1
|
Lian W, Zhang X, Han Y, Li X, Liu H. A Molecularly Imprinted Electrochemical Sensor for Carbendazim Detection Based on Synergy Amplified Effect of Bioelectrocatalysis and Nanocomposites. Polymers (Basel) 2025; 17:92. [PMID: 39795500 PMCID: PMC11722815 DOI: 10.3390/polym17010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE). Then the MIP films were electropolymerized on the surface of the nanolayer using CBD as the template molecule and o-phenylenediamine (OPD) as the monomer. The detection sensitivity of CBD on the heterogeneous structure films was greatly amplified by AuNP-rGO composites and the bioelectrochemical oxidation of glucose, which was catalyzed by glucose oxidase (GOD) with the help of mediator in the underlying solution. The developed sensor showed high selectivity, good reproducibility, and excellent stability towards CBD with the linear range from 2.0 × 10-9 to 7.0 × 10-5 M, and the limit of detection (LOD) of 0.68 nM (S/N = 3). The expected system would provide a new idea for the development of simple and sensitive molecularly imprinted electrochemical sensors (MIESs).
Collapse
Affiliation(s)
- Wenjing Lian
- Department of Applied Chemistry, College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China; (X.Z.); (Y.H.); (X.L.)
| | - Xinyu Zhang
- Department of Applied Chemistry, College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China; (X.Z.); (Y.H.); (X.L.)
| | - Yongbin Han
- Department of Applied Chemistry, College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China; (X.Z.); (Y.H.); (X.L.)
| | - Xintong Li
- Department of Applied Chemistry, College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China; (X.Z.); (Y.H.); (X.L.)
| | - Hongyun Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Gashu M, Aragaw BA, Tefera M. Voltammetric Determination of Oxytetracycline in Milk and Pharmaceuticals samples using Polyurea Modified Glassy Carbon Electrode. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotics are antibacterial agents applied in human and veterinary medicine. They are also employed to stimulate the growth of food-producing animals. Despite their benefits, the uncontrolled use of antibiotics results in serious problems, and therefore their concentration levels in different foods as well as in environmental samples were regulated. As a consequence, there is an increasing demand for the development of sensitive and selective analytical tools for antibiotic reliable and rapid detection. These requirements are accomplished by the combination of simple, cost-effective and affordable electroanalytical methods with molecularly imprinted polymers (MIPs) with high recognition specificity, based on their “lock and key” working principle, used to modify the electrode surface, which is the “heart” of any electrochemical device. This review presents a comprehensive overview of MIP-modified carbon-based electrodes developed in recent years for antibiotic detection. The MIP preparation and electrode modification procedures, along with the performance characteristics of sensors and analytical methods, as well as the applications for the antibiotics’ quantification from different matrices (pharmaceutical, biological, food and environmental samples), are discussed. The information provided by this review can inspire researchers to go deeper into the field of MIP-modified sensors and to develop efficient means for reliable antibiotic determination.
Collapse
|
4
|
Ayankojo AG, Reut J, Nguyen VBC, Boroznjak R, Syritski V. Advances in Detection of Antibiotic Pollutants in Aqueous Media Using Molecular Imprinting Technique-A Review. BIOSENSORS 2022; 12:bios12070441. [PMID: 35884244 PMCID: PMC9312920 DOI: 10.3390/bios12070441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 05/08/2023]
Abstract
Antibiotics constitute one of the emerging categories of persistent organic pollutants, characterised by their expansion of resistant pathogens. Antibiotic pollutants create a major public health challenge, with already identifiable detrimental effects on human and animal health. A fundamental aspect of controlling and preventing the spread of pollutants is the continuous screening and monitoring of environmental samples. Molecular imprinting is a state-of-the-art technique for designing robust biomimetic receptors called molecularly imprinted polymers (MIPs), which mimic natural biomolecules in target-selective recognition. When integrated with an appropriate sensor transducer, MIP demonstrates a potential for the needed environmental monitoring, thus justifying the observed rise in interest in this field of research. This review examines scientific interventions within the last decade on the determination of antibiotic water pollutants using MIP receptors interfaced with label-free sensing platforms, with an expanded focus on optical, piezoelectric, and electrochemical systems. Following these, the review evaluates the analytical performance of outstanding MIP-based sensors for environmentally significant antibiotics, while highlighting the importance of computational chemistry in functional monomer selection and the strategies for signal amplification and performance improvement. Lastly, the review points out the future trends in antibiotic MIP research, as it transits from a proof of concept to the much demanded commercially available entity.
Collapse
|
5
|
Wang S, Wang C, Xin Y, Li Q, Liu W. Core-shell nanocomposite of flower-like molybdenum disulfide nanospheres and molecularly imprinted polymers for electrochemical detection of anti COVID-19 drug favipiravir in biological samples. Mikrochim Acta 2022; 189:125. [PMID: 35229221 PMCID: PMC8885316 DOI: 10.1007/s00604-022-05213-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
A novel electrochemical sensor is reported for the detection of the antiviral drug favipiravir based on the core-shell nanocomposite of flower-like molybdenum disulfide (MoS2) nanospheres and molecularly imprinted polymers (MIPs). The MoS2@MIP core-shell nanocomposite was prepared via the electrodeposition of a MIP layer on the MoS2 modified electrode, using o-phenylenediamine as the monomer and favipiravir as the template. The selective binding of target favipiravir at the MoS2@MIP core-shell nanocomposite produced a redox signal in a concentration dependent manner, which was used for the quantitative analysis. The preparation process of the MoS2@MIP core-shell nanocomposite was optimized. Under the optimal conditions, the sensor exhibited a wide linear response range of 0.01 ~ 100 nM (1.57*10-6 ~ 1.57*10-2 μg mL-1) and a low detection limit of 0.002 nM (3.14*10-7 μg mL-1). Application of the sensor was demonstrated by detecting favipiravir in a minimum amount of 10 μL biological samples (urine and plasma). Satisfied results in the recovery tests indicated a high potential of favipiravir monitoring in infectious COVID-19 samples.
Collapse
Affiliation(s)
- Shuang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Chen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuxiao Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qiuyun Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Weilu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
6
|
Yu C, Li N, Zhang R, Xie D, Li F, Cao Q. Reduced Graphene Oxide/Poly(2-Aminopyridine) Modified Molecularly Imprinted Glassy Carbon Electrode (GCE) for the Determination of Kanamycin in Milk and Pork by Differential Pulse Voltammetry (DPV). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2027431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chunya Yu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, Yunnan University, Kunming, China
| | - Na Li
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, Yunnan University, Kunming, China
| | - Ruiying Zhang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, Yunnan University, Kunming, China
| | - Dezhen Xie
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, Yunnan University, Kunming, China
| | - Fei Li
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, Yunnan University, Kunming, China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Benachio I, Lobato A, Gonçalves LM. Employing molecularly imprinted polymers in the development of electroanalytical methodologies for antibiotic determination. J Mol Recognit 2020; 34:e2878. [PMID: 33022110 DOI: 10.1002/jmr.2878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
Antibiotics, although being amazing compounds, need to be monitored in the environment and foodstuff. This is primarily to prevent the development of antibiotic resistance that may make them ineffective. Unsurprisingly, advances in analyticalsciences that can improve their determination are appreciated. Electrochemical techniques are known for their simplicity, sensitivity, portability and low-cost; however, they are often not selective enough without recurring to a discriminating element like an antibody. Molecular imprinting technology aims to create artificial tissues mimicking antibodies named molecularly imprinted polymers (MIPs), these retain the advantages of selectivity but without the typical disadvantages of biological material, like limited shelf-life and high cost. This manuscript aims to review all analytical methodologies for antibiotics, using MIPs, where the detection technique is electrochemical, like differential pulse voltammetry (DPV), square-wave voltammetry (SWV) or electrochemical impedance spectroscopy (EIS). MIPs developed by electropolymerization (e-MIPs) were applied in about 60 publications and patents found in the bibliographic search, while MIPs developed by other polymerization techniques, like temperature assisted ("bulk") or photopolymerization, were limited to around 40. Published works covered the electroanalysis of a wide range of different antibiotics (β-lactams, tetracyclines, quinolones, macrolides, aminoglycosides, among other), in a wide range of matrices (food, environmental and biological).
Collapse
Affiliation(s)
- Ingrid Benachio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alnilan Lobato
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Luís Moreira Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
8
|
Peng Y, Miao Q. Molecularly Imprinted Sensor for Ascorbic Acid Based on Gold Nanoparticles and Multiwalled Carbon Nanotubes. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666191029152332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly
present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger
of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to
its role in the biological metabolism, AA has also been utilized for the therapy of mental illness,
common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop
a simple, rapid and selective strategy for the detection of AA in various samples.
Methods:
The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the
analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes
(MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine
(oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were
optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic
voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of
the imprinted polymer film.
Results:
Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct
linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations
of AA, and the detection limit was 2 nmol L-1 (S/N=3).
Conclusion:
The proposed electrochemical sensor possesses excellent selectivity for AA, along with
good reproducibility and stability. The results obtained from the analysis of AA in real samples
demonstrated the applicability of the proposed sensor to practical analysis.
Collapse
Affiliation(s)
- Youyuan Peng
- College of Chemical Engineering and Material Sciences, Quanzhou Normal University, Quanzhou 362000, China
| | - Qingshan Miao
- College of Chemical Engineering and Material Sciences, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
9
|
Yarman A, Scheller FW. How Reliable Is the Electrochemical Readout of MIP Sensors? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2677. [PMID: 32397160 PMCID: PMC7248831 DOI: 10.3390/s20092677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Frieder W. Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Abdolhamid Hatefi-Mehrjardi, Karimi MA, Soleymanzadeh M, Barani A. Highly Sensitive Detection of Dopamine, Ascorbic and Uric Acids using Dianix Yellow/Multi-walled Carbon Nanotubes Modified Electrode. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820030132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
He Y, Hong S, Wang M, Wang J, Abd El-Aty AM, Wang J, Hacimuftuoglu A, Khan M, She Y. Development of fluorescent lateral flow test strips based on an electrospun molecularly imprinted membrane for detection of triazophos residues in tap water. NEW J CHEM 2020. [DOI: 10.1039/d0nj00269k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, a molecularly imprinted membrane chromatography strip using a combination of electrospinning, molecular imprinting, and fluorescent lateral flow test strips (LFTS) was developed for specific recognition of triazophos residues in tap water.
Collapse
Affiliation(s)
- Yahui He
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- P. R. China
| | - Sihui Hong
- Institute of Quality Standards & Testing Technology for Agro-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Miao Wang
- Institute of Quality Standards & Testing Technology for Agro-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University
- P. R. China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine
- Cairo University
- 12211-Giza
- Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University
| | - Jing Wang
- Institute of Quality Standards & Testing Technology for Agro-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University
- 25240-Erzurum
- Turkey
| | - Majid Khan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing)
- Beijing Technology & Business University
- P. R. China
| | - Yongxin She
- Institute of Quality Standards & Testing Technology for Agro-Products
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- P. R. China
| |
Collapse
|
12
|
Gao W, Li J, Li P, Huang Z, Cao Y, Liu X. Preparation of Magnetic Molecularly Imprinted Polymer (MMIP) Nanoparticles (NPs) for the Selective Extraction of Tetracycline from Milk. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1698049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wanru Gao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jiayin Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Pao Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhao Huang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanan Cao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xia Liu
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
13
|
Zhang Y, Teng Y, Qin Y, Ren Z, Wang Z. Determination of Ciprofloxacin in Fish by Surface-Enhanced Raman Scattering Using a Liquid-Liquid Self-Assembled Gold Nanofilm. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1663861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuchao Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuanjie Teng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yanping Qin
- Inspection and Testing Department, Changxing County Center for Disease Control and Prevention, Changxing, China
| | - Zeyu Ren
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhenni Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
14
|
Tarannum N, Hendrickson OD, Khatoon S, Zherdev AV, Dzantiev BB. Molecularly imprinted polymers as receptors for assays of antibiotics. Crit Rev Anal Chem 2019; 50:291-310. [DOI: 10.1080/10408347.2019.1626697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Shahjadi Khatoon
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Radi AE, Wahdan T, El-Basiony A. Electrochemical Sensors Based on Molecularly Imprinted Polymers for Pharmaceuticals Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180501100131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: The electrochemical sensing of drugs in pharmaceutical formulations and biological matrices using molecular-imprinting polymer (MIP) as a recognition element combined with different electrochemical signal transduction has been widely developed. The MIP electrochemical sensors based on nanomaterials such as graphene, carbon nanotubes, nanoparticles, as well as other electrode modifiers incorporated into the MIPs to enhance the performance of the sensor, have been discussed. The recent advances in enantioselective sensing using MIP-based electrochemical sensors have been described. </P><P> Methods: The molecular imprinting has more than six decades of history. MIPs were introduced in electrochemistry only in the 1990s by Mosbach and coworkers. This review covers recent literature published a few years ago. The future outlook for sensing, miniaturization and development of portable devices for multi-analyte detection of the target analytes was also given. </P><P> Results: The growing pharmaceutical interest in molecularly imprinted polymers is probably a direct consequence of its major advantages over other analytical techniques, namely, increased selectivity and sensitivity of the method. Due to the complexity of biological samples and the trace levels of drugs in biological samples, molecularly imprinted polymers have been used to improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. The emergence of nanomaterials opened a new horizon in designing integrated electrochemical systems. The success of obtaining a high-performance electrochemical sensor based on MIPs lies in the kind of material that builds up the detection platform. </P><P> Conclusion: The novel approaches to produce MIP materials, combined with electrochemical transduction to develop sensors for screening different pharmaceutically active compounds have been overviewed. MIPs may appear indispensable for sensing in harsh conditions, or sensing that requires longterm stability unachievable by biological receptors. The electrochemical sensors provide several benefits including low costs, shortening analysis time, simple design; portability; miniaturization, easy-touse, can be tailored using a simple procedure for particular applications. The performance of sensor can be improved by incorporating some conductive nanomaterials as AuNPs, CNTs, graphene, nanowires and magnetic nanoparticles in the polymeric matrix of MIP-based sensors. The application of new electrochemical sensing scaffolds based on novel multifunctional-MIPs is expected to be widely developed and used in the future.</P>
Collapse
Affiliation(s)
- Abd-Egawad Radi
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| | - Tarek Wahdan
- Department of Chemistry, Faculty of Science, Suez Canal University, El-Arish, Egypt
| | - Amir El-Basiony
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| |
Collapse
|
16
|
Cai X, Chen K, Wang Z, Sun W, Zhao H, Zhang H, Chen H, Lan M. Fabricating carbon-nanotubes-based porous foam for superoxide electrochemical sensing through one-step hydrothermal process induced by phytic acid. Anal Chim Acta 2018; 1038:132-139. [DOI: 10.1016/j.aca.2018.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
|
17
|
Jafari S, Dehghani M, Nasirizadeh N, Azimzadeh M. An azithromycin electrochemical sensor based on an aniline MIP film electropolymerized on a gold nano urchins/graphene oxide modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
19
|
Mostafavi M, Yaftian MR, Piri F, Shayani-Jam H. A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens Bioelectron 2018; 122:160-167. [PMID: 30265965 DOI: 10.1016/j.bios.2018.09.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 01/13/2023]
Abstract
A diclofenac (DCF)-imprinted polymer, composed of polyaniline, reduced graphene oxide (rGO) and triphenylamine, as cross linker, was synthetized. This composite was identified by using SEM and FT-IR techniques. The prepared DCF-imprinted polymer (MIP) was used for modification of carbon paste electrodes (CPEs) to fabricate a selective DCF electrochemical sensor. Electrochemical behavior of DCF on the investigated sensor and the optimization of the parameters affecting the DCF determination were screened by cyclic voltammetry (CV). The cyclic voltammogram of DCF showed an anodic peak current at about 0.5 V (vs. SCE). The calibration curve for DCF determination was obtained by applying the investigated sensor as working electrode in differential pulse voltammetry (DPV). A linear increase in the anodic peak current was observed in the range 5-80 mg L-1 of DCF. The corresponding limit of detection was calculated to be 1.1 mg L-1. The relative standard deviations of the inter- and intra-day analysis of DCF presented by the method were found to be as 2.43% and 2.47%, respectively. The selectivity of the investigated sensor was evaluated by its use for determination of DCF in the binary solutions containing DCF/glucose, DCF/urea and DCF/ascorbic acid. It was shown that the fabricated electrode can be successfully used for analysis of DCF in pharmaceutical and urine samples.
Collapse
Affiliation(s)
- Maryam Mostafavi
- Phase Equilibria Research Laboratory, Department of Chemistry, Faculty of Science, The University of Zanjan, Postal Code 45371-38791 Zanjan, Iran
| | - Mohammad Reza Yaftian
- Phase Equilibria Research Laboratory, Department of Chemistry, Faculty of Science, The University of Zanjan, Postal Code 45371-38791 Zanjan, Iran.
| | - Farideh Piri
- Phase Equilibria Research Laboratory, Department of Chemistry, Faculty of Science, The University of Zanjan, Postal Code 45371-38791 Zanjan, Iran
| | - Hassan Shayani-Jam
- Phase Equilibria Research Laboratory, Department of Chemistry, Faculty of Science, The University of Zanjan, Postal Code 45371-38791 Zanjan, Iran
| |
Collapse
|
20
|
Capoferri D, Álvarez-Diduk R, Del Carlo M, Compagnone D, Merkoçi A. Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Anal Chem 2018; 90:5850-5856. [DOI: 10.1021/acs.analchem.8b00389] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Denise Capoferri
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Michele Del Carlo
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - Dario Compagnone
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - Arben Merkoçi
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
21
|
Hong S, She Y, Cao X, Wang M, Zhang C, Zheng L, Wang S, Ma X, Shao H, Jin M, Jin F, Wang J. Biomimetic enzyme-linked immunoassay based on a molecularly imprinted 96-well plate for the determination of triazophos residues in real samples. RSC Adv 2018; 8:20549-20556. [PMID: 35542374 PMCID: PMC9080809 DOI: 10.1039/c8ra03531h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, a direct competitive biomimetic enzyme-linked immune-sorbent assay (BELISA) based on a molecularly imprinted nanomembrane as an artificial antibody was developed for the determination of triazophos in real samples. The imprinted film was directly synthesized on the well surface of a 96-well plate using a dummy molecular template under the conditions of thermal polymerization. The developed BELISA using a hapten of triazophos as an enzyme-labeled probe is much more sensitive, simple, quick, steady and inexpensive than the other instrumental and immuno assay methods. Under optimal conditions, the linear range of the method was 0.001–10 000 μg L−1 with a good regression coefficient of 0.977. The sensitivity (IC50) and the limit of detection (LOD) of BELISA were 428 μg L−1 and 0.001 μg L−1, respectively. This method was performed to detect triazophos in cabbage and apple samples, and showed excellent recovery and relative standard deviations (RSDs) ranging from 70.5 to 119.8% and from 5.2 to 19.7%, respectively. The results correlated well with those obtained using high performance liquid chromatography-tandem mass spectrometry. In this study, a direct competitive biomimetic enzyme-linked immune-sorbent assay (BELISA) based on a molecularly imprinted nanomembrane as an artificial antibody was developed for the determination of triazophos in real samples.![]()
Collapse
|
22
|
Han S, Li B, Song Z, Pan S, Zhang Z, Yao H, Zhu S, Xu G. A kanamycin sensor based on an electrosynthesized molecularly imprinted poly-o-phenylenediamine film on a single-walled carbon nanohorn modified glassy carbon electrode. Analyst 2017; 142:218-223. [PMID: 27922643 DOI: 10.1039/c6an02338j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single-walled carbon nanohorn (SWCNH) has been used to construct a molecularly imprinted electrochemical sensor for the first time. Kanamycin, a widely used aminoglycoside antibiotic, is used as a representative analyte to test the detection strategy. The kanamycin sensor was constructed by the electropolymerization of a molecularly imprinted poly-o-phenylenediamine film on a SWCNH modified glassy carbon electrode. The sensor was investigated in the presence or absence of kanamycin by cyclic voltammetry to verify the changes in the redox peak currents of K3Fe(CN)6. The sensor exhibits a linear range of 0.1-50 μM with a detection limit of 0.1 μM. It also shows high recognition ability, indicating that the SWCNH-based molecularly imprinted sensor is promising.
Collapse
Affiliation(s)
- Shuang Han
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Bingqian Li
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Ze Song
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Sihao Pan
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Zhichao Zhang
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Hui Yao
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Shuyun Zhu
- Shandong Provincial Key Laboratory of Life Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
23
|
Yan C, Zhang R, Chen Y, Wang G. Electrochemical determination of enrofloxacin based on molecularly imprinted polymer via one-step electro-copolymerization of pyrrole and o -phenylenediamine. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Capoferri D, Del Carlo M, Ntshongontshi N, Iwuoha EI, Sergi M, Di Ottavio F, Compagnone D. MIP-MEPS based sensing strategy for the selective assay of dimethoate. Application to wheat flour samples. Talanta 2017; 174:599-604. [PMID: 28738628 DOI: 10.1016/j.talanta.2017.06.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022]
Abstract
The aim of this work was to demonstrate the potentialities of the use of a molecularly imprinted (MIP) sensor coupled to a microextraction by packed sorbent (MEPS) strategy for the selective and sensitive detection of dimethoate in real samples. A dimethoate-polypyrrole MIP film was realised by cyclic voltammetry (CV) on the surface of a glassy carbon electrode (GCE). Being dimethoate electro-inactive, K3[Fe(CN)6] was used as probe for the indirect quantification of the analyte via the decrease of redox peaks observed upon binding of the target analyte. Detection of dimethoate at low nanomolar range was achieved with linearity in the 0.1-1nM range. Relative standard deviation calculated for different electrodes at 0.5nM of dimethoate was < 3% and selectivity was very satisfactory being the response for omethoate only 23% of dimethoate. A MEPS strategy for the extraction of dimethoate from a challenging matrix as wheat flour was then used in conjunction with the MIP electrochemical sensor. The procedure applied to flour samples spiked with dimethoate at 0.5 MRL, MRL, and 1.5 MRL gave very favourable comparison with a validated UHPLC-MS/MS method with deviations in the -21% /+17% range, demonstrating the feasibility of the approach as screening assay. This work clearly shows that the sequential use of a microextraction based procedure and electrochemical sensing system is low cost, easy to realise and use and can open new perspectives for the development of selective sensing system to be used in field or decentralised lab testing for the selective screening of target analytes.
Collapse
Affiliation(s)
- D Capoferri
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - M Del Carlo
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - N Ntshongontshi
- SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535, South Africa
| | - E I Iwuoha
- SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535, South Africa
| | - M Sergi
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - F Di Ottavio
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - D Compagnone
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|
25
|
|
26
|
Yan C, Liu X, Zhang R, Chen Y, Wang G. A selective strategy for determination of ascorbic acid based on molecular imprinted copolymer of o-phenylenediamine and pyrrole. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Yu X, Lian W, Zhang J, Liu H. Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes. Biosens Bioelectron 2016; 80:631-639. [DOI: 10.1016/j.bios.2016.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/21/2022]
|
28
|
Yarman A, Scheller FW. MIP-esterase/Tyrosinase Combinations for Paracetamol and Phenacetin. ELECTROANAL 2016. [DOI: 10.1002/elan.201600042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aysu Yarman
- Institute for Biochemistry and Biology; University of Potsdam; Karl-Liebknecht Strasse 24-25 14476 Potsdam Germany
- Fraunhofer IZI-BB; Am Mühlenberg 13 14476 Potsdam Germany
| | - Frieder W. Scheller
- Institute for Biochemistry and Biology; University of Potsdam; Karl-Liebknecht Strasse 24-25 14476 Potsdam Germany
- Fraunhofer IZI-BB; Am Mühlenberg 13 14476 Potsdam Germany
| |
Collapse
|