMID: 36340071 PMCID: PMC9631400 DOI: 10.1021/acsomega.2c04300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 05/11/2023]
Abstract
A molybdenum sulfide/zirconium oxide/Nafion (MoS2/ZrO2/Naf) based electrochemiluminescence (ECL) aptasensor for the selective and ultrasensitive detection of ApoA1 is proposed, with Ru(bpy)3 2+ as the luminophore. The chitosan (CS) modification on the nanocomposite layer allowed glutaraldehyde (GLUT) cross-linking, resulting in the immobilization of ApoA1 aptamers. Scanning electron microscopy, tunneling electron microscopy, and energy dispersive X-ray spectroscopy were used to characterize the nanocomposite, while electrochemiluminescence (ECL), cyclic voltammetry, and electrochemical impedance spectroscopy were used to analyze the aptasensor assembly. The nanocomposite was used as an electrode modifier, which increased the intensity of the ECL signal. Due to the anionic environment produced on the sensor surface following the specific interaction of the ApoA1 biomarker with the sensor, more Ru(bpy)3 2+ were able to be electrostatically attached to the aptamer-ApoA1 complex, resulting in enhanced ECL signal. The ECL aptasensor demonstrated outstanding sensitivity for ApoA1 under optimal experimental conditions, with a detection limit of 53 fg/mL and a wide linear dynamic range of 0.1-1000 pg/mL. The potential practical applicability of this aptasensor was validated by analyzing ApoA1 in human serum samples, with recovery rates of 94-108% (n = 3). The proposed assay was found to be substantially better compared to the commercially available enzyme-linked immunosorbent assay method, as reflected from over 1500 times improvement in the detection limit for ApoA1.
Collapse
Affiliation(s)
- Chitra
P. Kurup
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Noor F. Mohd-Naim
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
- PAPRSB
Institute of Health Sciences, Universiti
Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Natasha A. Keasberry
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Siti N. A. Zakaria
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
| | - Vipul Bansal
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory
(NBRL), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria3000, Australia
| | - Minhaz U. Ahmed
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Jalan Tungku Link, GadongBE 1410, Brunei Darussalam
- ;
| |
Collapse
|
12
|
Ramesh AK, Chou YT, Lu MT, Singh P, Tseng YC. Biological sensing using anomalous hall effect devices. NANOTECHNOLOGY 2022; 33:335502. [PMID: 35504249 DOI: 10.1088/1361-6528/ac6c32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
This paper outlines an approach to biological sensing involving the use of spintronic devices to sense magnetic particles attached to biological carriers. We developed an enzyme-linked immunosorbent assay (ELISA)-based Anomalous Hall Effect magnetic sensor via surface functionalization using Triethoxysilylundecanal (TESUD). The proposed sensor uses a CoFeB/MgO heterostructure with a perpendicular magnetic anisotropy. Through several sets of magnetic layer thickness, this work also explored the optimization process of ferromagnetic layer used. Our spintronics-based biosensor is compatible with semiconductor fabrication technology and can be effectively miniaturized to integrate with semiconductor chips, which has the advantage of reduced manufacturing cost and reduced power consumption. The proposed sensor provides real-time measurement results and it is competitive to conventional biological colorimetric measurement systems in terms of accuracy and immediacy.
Collapse
Affiliation(s)
- Akhil K Ramesh
- Department of Materials Science & Engineering, National Yang Ming Chiao Tung University, 30010, Taiwan
- Centre for Applied Research in Electronics, Indian Institute of Technology, Delhi 110016, India
| | - Yi-Ting Chou
- Department of Materials Science & Engineering, National Yang Ming Chiao Tung University, 30010, Taiwan
| | - Mu-Ting Lu
- Department of Materials Science & Engineering, National Yang Ming Chiao Tung University, 30010, Taiwan
| | - Pushparaj Singh
- Centre for Applied Research in Electronics, Indian Institute of Technology, Delhi 110016, India
| | - Yuan-Chieh Tseng
- Department of Materials Science & Engineering, National Yang Ming Chiao Tung University, 30010, Taiwan
| |
Collapse
|
13
|
Kumarasamy G, Kaur G. Protein biomarkers in gynecological cancers: The need for translational research towards clinical applications. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2022. [DOI: 10.1016/j.gine.2021.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int J Biol Macromol 2022; 195:356-383. [PMID: 34920057 DOI: 10.1016/j.ijbiomac.2021.12.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
As well-appreciated biomarkers, tumor markers have been spotlighted as reliable tools for predicting the behavior of different tumors and helping clinicians ascertain the type of molecular mechanism of tumorigenesis. The sensitivity and specificity of these markers have made them an object of even broader interest for sensitive detection and staging of various cancers. Enzyme-linked immunosorbent assay (ELISA), fluorescence-based, mass-based, and electrochemical-based detections are current techniques for sensing tumor markers. Although some of these techniques provide good selectivity, certain obstacles, including a low sample concentration or difficulty carrying out the measurement, limit their application. With the advent of nanotechnology, many studies have been carried out to synthesize and employ nanomaterials (NMs) in sensing techniques to determine these tumor markers at low concentrations. The fabrication, sensitivity, design, and multiplexing of sensing techniques have been uplifted due to the attractive features of NMs. Various NMs, such as magnetic and metal nanoparticles, up-conversion NPs, carbon nanotubes (CNTs), carbon-based NMs, quantum dots (QDs), and graphene-based nanosensors, hyperbranched polymers, optical nanosensors, piezoelectric biosensors, paper-based biosensors, microfluidic-based lab-on-chip sensors, and hybrid NMs have proven effective in detecting tumor markers with great sensitivity and selectivity. This review summarizes various categories of NMs for detecting these valuable markers, such as prostate-specific antigen (PSA), human carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3, MUC1), and cancer antigen 19-9 (CA19-9), and highlights recent nanotechnology-based advancements in detection of these prognostic biomarkers.
Collapse
|
15
|
Huang X, Hu J, Zhu H, Chen J, Liu Y, Mao Z, Lee J, Chen H. Magnetic field-aligned Fe 3O 4-coated silver magnetoplasmonic nanochain with enhanced sensitivity for detection of Siglec-15. Biosens Bioelectron 2021; 191:113448. [PMID: 34171735 DOI: 10.1016/j.bios.2021.113448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
Noble metal nanoparticles could provide a significant gain in sensitivity of surface plasmon resonance (SPR) sensor by electromagnetic field coupling between the localized plasmon resonance of nanoparticles and gold film. A facile and cost-effective SPR sensor based on magnetic field-aligned Fe3O4-coated silver magnetoplasmonic nanoparticles (Ag@MNPs) nanochain (M-Ag@MNPs) was proposed to improve the sensitivity of the sensor, which gave access to detect clinical targets at low concentration. Optimization experiments proved that 80 ng mL-1 M-Ag@MNPs-based SPR sensor showed high refractive index sensitivity and increased detection accuracy and quality factor when comparing with those of bare gold. Sialic acid binding Ig like lectins-15 (Siglec-15) was used as proof of concept to verify the sensitivity enhancement performance of M-Ag@MNPs in the actual detection process. SPR angle shifts of M-Ag@MNPs/gold sensor were significantly higher than those of traditional gold sensor under the same concentration of Siglec-15, which was consistent with previous performance analysis. Also, the detection limit of M-Ag@MNPs/gold sensor was calculated to be 1.36 pg mL-1. All these results had proved that aligning M-Ag@MNPs onto the gold chip could improve the performance of the SPR sensor and achieve sensitive detection of small amounts of clinical biomarkers.
Collapse
Affiliation(s)
- Xing Huang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Junjie Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Han Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Zhihui Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
16
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
17
|
Review of biomarker systems as an alternative for early diagnosis of ovarian carcinoma. Clin Transl Oncol 2021; 23:1967-1978. [PMID: 33840014 DOI: 10.1007/s12094-021-02604-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Early diagnosis of ovarian carcinoma is bound to boost the long-term endurance rate of the patients. Most ovarian tumors happen post menopause when the ovaries have no vital operation and therefore irregular ovarian role causes no signs. According to Muinao T. et al. (Heliyon. 5(12):e02826, 2019), if we consider the frequency of ovarian carcinoma to be moderate, a screening technique must accomplish a base specificity of 99.6% and sensitivity of over 75%. The classification and approval of early diagnostic biomarkers explicit to ovarian carcinoma are essentially required. Prevailing methods for early diagnosis of ovarian carcinoma incorporate TVS, biological marker examination, or a blend of the two or other. In recent years, it has been revealed that a combination of at least two biomarkers has beaten single biomarkers in measures for early diagnosis of the illness. In the present document, we survey the ongoing exploration of innovative characteristic methodologies and possible panels of carcinoma biological markers for the early diagnosis of ovarian carcinoma and discuss biomarkers as the plausible apparatus for model improvement and other progressed approaches as an effective alternative to the prevailing methods for early diagnosis of this dreadful disease to evade bogus analysis and inordinate expense.
Collapse
|
18
|
Atallah GA, Abd. Aziz NH, Teik CK, Shafiee MN, Kampan NC. New Predictive Biomarkers for Ovarian Cancer. Diagnostics (Basel) 2021; 11:465. [PMID: 33800113 PMCID: PMC7998656 DOI: 10.3390/diagnostics11030465] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the eighth-most common cause of death among women worldwide. In the absence of distinctive symptoms in the early stages, the majority of women are diagnosed in advanced stages of the disease. Surgical debulking and systemic adjuvant chemotherapy remain the mainstays of treatment, with the development of chemoresistance in up to 75% of patients with subsequent poor treatment response and reduced survival. Therefore, there is a critical need to revisit existing, and identify potential biomarkers that could lead to the development of novel and more effective predictors for ovarian cancer diagnosis and prognosis. The capacity of these biomarkers to predict the existence, stages, and associated therapeutic efficacy of ovarian cancer would enable improvements in the early diagnosis and survival of ovarian cancer patients. This review not only highlights current evidence-based ovarian-cancer-specific prognostic and diagnostic biomarkers but also provides an update on various technologies and methods currently used to identify novel biomarkers of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; (G.A.A.); (N.H.A.A.); (C.K.T.); (M.N.S.)
| |
Collapse
|
19
|
Falkowski P, Lukaszewski Z, Gorodkiewicz E. Potential of surface plasmon resonance biosensors in cancer detection. J Pharm Biomed Anal 2020; 194:113802. [PMID: 33303267 DOI: 10.1016/j.jpba.2020.113802] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
A review is made of 71 papers on surface plasmon resonance biosensors, published between 2005 and 2020, mostly in the last decade. The reviewed papers are divided into two groups, depending on the validation of the developed biosensor. Validated biosensors are briefly characterized, while those that are not validated are listed in a table. Focus is placed on applications of SPR biosensors in testing the effectiveness of cancer markers and in the discovery of new cancer markers. Seven new markers are proposed, two of them having high sensitivity and diagnostic selectivity as determined by ROC curves. Papers concerning the determination of micro RNA and large particles such as vesicles, exosomes and cancer cells are also reviewed.
Collapse
Affiliation(s)
- Pawel Falkowski
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Zenon Lukaszewski
- Poznan University of Technology, Faculty of Chemical Technology, Poland
| | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
20
|
Kumar V, Gupta S, Varma K, Sachan M. MicroRNA as Biomarker in Ovarian Cancer Management: Advantages and Challenges. DNA Cell Biol 2020; 39:2103-2124. [PMID: 33156705 DOI: 10.1089/dna.2020.6024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most prevalent gynecological malignancy affecting women throughout the globe. Ovarian cancer has several subtypes, including epithelial ovarian cancer (EOC) with a whopping incidence rate of 239,000 per year, making it the sixth most common gynecological malignancy worldwide. Despite advancement of detection and therapeutics, death rate accounts for 152,000 per annum. Several protein-based biomarkers such as CA125 and HE4 are currently being used for diagnosis, but their sensitivity and specificity for early detection of ovarian cancer are under question. MicroRNA (a small noncoding RNA molecule that participates in post-transcription regulation of gene expression) and its functional deregulation in most cancers have been discovered in the previous two decades. Studies support that miRNA deregulation has an epigenetic component as well. Aberrant miRNA expression is often correlated with the form of EOC tumor, histological grade, prognosis, and FIGO stage. In this review, we addressed epigenetic regulation of miRNAs, the latest research on miRs as a biomarker in the detection of EOC, and tailored assays to use miRNAs as a biomarker in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
21
|
Huang J, Huang C, Zhong W, Lin Y. A magneto-controlled microfluidic device for voltammetric immunoassay of carbohydrate antigen-125 with silver-polypyrrole nanotags. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4211-4219. [PMID: 39825512 DOI: 10.1039/d0ay01225d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
An innovative magnetic immunoassay was developed for the voltammetric detection of carbohydrate antigen-125 (CA-125) on a home-made microfluidic device including a multisyringe pump, selection valve and magneto-controlled detection cell. Two kinds of biofunctionalized nanostructures including anti-CA-125 capture antibody-conjugated magnetic beads and anti-CA-125 detection antibody-labeled silver-polypyrrole (Ag-PPy) nanohybrids were utilized for a sandwiched immunoreaction in the presence of CA-125. With the help of an external magnet, the formed magnetic immunocomplexes were attached to the sensing interface to activate the electrical contact between Ag-PPy nanohybrids and the base electrode, thus resulting in the switching on of the sensor circuit for the generation of voltammetric signals thanks to electroactive Ag-PPy nanohybrids. Compared to silver nanoparticles (AgNPs) alone, improved analytical properties were acquired with Ag-PPy nanohybrids. Under the optimal conditions, the currents depended on the concentrations of target CA-125, and exhibited a linear relationship within the ranges of 0.001-300 U mL-1 at a detection limit of 7.6 mU mL-1. For the determination of CA-125, the magnetic immunoassay had acceptable reproducibility, high specificity against other biomarkers and long-term storage stability. Moreover, good accuracy was obtained for the CA-125 detection in human serum samples with the developed voltammetric immunoassay relative to commercial enzyme-linked immunosorbent assay (ELISA). Importantly, the magneto-controlled immunosensing interface could be repeatedly used via detaching/attaching the external magnet.
Collapse
Affiliation(s)
- Jiyi Huang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou 350000, Fujian, China.
- The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen 361101, Fujian, China
| | - Chaoqun Huang
- The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen 361101, Fujian, China
| | - Weimin Zhong
- The Fifth Hospital of Xiamen, Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen 361101, Fujian, China
| | - Yao Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China.
| |
Collapse
|
22
|
Wang Z, Hu T, Liang R, Wei M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front Chem 2020; 8:320. [PMID: 32373593 PMCID: PMC7182656 DOI: 10.3389/fchem.2020.00320] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Zero-dimensional (0D) nanomaterials, including graphene quantum dots (GQDs), carbon quantum dots (CQDs), fullerenes, inorganic quantum dots (QDs), magnetic nanoparticles (MNPs), noble metal nanoparticles, upconversion nanoparticles (UCNPs) and polymer dots (Pdots), have attracted extensive research interest in the field of biosensing in recent years. Benefiting from the ultra-small size, quantum confinement effect, excellent physical and chemical properties and good biocompatibility, 0D nanomaterials have shown great potential in ion detection, biomolecular recognition, disease diagnosis and pathogen detection. Here we first introduce the structures and properties of different 0D nanomaterials. On this basis, recent progress and application examples of 0D nanomaterials in the field of biosensing are discussed. In the last part, we summarize the research status of 0D nanomaterials in the field of biosensing and anticipate the development prospects and future challenges in this field.
Collapse
Affiliation(s)
| | | | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
23
|
Pirzada M, Altintas Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. MICROMACHINES 2020; 11:E356. [PMID: 32235546 PMCID: PMC7231100 DOI: 10.3390/mi11040356] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022]
Abstract
In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
24
|
Muinao T, Deka Boruah HP, Pal M. Multi-biomarker panel signature as the key to diagnosis of ovarian cancer. Heliyon 2019; 5:e02826. [PMID: 31867451 PMCID: PMC6906658 DOI: 10.1016/j.heliyon.2019.e02826] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 09/03/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
Early detection of ovarian cancer has been a challenge to manage the high mortality rate caused by this deadly disease. The trends in mortality have been reduced by the scientific contributions from the corners across the globe, however accounting for the fifth leading cause of gynecological mortality. The complexities in the clinical presentation, origin of tumor, and gene expression profiles had added to much difficulty in understanding and diagnosis of the disease. Stage 1 diagnosis of ovarian cancer improves the 5-year survival rate to around 92%. Cancer antigen-125 (CA-125) is the gold standard tumor marker found at abnormally high levels in the blood of many women in ovarian cancer. However, many non-cancerous conditions exhibit high levels of CA-125 and several women have normal CA-125 level in the early stage of ovarian cancer, suggesting CA-125 biomarker is not specific enough for the screening of early stage ovarian cancer. In addition, several other biomarkers, including HE4 have been added in the diagnostic field for higher sensitivity and specificity in the diagnosis and progression of ovarian cancer. HE4 is a prospective single serum biomarker which has been approved by the FDA to monitor the disease progression in epithelial ovarian cancer. However, owing to low sensitivity and specificity, combination of a panel of biomarkers has been proposed in the diagnosis of the disease. Based on extensive biomarkers research findings, here we discuss current trends in diagnostic approaches and updated potential several panels of cancer biomarkers for early detection of ovarian cancer. It has been recently reported that CA125 in combinations with two or more biomarkers have outperformed single biomarker assays for early detection of the disease. Moreover, CA-125 with CA 19–9, EGFR, G-CSF, Eotaxin, IL-2R, cVCAM, MIF improved the sensitivity with 98.2 % and specificity of 98.7% in early stage detection of ovarian cancer. Overall, this review demonstrates a panel of biomarkers signature as the potential tool for prototype development in future and other advanced approaches for early diagnosis of ovarian cancer to avoid false-diagnosis and excessive cost.
Collapse
Affiliation(s)
- Thingreila Muinao
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Mintu Pal
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| |
Collapse
|
25
|
Pirzada M, Altintas Z. Nanomaterials for Healthcare Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5311. [PMID: 31810313 PMCID: PMC6928990 DOI: 10.3390/s19235311] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
26
|
Abstract
: Nanomaterial biosensors have revolutionized the entire scientific, technology, biomedical, materials science, and engineering fields. Among all nanomaterials, magnetic nanoparticles, microparticles, and beads are unique in offering facile conjugation of biorecognition probes for selective capturing of any desired analytes from complex real sample matrices (e.g., biofluids such as whole blood, serum, urine and saliva, tissues, food, and environmental samples). In addition, rapid separation of the particle-captured analytes by the simple use of a magnet for subsequent detection on a sensor unit makes the magnetic particle sensor approach very attractive. The easy magnetic isolation feature of target analytes is not possible with other inorganic particles, both metallic (e.g., gold) and non-metallic (e.g., silica), which require difficult centrifugation and separation steps. Magnetic particle biosensors have thus enabled ultra-low detection with ultra-high sensitivity that has traditionally been achieved only by radioactive assays and other tedious optical sources. Moreover, when traditional approaches failed to selectively detect low-concentration analytes in complex matrices (e.g., colorimetric, electrochemistry, and optical methods), magnetic particle-incorporated sensing strategies enabled sample concentration into a defined microvolume of large surface area particles for a straightforward detection. The objective of this article is to highlight the ever-growing applications of magnetic materials for the detection of analytes present in various real sample matrices. The central idea of this paper was to show the versatility and advantages of using magnetic particles for a variety of sample matrices and analyte types and the adaptability of different transducers with the magnetic particle approaches.
Collapse
|
27
|
Abstract
In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.
Collapse
|
28
|
A biosensor for determination of the circulating biomarker CA125/MUC16 by Surface Plasmon Resonance Imaging. Talanta 2019; 206:120187. [PMID: 31514860 DOI: 10.1016/j.talanta.2019.120187] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022]
Abstract
CA125/MUC16 is an ovarian tumor cell marker widely used as a biomarker in epithelial ovarian carcinoma. CA125/MUC16 is also used for evaluation of the ROMA (Risk of Ovarian Malignancy Algorithm) value. In this work, a Surface Plasmon Resonance Imaging (SPRI) biosensor for circulating CA125/MUC16 has been developed. The anti-MUC16 antibody was attached to a gold chip via a cysteamine linker. The EDS/NHS protocol was used for the covalent attachment of the antibody. The developed biosensor is specific for CA125/MUC16, and exhibits good recovery and acceptable precision. Its linear response range (2.2-150 U/ml) is well suited to determination of the marker in the blood serum of a healthy control group and, after appropriate dilution, of patients with ovarian cancer. CA125/MUC16 was determined in two series of real samples: blood serum from patients with ovarian cancer and endometrial cysts. The method was validated by parallel determination of the samples using the chemiluminescent Architect i2000 method.
Collapse
|
29
|
Razmi N, Hasanzadeh M. Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Magnetic Nanoparticles Applications for Amyloidosis Study and Detection: A Review. NANOMATERIALS 2018; 8:nano8090740. [PMID: 30231587 PMCID: PMC6164038 DOI: 10.3390/nano8090740] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/27/2022]
Abstract
Magnetic nanoparticles (MNPs) have great potential in biomedical and clinical applications because of their many unique properties. This contribution provides an overview of the MNPs mainly used in the field of amyloid diseases. The first part discusses their use in understanding the amyloid mechanisms of fibrillation, with emphasis on their ability to control aggregation of amyloidogenic proteins. The second part deals with the functionalization by various moieties of numerous MNPs’ surfaces (molecules, peptides, antibody fragments, or whole antibodies of MNPs) for the detection and the quantification of amyloid aggregates. The last part of this review focuses on the use of MNPs for magnetic-resonance-based amyloid imaging in biomedical fields, with particular attention to the application of gadolinium-based paramagnetic nanoparticles (AGuIX), which have been recently developed. Biocompatible AGuIX nanoparticles show favorable characteristics for in vivo use, such as nanometric and straightforward functionalization. Their properties have enabled their application in MRI. Here, we report that AGuIX nanoparticles grafted with the Pittsburgh compound B can actively target amyloid aggregates in the brain, beyond the blood–brain barrier, and remain the first step in observing amyloid plaques in a mouse model of Alzheimer’s disease.
Collapse
|
31
|
Pérez E, Bierla K, Grindlay G, Szpunar J, Mora J, Lobinski R. Lanthanide polymer labels for multiplexed determination of biomarkers in human serum samples by means of size exclusion chromatography-inductively coupled plasma mass spectrometry. Anal Chim Acta 2018; 1018:7-15. [DOI: 10.1016/j.aca.2018.02.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 11/27/2022]
|
32
|
Remião MH, Segatto NV, Pohlmann A, Guterres SS, Seixas FK, Collares T. The Potential of Nanotechnology in Medically Assisted Reproduction. Front Pharmacol 2018; 8:994. [PMID: 29375388 PMCID: PMC5768623 DOI: 10.3389/fphar.2017.00994] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Reproductive medicine is a field of science which searches for new alternatives not only to help couples achieve pregnancy and preserve fertility, but also to diagnose and treat diseases which can impair the normal operation of the reproductive tract. Assisted reproductive technology (ART) is a set of methodologies applied to cases related to infertility. Despite being highly practiced worldwide, ART presents some challenges, which still require special attention. Nanotechnology, as a tool for reproductive medicine, has been considered to help overcome some of those impairments. Over recent years, nanotechnology approaches applied to reproductive medicine have provided strategies to improve diagnosis and increase specificity and sensitivity. For in vitro embryo production, studies in non-human models have been used to deliver molecules to gametes and embryos. The exploration of nanotechnology for ART would bring great advances. In this way, experiments in non-human models to test the development and safety of new protocols using nanomaterials are very important for informing potential future employment in humans. This paper presents recent developments in nanotechnology regarding impairments still faced by ART: ovary stimulation, multiple pregnancy, and genetic disorders. New perspectives for further use of nanotechnology in reproductive medicine studies are also discussed.
Collapse
Affiliation(s)
- Mariana H Remião
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Natalia V Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana Pohlmann
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia S Guterres
- Post-graduation Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana K Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
33
|
Diagnostic and Prognostic Biomarkers in ovarian cancer and the potential roles of cancer stem cells – An updated review. Exp Cell Res 2018; 362:1-10. [DOI: 10.1016/j.yexcr.2017.10.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023]
|
34
|
Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Anal Chim Acta 2017; 1000:273-282. [PMID: 29289320 DOI: 10.1016/j.aca.2017.11.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
The development of a novel flexible and ultrasensitive aptasensor based on carboxylated multiwalled carbon nanotubes (MWCNTs)/ reduced graphene oxide-based field effect transistor (FET) has been reported for label-free detection of the ovarian cancer antigen (CA125). The fabricated sensor has a straightforward design based on the noncovalent attachment of MWCNTs/aptamer conjugated onto few layers reduced graphene oxide nanosheets and its integration with poly-methyl methacrylate (PMMA) as a suitable platform for designing flexible field-effect transistors. The surface properties of the aptasensor were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Under optimal conditions, the proposed aptasensor exhibited a wide linear dynamic range for CA125 (1.0 × 10-9-1.0 U/mL) with a low detection limit of 5.0 × 10-10 U/mL. The proposed aptasensor was also successfully applied to detect CA125 in real human serum samples. Furthermore, sensor flexibility is also a challenging area in chemical and biological sensors, especially for portable, wearable, or even implantable sensors, so, the reduced graphene oxide-based FET-type aptasensor showed bendable flexibility on the PMMA substrate. In addition, the aptasensor exhibited high sensitivity, selectivity, stability and reproducibility which offers great promise as a high performance and flexible FET-type aptasensor to detect CA125 and other cancer biomarkers in clinical samples and biological fluids.
Collapse
|
35
|
Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol 2017; 7:738-746. [PMID: 29075487 PMCID: PMC5649002 DOI: 10.3892/mco.2017.1399] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
In recent years, magnetic nanoparticles (MNPs) have demonstrated marked progress in the field of oncology. General nanoparticles are widely used in tumor targeting, and the intrinsic magnetic property of MNPs makes them the most promising nanomaterial to be used as contrast agents for magnetic resonance imaging (MRI) and induced magnetic hyperthermia. The properties of MNPs are fully exploited when they are used as drug delivery agents, wherein drugs may be targeted to the desired specific location in vivo by application of an external magnetic field. Early diagnosis of cancer may be achieved by MRI, therefore, individualized treatment may be combined with MRI, so as to achieve the precise definition and appropriate treatment. In the present review, research on MNPs in cancer diagnosis, drug delivery and treatment has been summarized. Furthermore, the future perspectives and challenges of MNPs in the field of oncology are also discussed.
Collapse
Affiliation(s)
- Meijia Wu
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Shengwu Huang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| |
Collapse
|
36
|
Kuo CT, Peng HS, Rong Y, Yu J, Sun W, Fujimoto B, Chiu DT. Optically Encoded Semiconducting Polymer Dots with Single-Wavelength Excitation for Barcoding and Tracking of Single Cells. Anal Chem 2017; 89:6232-6238. [PMID: 28499337 DOI: 10.1021/acs.analchem.7b01214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiplexed optical encoding is emerging as a powerful technique for high-throughput cellular analysis and molecular assays. Most of the developed optical barcodes, however, either suffer from large particle size or are incompatible with most commercial optical instruments. Here, a new type of nanoscale fluorescent barcode (Pdot barcodes) was prepared from semiconducting polymers. The Pdot barcodes possess the merits of small size (∼20 nm in diameter), narrow emission bands (full-width-at-half-maximum (fwhm) of 30-40 nm), three-color emissions (blue, green, and red) under single-wavelength excitation, a high brightness, good pH and thermal stability, and efficient cellular uptake. The Pdot barcodes were prepared using a three-color and six-intensity encoding strategy; for ratiometric readout of the barcodes, one of the colors might be used as an internal reference. We used the Pdot barcodes to label 20 sets of cancer cells and then distinguished and identified each set based on the Pdot barcodes using flow cytometry. We also monitored and tracked single cells labeled with different Pdot barcodes, even through rounds of cell division. These results suggest Pdot barcodes are strong candidates for discriminating different labeled cell and for long-term cell tracking.
Collapse
Affiliation(s)
- Chun-Ting Kuo
- Department of Chemistry and Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Hong-Shang Peng
- College of Science, Minzu University of China , Beijing 100081, China
| | - Yu Rong
- Department of Chemistry and Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Wei Sun
- Department of Chemistry and Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Bryant Fujimoto
- Department of Chemistry and Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
37
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
38
|
Hao K, He Y, Lu H, Pu S, Zhang Y, Dong H, Zhang X. High-sensitive surface plasmon resonance microRNA biosensor based on streptavidin functionalized gold nanorods-assisted signal amplification. Anal Chim Acta 2017; 954:114-120. [PMID: 28081805 DOI: 10.1016/j.aca.2016.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 01/25/2023]
Abstract
Herein, a facile and sensitive microRNA (miRNA) biosensor was designed by using interfacial biotinylated thiolated DNA molecular beacon (MB) as probe and streptavidin functionalized gold nanorods (Stre-GNRs) as tag for the enhanced surface plasmon resonance (SPR) signal. The MB probe with two terminals labeled with biotin and thiol groups, respectively, was modified on the gold film via thiol-gold interaction. Upon hybridization with the target, the biotinylated group became accessible to the Stre-GNRs. The introduction of the Stre-GNRs tag to the gold film produced strong SPR signal for detection. Our work has illustrated that the plasmonic field extension generated from the gold film to GNRs and the mass increase due to the GNRs have led to drastic sensitivity enhancement. Under optimal conditions, this proposed approach allowed detection of miRNA with the limit of detection (LOD) down to 0.045 pM. The results have shown that the MB probe functionalized sensing film, together with streptavidin-conjugated GNRs, was readily served as a plasmonic coupling partner that can be used as a powerful ultrasensitive sandwich assay for miRNA detection, and GNRs were readily served as promising amplification labels in SPR sensing technology.
Collapse
Affiliation(s)
- Kaihong Hao
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Yu He
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Huiting Lu
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Shaotao Pu
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Yingnan Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
| |
Collapse
|
39
|
Heidari Sharafdarkolaei S, Motovali-Bashi M, Gill P. Fluorescent detection of point mutation via ligase reaction assisted by quantum dots and magnetic nanoparticle-based probes. RSC Adv 2017. [DOI: 10.1039/c7ra03767h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A nanodiagnostic genotyping method was presented for point mutation detection directly in human genomic DNA based on ligase reaction coupled with quantum dots and magnetic nanoparticle-based probes.
Collapse
Affiliation(s)
| | | | - P. Gill
- Nanomedicine Group
- Immunogenetics Research Center
- Mazandaran University of Medical Sciences
- Sari
- Iran
| |
Collapse
|
40
|
Zheng Y, Liang W, Yuan Y, Xiong C, Xie S, Wang H, Chai Y, Yuan R. Wavelength-resolved simultaneous photoelectrochemical bifunctional sensor on single interface: A newly in vitro approach for multiplexed DNA monitoring in cancer cells. Biosens Bioelectron 2016; 81:423-430. [DOI: 10.1016/j.bios.2016.03.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/05/2016] [Accepted: 03/14/2016] [Indexed: 11/25/2022]
|
41
|
Chakkarapani SK, Zhang P, Ahn S, Kang SH. Total internal reflection plasmonic scattering-based fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125. Biosens Bioelectron 2016; 81:23-31. [DOI: 10.1016/j.bios.2016.01.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 12/29/2022]
|
42
|
Zhao Y, Zhang R, Zhang H, Xie X. Novel Electrochemical Immunoassay for Carcinoembryonic Antigen Using Ferrocenyl Polymer Nanospheres. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1167899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Balakrishnan SR, Hashim U, Gopinath SCB, Poopalan P, Ramayya HR, Veeradasan P, Haarindraprasad R, Ruslinda AR. Polysilicon nanogap lab-on-chip facilitates multiplex analyses with single analyte. Biosens Bioelectron 2015; 84:44-52. [PMID: 26560969 DOI: 10.1016/j.bios.2015.10.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022]
Abstract
Rationally designed biosensing system supports multiplex analyses is warranted for medical diagnosis to determine the level of analyte interaction. The chemically functionalized novel multi-electrode polysilicon nanogap (PSNG) lab-on-chip is designed in this study, facilitates multiplex analyses for a single analyte. On the fabricated 69nm PSNG, biocompatibility and structural characteristics were verified for the efficient binding of Human Chorionic Gonadotropin (hCG). With the assistance of microfluidics, hCG sample was delivered via single-injection to 3-Aminopropyl(triethoxy)silane (APTES) and Glycidoxypropyl(trimethoxy)silane (GPMS) modified PSNG electrodes and the transduced signal was used to investigate the dielectric mechanisms for multiplex analyses. The results from amperometric response and impedance measurement delivered the scale of interaction between anti-hCG antibody and hCG that exhibited 6.5 times higher sensitivity for the chemical linker, APTES than GPMS. Under optimized experimental conditions, APTES and GPMS modified immunosensor has a limit of detection as 0.56mIU/ml and 2.93mIU/ml (at S/N=3), with dissociation constants (Kd) of 5.65±2.5mIU/ml and 7.28±2.6mIU/ml, respectively. These results suggest that multiplex analysis of single target could enhance the accuracy of detection and reliable for real-time comparative analyses. The designed PSNG is simple, feasible, requires low sample consumption and could be applied for any given multiplex analyses.
Collapse
Affiliation(s)
- Sharma Rao Balakrishnan
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - U Hashim
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia; School of Microelectronic Engineering, University Malaysia Perlis (UniMAP), Kuala Perlis, Perlis, Malaysia.
| | - Subash C B Gopinath
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - P Poopalan
- School of Microelectronic Engineering, University Malaysia Perlis (UniMAP), Kuala Perlis, Perlis, Malaysia
| | - H R Ramayya
- Department of Obstetrics and Gynaecology, Hospital Tuanku Fauziah, Kangar, Perlis, Malaysia
| | - P Veeradasan
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - R Haarindraprasad
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - A R Ruslinda
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| |
Collapse
|