1
|
Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A. Recent advancements in the specific determination of carcinoembryonic antigens using MOF-based immunosensors. RSC Adv 2024; 14:9571-9586. [PMID: 38516167 PMCID: PMC10955552 DOI: 10.1039/d3ra07059j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Carcinoembryonic antigens (CEAs) are prominent cancer biomarkers that enable the early detection of numerous cancers. For effective CEA screening, rapid, portable, efficient, and sensitive diagnosis approaches should be devised. Metal-organic frameworks (MOFs) are porous crystalline materials that have received major attention for application in high-efficiency signal probes owing to their advantages such as large specific surface area, superior chemical stability and tunability, high porosity, easy surface functional modification, and adjustable size and morphology. Immunoassay strategies using antigen-antibody specific interaction are one of the imperative means for rapid and accurate measurement of target molecules in biochemical fields. The emerging MOFs and their nanocomposites are synthesized with excellent features, providing promising potential for immunoassays. This article outlines the recent breakthroughs in the synthesis approaches of MOFs and overall functionalization mechanisms of MOFs with antigen/antibody and their uses in the CEA immunoassays, which operate according to electrochemical, electrochemiluminescent and colorimetric techniques. The prospects and limitations of the preparation and immunoassay applications of MOF-derived hybrid nanocomposites are also discussed at the end.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Mansour Mahmoudpour
- Miandoab Schools of Medical Sciences Miandoab Iran
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
2
|
Li P, Mei L, Li H, Hong C. Dual-mode immunosensor based on Cu-doped Mo 2C nanosheets as signal labels. Bioelectrochemistry 2023; 149:108280. [PMID: 36335790 DOI: 10.1016/j.bioelechem.2022.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
A method for detecting of Carcinoembryonic antigen(CEA) with improved accuracy is urgently needed. In this work, a dual-mode immunosensor for accurate detection of CEA was fabricated, which used a Cu-doped Mo2C co-catalyst as an enhancer. Especially, Cu-doped Mo2C presents a strong different pulse voltammetry (DPV) signal for the electron transfer between Cu2+ and Cu+, without the addition of K3[Fe(CN6)] and other electron transfer mediators, but also shows high electrocatalytic activity towards H2O2 redox reactions. So that detection sensitivity of the chronoamperometry (CA) was enhanced. Furthermore, characterized by excellent conductivity, highly ordered pore distribution and great surface area, Ti3C2 Mxenes can be effective in promoting electron transfer and loading a large number of AuNPs. In the meantime, AuNPs can also immobilize CEA-Ab1 through Au-N bonds. Based on a Cu-Mo2C-Au dual-signal indicator, Ti3C2 Mxene-Au as the matrix, the immunsosensor was developed to achieve dual-signal detection of CEA. Satisfactory detection ranges (1 fg.mL-1 to 40 ng.mL-1) were obtained with limits of detection of 0.33 fg.ml-1 (DPV) and 1.67 fg.ml-1 (CA), respectively. Therefore, the prepared electrochemical immunosensor has good application prospects for the detection of CEA.
Collapse
Affiliation(s)
- Pengli Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Hongling Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
3
|
Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosens Bioelectron 2021; 178:113021. [DOI: 10.1016/j.bios.2021.113021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
|
4
|
Features of adsorption human Ig on the surface of magnetically sensitive nanocomposites. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Jiang L, Li Y, Xu Z, Li X, Li Y, Liu Q, Wang P, Dong Y. Simultaneous electrochemical determination of two hepatitis B antigens using graphene-SnO 2 hybridized with sea urchin-like bimetallic nanoparticles. Mikrochim Acta 2021; 188:109. [PMID: 33660023 DOI: 10.1007/s00604-021-04763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
The hepatitis B virus (HBV) can cause chronic hepatitis and hepatocellular carcinoma. Hepatitis B surface antigen (HBs-Ag) and Hepatitis B e-antigen (HBe-Ag) are key markers for the diagnosis of HBV. In this study, electrodeposited gold was used as a sensing platform. Three-dimensional (3D) SnO2-loaded graphene sheets functionalized by Thionine (Thi) and ferrocene (Fc) and hybridized by sea urchin-like bimetallic nanoparticles (GS-SnO2-BMNPs) were used as redox probes for labeling antibodies to fabricate sandwich-type immunosensors for the simultaneous determination of HBs-Ag and HBe-Ag. The bimetallic nanoparticles, gold hybrid platinum nanoparticles (Au@Pt) and L-cysteine-connected gold-silver nanoparticles (Ag-cys-Au), have large electroactive surface areas. They were prepared by an efficient and economical method. Additionally, the sea urchin morphology accelerates spatial utilization, thus increasing the number of combination sites. Therefore, the immune probe can load a mass of signal source molecules (Thi and Fc). Furthermore, GS-SnO2-BMNPs (GS-SnO2-Au@Pt and GS-SnO2-Ag-cys-Au) with excellent electrical conductivity and bimetallic synergy can enhance the square wave voltammetry (SWV) signal. SWV was used to record the electrochemical signal by scanning the potential from - 0.6 to 0.6 V (vs. SCE). The signal peaks resulted from the reduction reaction of Thi and Fc, and two signal peaks were completely separate. The peak position and current intensity reflect the identity and level of the corresponding antigens. Therefore, the simultaneous detection of two viral biomarkers was achieved by the proposed immunosensor. The fabricated immunosensor showed a linear concentration range for HBs-Ag (0.01-100 ng·mL-1) and HBe-Ag (0.01-100 ng·mL-1), with detection limits for HBs-Ag and HBe-Ag of 4.67 pg·mL-1 and 4.68 pg·mL-1, respectively. The RSD of HBs-Ag ranged between 2.0 and 4.4%and the recovery was in the range 98.7 to 99.4%. For HBe-Ag the RSD was between 2.6 and 3.3% andrecoveries in the range 99.2 to 100.5% were obtained.
Collapse
Affiliation(s)
- Liping Jiang
- School of Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China.,College of Engineering, Yantai Nanshan University, Yantai, Shandong, 265700, People's Republic of China
| | - Yueyuan Li
- School of Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Zhen Xu
- School of Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Xinjin Li
- School of Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yueyun Li
- School of Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China.
| | - Qing Liu
- School of Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Ping Wang
- School of Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Yunhui Dong
- School of Chemical Engineering, Shandong University of Technology, Zibo, 255049, People's Republic of China
| |
Collapse
|
6
|
Miao J, Du K, Li X, Xu X, Dong X, Fang J, Cao W, Wei Q. Ratiometric electrochemical immunosensor for the detection of procalcitonin based on the ratios of SiO2-Fc–COOH–Au and UiO-66-TB complexes. Biosens Bioelectron 2021; 171:112713. [DOI: 10.1016/j.bios.2020.112713] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
|
7
|
Liu J, Shang Y, Xu J, Chen Y, Jia Y, Zheng J. A novel electrochemical immunosensor for carcinoembryonic antigen based on Cu-MOFs-TB/polydopamine nanocarrier. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Spivakov A, Lin CR, Chang YC, Wang CC, Sarychev D. Magnetic and Magneto-Optical Oroperties of Iron Oxides Nanoparticles Synthesized under Atmospheric Pressure. NANOMATERIALS 2020; 10:nano10091888. [PMID: 32967130 PMCID: PMC7559331 DOI: 10.3390/nano10091888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023]
Abstract
Magnetite nanoparticles were synthesized by a simple thermal decomposition process, involving only iron (III) nitrate nonahydrate as a precursor, and hexadecylamine as a solvent and stabilizer at reaction temperatures varied from 200 to 380 °C. The results of the structural analysis showed that the average crystallite size depends on the reaction temperature and increases from 4.8 to 13.3 nm. The behavior of the coercivity indicates that all synthesized samples are single domain; herewith, it was found that the critical size corresponding to the transition to the superparamagnetic state at room temperature is about 9 nm. The effect of the reaction temperature on changes in the saturation magnetization was studied. It was found that the size effect in the MCD spectra is observed for the IVCT transition and one ISCT transition, and the influence of the reaction temperature on the change in the MCD spectra was discussed.
Collapse
Affiliation(s)
- Aleksandr Spivakov
- Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan; (A.S.); (Y.-C.C.)
- Research Institute of Physics, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chun-Rong Lin
- Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan; (A.S.); (Y.-C.C.)
- Correspondence: (C.-R.L.); (D.S.)
| | - Yu-Chuan Chang
- Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan; (A.S.); (Y.-C.C.)
| | - Cheng-Chien Wang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan city 710, Taiwan;
| | - Dmitriy Sarychev
- Research Institute of Physics, Southern Federal University, Rostov-on-Don 344090, Russia
- Correspondence: (C.-R.L.); (D.S.)
| |
Collapse
|
9
|
Ma E, Wang P, Yang Q, Yu H, Pei F, Zheng Y, Liu Q, Dong Y, Li Y. Electrochemical Immunosensors for Sensitive Detection of Neuron-Specific Enolase Based on Small-Size Trimetallic Au@Pd^Pt Nanocubes Functionalized on Ultrathin MnO2 Nanosheets as Signal Labels. ACS Biomater Sci Eng 2020; 6:1418-1427. [DOI: 10.1021/acsbiomaterials.9b01882] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Enhui Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Qingshan Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Haoxuan Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Yuting Zheng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| |
Collapse
|
10
|
Wang Y, Zhao G, Wang H, Zhang Y, Zhang N, Wei D, Feng R, Wei Q. Label-free electrochemical immunosensor based on biocompatible nanoporous Fe3O4and biotin–streptavidin system for sensitive detection of zearalenone. Analyst 2020; 145:1368-1375. [DOI: 10.1039/c9an02543j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, a sensitive label-free electrochemical immunosensor was designed based on nanoporous Fe3O4and a biotin–streptavidin system to specifically detect zearalenone (ZEN).
Collapse
Affiliation(s)
- Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Guanhui Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Yong Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Dong Wei
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Rui Feng
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| |
Collapse
|
11
|
Miao J, Li X, Li Y, Dong X, Zhao G, Fang J, Wei Q, Cao W. Dual-signal sandwich electrochemical immunosensor for amyloid β-protein detection based on Cu–Al2O3-g–C3N4–Pd and UiO-66@PANI-MB. Anal Chim Acta 2019; 1089:48-55. [DOI: 10.1016/j.aca.2019.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023]
|
12
|
Nanomaterials-based Electrochemical Immunosensors. MICROMACHINES 2019; 10:mi10060397. [PMID: 31207970 PMCID: PMC6630602 DOI: 10.3390/mi10060397] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
With the development of nanomaterials and sensor technology, nanomaterials-based electrochemical immunosensors have been widely employed in various fields. Nanomaterials for electrode modification are emerging one after another in order to improve the performance of electrochemical immunosensors. When compared with traditional detection methods, electrochemical immunosensors have the advantages of simplicity, real-time analysis, high sensitivity, miniaturization, rapid detection time, and low cost. Here, we summarize recent developments in electrochemical immunosensors based on nanomaterials, including carbon nanomaterials, metal nanomaterials, and quantum dots. Additionally, we discuss research challenges and future prospects for this field of study.
Collapse
|
13
|
Pastucha M, Farka Z, Lacina K, Mikušová Z, Skládal P. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Mikrochim Acta 2019; 186:312. [PMID: 31037494 DOI: 10.1007/s00604-019-3410-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
This review (with 129 refs) summarizes the progress in electrochemical immunoassays combined with magnetic particles that was made in the past 5 years. The specifity of antibodies linked to electrochemical transduction (by amperometry, voltammetry, impedimetry or electrochemiluminescence) gains further attractive features by introducing magnetic nanoparticles (MNPs). This enables fairly easy preconcentration of analytes, minimizes matrix effects, and introduces an appropriate label. Following an introduction into the fundamentals of electrochemical immunoassays and on nanomaterials for respective uses, a large chapter addresses method for magnetic capture and preconcentration of analytes. A next chapter discusses commonly used labels such as dots, enzymes, metal and metal oxide nanoparticles and combined clusters. The large field of hybrid nanomaterials for use in such immunoassays is discussed next, with a focus on MNPs composites with various kinds of graphene variants, polydopamine, noble metal nanoparticles or nanotubes. Typical applications address clinical markers (mainly blood and urine parameters), diagnosis of cancer (markers and cells), detection of pathogens (with subsections on viruses and bacteria), and environmental and food contaminants as toxic agents and pesticides. A concluding section summarizes the present status, current challenges, and highlights future trends. Graphical abstract Magnetic nanoparticles (MNP) with antibodies (Ab) capture and preconcentrate analyte from sample (a) and afterwards become magnetically (b) or immunospecifically (c) bound at an electrode. Signal either increases due to the presence of alabel (b) or decreases as the redox probe is blocked (c).
Collapse
Affiliation(s)
- Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Karel Lacina
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zuzana Mikušová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
14
|
Magnetic electrode-based electrochemical immunosensor using amorphous bimetallic sulfides of CoSnSx as signal amplifier for the NT pro BNP detection. Biosens Bioelectron 2019; 131:250-256. [DOI: 10.1016/j.bios.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/24/2022]
|
15
|
Amperometric sandwich immunoassay for determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbon. Mikrochim Acta 2019; 186:262. [PMID: 30929076 DOI: 10.1007/s00604-019-3359-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 02/01/2023]
Abstract
An ultrasensitive sandwich-type electrochemical immunosensor was developed for the amperometric determination of serum myeloperoxidase (MPO). The method is making use of (a) gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC); and (b) horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2) immobilized on AuNP@GMC. MPO capture antibody (Ab1) was immobilized on the electrode modified with an AuNP-graphene oxide nanocomposite. The sandwich immunoreaction leads to the formation of the complex composed of Ab1, MPO, and HRP@Ab2. An amplified electrochemical signal is produced by electrocatalytic reduction of H2O2 (at a typical voltage of -0.18 V vs. Ag/AgCl) in the presence of enzymatically oxidized thionine. The peak current of thionine was measured using differential pulse voltammetry. Under optimized steady-state conditions, the reduction peak increases in the 1 to 300 pg.mL-1 MPO concentration range, and the detection limit is 0.1 pg.mL-1 (at S/N = 3). Graphical abstract Schematic presentation of AuNP-GO based sandwich-type electrochemical immunoassay for the determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC) as a carrier for horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2).
Collapse
|
16
|
Li J, He J, Zhang C, Chen J, Mao W, Yu C. Dual-type responsive electrochemical biosensor for the detection of α2,6-sialylated glycans based on AuNRs-SA coupled with c-SWCNHs/S-PtNC nanocomposites signal amplification. Biosens Bioelectron 2019; 130:166-173. [PMID: 30735949 DOI: 10.1016/j.bios.2019.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023]
Abstract
In this study, a dual-type responsive electrochemical biosensor was developed for the quantitative detection of α2,6-sialylated glycans (α2,6-sial-Gs), a potential biomarker of tumors. The gold nanorods (AuNRs), which exhibited great specific surface area, as well as good biocompatibility, was synthesized by the way of seed growth method. Furthermore, a biotin-streptavidin (biotin-SA) system was introduced to improve the immunoreaction efficiency. Accordingly, a label-free biosensor was fabricated based on AuNRs-SA for the quick detection of α2,6-sial-Gs by recording the signal of differential pulse voltammetry (DPV). Furthermore, to expand the ultrasensitive detection of α2,6-sial-Gs, a carboxylated single-walled carbon nanohorns/sulfur-doped platinum nanocluster (c-SWCNHs/S-PtNC) was synthesized for the first time as a novel signal label, which showed an excellent catalytic performance. The usage of c-SWCNHs/S-PtNC could significantly amplify the electrochemical signal recorded by the amperometric i-t curve. Herein, a sandwich type biosensor was constructed by combining the AuNRs-SA on the electrode and c-SWCNHs/S-PtNC (signal amplifier). The label-free biosensor possessed a linear range from 5 ng mL-1 to 5 μg mL-1 with a detection limit of 0.50 ng mL-1, and the sandwich-type biosensor possessed a wide linear range from 1 fg mL-1 to 100 ng mL-1 with a detection limit of 0.69 fg mL-1. Furthermore, the biosensor exhibited excellent recovery and stability, indicating its potential for use in actual samples.
Collapse
Affiliation(s)
- Jia Li
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Chengli Zhang
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Jun Chen
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Weiran Mao
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Yu
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
17
|
Li X, Liu L, Dong X, Zhao G, Li Y, Miao J, Fang J, Cui M, Wei Q, Cao W. Dual mode competitive electrochemical immunoassay for B-type natriuretic peptide based on GS/SnO2/polyaniline-Au and ZnCo2O4/N-CNTs. Biosens Bioelectron 2019; 126:448-454. [DOI: 10.1016/j.bios.2018.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/04/2018] [Accepted: 11/07/2018] [Indexed: 01/27/2023]
|
18
|
Gao F, Zhou F, Chen S, Yao Y, Wu J, Yin D, Geng D, Wang P. Proximity hybridization triggered rolling-circle amplification for sensitive electrochemical homogeneous immunoassay. Analyst 2018; 142:4308-4316. [PMID: 29053159 DOI: 10.1039/c7an01434a] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new homogeneous electrochemical immunoassay strategy was developed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on target-induced proximity hybridization coupled with rolling circle amplification (RCA). The immobilization-free detection of CEA was realized by the use of an uncharged peptide nucleic acid (PNA) probe labeled with ferrocene (Fc) as the electroactive indicator on a negatively charged indium tin oxide (ITO) electrode. In the presence of a target protein and two DNA-labeled antibodies, the proximate complex formed in homogeneous solution could unfold the molecular beacon, and a part of the unfolded molecular beacon as a primer hybridized with the RCA template to initiate the RCA process. Subsequently, the detection probe modified Fc (Fc-PNAs) hybridized with the long amplified DNA products. The consumption of freely diffusible Fc-PNAs (neutrally charged) resulted in a significant reduction of the Fc signal due to the fact that long amplified DNA/Fc-PNA products were electrostatically repelled from the ITO electrode surface. The reduction of the electrochemical signal (signal-off) could indirectly provide the CEA concentration. Under the optimal conditions, CEA detection was implemented in a wide range from 1 pg mL-1 to 10 ng mL-1, with a low detection limit of 0.49 pg mL-1. The proposed strategy exhibited advantages of good selectivity, high sensitivity, acceptable accuracy, and favorable versatility of analytes. Moreover, the practical application value of the system was confirmed by the assay of CEA in human serums with satisfactory results.
Collapse
Affiliation(s)
- Fenglei Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tran DT, Hoa VH, Tuan LH, Kim NH, Lee JH. Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosens Bioelectron 2018; 119:134-140. [DOI: 10.1016/j.bios.2018.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
|
20
|
Electrochemical immunosensor for ochratoxin A detection based on Au octahedron plasmonic colloidosomes. Anal Chim Acta 2018; 1032:114-121. [DOI: 10.1016/j.aca.2018.05.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 11/20/2022]
|
21
|
Xu W, Qin Z, Hao Y, He Q, Chen S, Zhang Z, Peng D, Wen H, Chen J, Qiu J, Li C. A signal-decreased electrochemical immunosensor for the sensitive detection of LAG-3 protein based on a hollow nanobox-MOFs/AuPt alloy. Biosens Bioelectron 2018; 113:148-156. [PMID: 29772383 DOI: 10.1016/j.bios.2018.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
In this work, hollow nanobox metal-organic framework (HNM) nanocomposites were synthesised and utilised for the first time in a signal decreased electrochemical immunosensor for the ultrasensitive quantitative determination of lymphocyte activation gene-3 (LAG-3) protein, which is a newly discovered biomarker. With the aid of signal materials, namely, SiO2-tagged anti-LAG-3 antibody (SiO2-Ab2) and the biotin-streptavidin system, the sensor can achieve signal amplification. Encapsulation of tin dioxide-functionalised reduced graphene oxide (rGO-SnO2) and gold and platinum alloys (AuPt alloys) onto the surface of hollow nanobox metal-organic frameworks (MOFs) was performed to prepare rGO-SnO2/hollow nanobox-MOFs/AuPt alloys (rGO-SnO2/HNMs/AuPt) as the matrix. SiO2-Ab2, which is used as the signal-decreased label, can be utilised to enhance the distinction of the electrochemical signal after the specific recognition between antibodies and antigens, owing to its large steric hindrance property. In this sensor, this proposed sandwich immunosensor can achieve a high sensitivity, especially in the presence of low concentrations of the LAG-3 protein. Under optimal conditions, this sandwich-designed immunosensor exhibited a sensitive detection of the LAG-3 protein from concentrations of 0.01 ng mL-1 to 1 μg mL-1, with a lower detection limit of 1.1 pg mL-1 (based on 3σ). We proposed that this ultrasensitive biosensor can be utilised for the detection of the LAG-3 protein in early clinical tumour diagnosis.
Collapse
Affiliation(s)
- Wei Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Zhen Qin
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Yutong Hao
- Chongqing International Travel Health Care Center, Chongqing 401120, China
| | - Qiang He
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Shuai Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Zhongshuang Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Dan Peng
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Haiyan Wen
- Chongqing International Travel Health Care Center, Chongqing 401120, China
| | - Jun Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| | - Chaorui Li
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
22
|
A voltammetric immunoassay for the carcinoembryonic antigen using a self-assembled magnetic nanocomposite. Mikrochim Acta 2018; 185:387. [DOI: 10.1007/s00604-018-2919-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/14/2018] [Indexed: 10/28/2022]
|
23
|
Zhang D, Li W, Ma Z. Improved sandwich-format electrochemical immunosensor based on “smart” SiO2@polydopamine nanocarrier. Biosens Bioelectron 2018; 109:171-176. [DOI: 10.1016/j.bios.2018.03.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 11/30/2022]
|
24
|
Chen Y, Li Y, Deng D, He H, Yan X, Wang Z, Fan C, Luo L. Effective immobilization of Au nanoparticles on TiO2 loaded graphene for a novel sandwich-type immunosensor. Biosens Bioelectron 2018; 102:301-306. [DOI: 10.1016/j.bios.2017.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
|
25
|
Mallakpour S, Nazari HY. The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique. ULTRASONICS SONOCHEMISTRY 2018; 41:1-10. [PMID: 29137730 DOI: 10.1016/j.ultsonch.2017.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
In this study, for the first time polymeric nanocomposite (NC) films of poly(vinyl alcohol)/SiO2@bovine serum albumin (PVA/SiO2@BSA) were synthesized by solution casting method under facile and fast method of sonication. In this regard, SiO2 nanoparticles (NPs) were modified by BSA, at room temperature by using phosphate buffer and ultrasonic-assisted method. Then, PVA/SiO2@BSA NCs were prepared by insertion of variant amount (3, 6 and 9wt%) of SiO2@BSA into the PVA matrix, under ultrasonic irradiation. The morphological traits of the NCs were surveyed by Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction and field emission scanning electron microscopy. It was detected that NPs incorporation didn't remarkably affect the crystallinity and morphology of the NCs. TEM images indicated that the inserted NPs have good diffusions in the PVA matrix, and their embedment in the matrix significantly upgraded its thermal, optical and mechanical behaviors. The tensile strength showed more than 2-fold increase and the thermal stability exhibited about 37% enhancement that was higher, in comparison with those of the similar NCs. This showed that the prepared NCs can have potential application in food packaging.∗∗∗.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Hossein Yazdan Nazari
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
26
|
Mosiniewicz-Szablewska E, Clavijo AR, Castilho APOR, Paterno LG, Pereira-da-Silva MA, Więckowski J, Soler MAG, Morais PC. Magnetic studies of layer-by-layer assembled polyvinyl alcohol/iron oxide nanofilms. Phys Chem Chem Phys 2018; 20:26696-26709. [DOI: 10.1039/c8cp05404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of the substrate surface effects on the magnetic behavior of layer-by-layer assembled polyvinyl alcohol/iron oxide nanofilms is evidenced.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria A. G. Soler
- Universidade de Brasília
- Instituto de Física
- Brasília DF 70910-900
- Brazil
| | - Paulo C. Morais
- Universidade de Brasília
- Instituto de Física
- Brasília DF 70910-900
- Brazil
- Universidade Católica de Brasília
| |
Collapse
|
27
|
Movlaee K, Ganjali MR, Norouzi P, Neri G. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E406. [PMID: 29168771 PMCID: PMC5746896 DOI: 10.3390/nano7120406] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/03/2023]
Abstract
Iron oxide nanostructures (IONs) in combination with graphene or its derivatives-e.g., graphene oxide and reduced graphene oxide-hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances.
Collapse
Affiliation(s)
- Kaveh Movlaee
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
- Department of Engineering, University of Messina, I-98166 Messina, Italy.
| | - Mohmmad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Giovanni Neri
- Department of Engineering, University of Messina, I-98166 Messina, Italy.
| |
Collapse
|
28
|
Li F, Li Y, Feng J, Gao Z, Lv H, Ren X, Wei Q. Facile synthesis of MoS 2@Cu 2O-Pt nanohybrid as enzyme-mimetic label for the detection of the Hepatitis B surface antigen. Biosens Bioelectron 2017; 100:512-518. [PMID: 28982091 DOI: 10.1016/j.bios.2017.09.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 12/17/2022]
Abstract
An ultrasensitive sandwich-type electrochemical immunosensor was proposed for quantitative detection of hepatitis B surface antigen, which is a representative biomarker of the Hepatitis B virus. First, the porous graphene oxide/Au composites with good conductive ability were employed to accelerate the electron transfer on the electrode interface. Furthermore, the amino functionalized molybdenum disulfide @ cuprous oxide hybrid with coral morphology was prepared to combine platinum nanoparticles for achieving signal amplification strategy. The resulting nanocomposites (molybdenum disulfide @ cuprous oxide - platinum) demonstrated uniform coral morphology, which effectively improved the specific surface area available for loading the secondary antibody and the number of catalytically active sites, even also increased the electrical conductivity. Based on these advantages, this composite system yielded a superior electrocatalytic current response toward the reduction of hydrogen peroxide. In addition, porous graphene oxide/Au composites were used to modify the glassy carbon electrode, thereby presenting a large surface area and becoming biocompatible, for improving the loading capacity of the primary antibody. Under optimal conditions, we obtained a linear relationship between current signal and hepatitis B surface antigen concentration in the broad range from 0.5pg/mL to 200ng/mL, with a detection limit of 0.15pg/mL (signal-to-noise ratio of 3). These values are promising towards clinical applications.
Collapse
Affiliation(s)
- Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yueyun Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Jinhui Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zengqiang Gao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Hui Lv
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
29
|
Kim JW, Heu W, Jeong S, Kim HS. Genetically functionalized ferritin nanoparticles with a high-affinity protein binder for immunoassay and imaging. Anal Chim Acta 2017; 988:81-88. [PMID: 28916107 DOI: 10.1016/j.aca.2017.07.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
Abstract
Molecular detection of target molecules with high sensitivity and specificity is of great significance in bio and medical sciences. Here, we present genetically functionalized ferritin nanoparticles with a high-affinity protein binder, and their utility as a signal generator in a variety of immunoassays and imaging. As a high-affinity protein binder, human IgG-specific repebody, which is composed of LRR (Leucine-rich repeat) modules, was used. The repebody was genetically fused to the N-terminal heavy-chain ferritin, and the resulting subunits were self-assembled to the repebody-ferritin nanoparticles composed of 24 subunits. The repebody-ferritin nanoparticles were shown to have a three-order of magnitude higher binding affinity toward human IgG than free repebody mainly owing to a decreased dissociation rate constant. The repebody-ferritin nanoparticles were conjugated with fluorescent dyes, and the resulting nanoparticles were used for western blotting, cell imaging, and flow cytometric analysis. The dye-labeled repebody-ferritin nanoparticles were shown to generate about 3-fold stronger fluorescent signals in immunoassays than monovalent repebody. The repebody-functionalized ferritin nanoparticles can be effectively used for sensitive and specific immunoassays and imaging in many areas.
Collapse
Affiliation(s)
- Jong-Won Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Woosung Heu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Sukyo Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea.
| |
Collapse
|
30
|
Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on Au-CoS/graphene and CeO2/ionic liquids doped with carboxymethyl chitosan complex. Biosens Bioelectron 2017; 94:141-147. [DOI: 10.1016/j.bios.2017.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
|
31
|
Liu X, Huo X, Liu P, Tang Y, Xu J, Ju H. TiO 2 nanowire arrays modified with a simultaneous “etching, doping and deposition” technique for ultrasensitive amperometric immunosensing. Biosens Bioelectron 2017; 92:171-178. [DOI: 10.1016/j.bios.2017.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 01/06/2023]
|
32
|
Sandwich-type amperometric immunosensor using functionalized magnetic graphene loaded gold and silver core-shell nanocomposites for the detection of Carcinoembryonic antigen. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
|
34
|
Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy. Biosens Bioelectron 2017; 87:630-637. [DOI: 10.1016/j.bios.2016.09.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022]
|
35
|
A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 2016; 85:343-350. [DOI: 10.1016/j.bios.2016.04.100] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
|
36
|
Tang Z, Ma Z. Ratiometric ultrasensitive electrochemical immunosensor based on redox substrate and immunoprobe. Sci Rep 2016; 6:35440. [PMID: 27739493 PMCID: PMC5064308 DOI: 10.1038/srep35440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
In this work, we presented a ratiometric electrochemical immunosensor based on redox substrate and immunoprobe. Carboxymethyl cellulose-Au-Pb2+ (CMC-Au-Pb2+) and carbon-Au-Cu2+ (C-Au-Cu2+) nanocomposites were firstly synthesized and implemented as redox substrate and immunoprobe with strong current signals at -0.45 V and 0.15 V, respectively. Human immunoglobulin G (IgG) was used as a model analyte to examine the analytical performance of the proposed method. The current signals of CMC-Au-Pb2+ (Isubstrate) and C-Au-Cu2+ (Iprobe) were monitored. The effect of redox substrate and immunoprobe behaved as a better linear relationship between Iprobe/Isubstrate and Lg CIgG (ng mL-1). By measuring the signal ratio Iprobe/Isubstrate, the sandwich immunosensor for IgG exhibited a wide linear range from 1 fg mL-1 to 100 ng mL-1, which was two orders of magnitude higher than other previous works. The limit of detection reached 0.26 fg mL-1. Furthermore, for human serum samples, the results from this method were consistent with those of the enzyme linked immunosorbent assay (ELISA), demonstrating that the proposed immunoassay was of great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Zhongxue Tang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
37
|
Ultrasensitive sandwich-type electrochemical immunosensor based on trimetallic nanocomposite signal amplification strategy for the ultrasensitive detection of CEA. Sci Rep 2016; 6:30849. [PMID: 27488806 PMCID: PMC4973229 DOI: 10.1038/srep30849] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022] Open
Abstract
A novel and ultrasensitive sandwich-type electrochemical immunosensor was designed for the quantitative detection of carcino-embryonic antigen (CEA). This immunosensor was developed by using the trimetallic NiAuPt nanoparticles on graphene nanosheets (NGs) nanosheets (NiAuPt-NGs) as excellent labels and β-cyclodextrin functionalized reduced graphene oxide nanosheets (CD-NGs) as the platform. The CD-NGs with high specific surface area good biocompatibility and the ideal dispersibility was used to capture the primary antibodies (Ab1) efficiently. The trimetallic NiAuPt-NGs nanocomposites were used as the labels for signal amplification, showing better electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2), which is much better than that the monometallic Pt-NGs, bimetallic NiPt-NGs and AuPt-NGs due to the synergetic effect presented in NiAuPt-NGs. The NiAuPt-NGs nanocomposites consist of tightly coupled nanostructures of Au, Ni and Pt, which have neither an alloy nor a core-shell structure. Under the optimal conditions, a linear range from 0.001-100 ng/mL and a low detection limit of 0.27 pg/mL were obtained for CEA. The proposed electrochemical sandwich-type immunosensor may have a promising application in bioassay and it enriches the electrochemical immunoassays.
Collapse
|
38
|
Huo X, Liu X, Liu J, Sukumaran P, Alwarappan S, Wong DKY. Strategic Applications of Nanomaterials as Sensing Platforms and Signal Amplification Markers at Electrochemical Immunosensors. ELECTROANAL 2016. [DOI: 10.1002/elan.201600166] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaohe Huo
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering; Henan University; Kaifeng, Henan Province 475004 P. R. China
| | - Xiaoqiang Liu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering; Henan University; Kaifeng, Henan Province 475004 P. R. China
| | - Jin Liu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering; Henan University; Kaifeng, Henan Province 475004 P. R. China
| | - Preethi Sukumaran
- Bio-electrochemistry Group; CSIR-Central Electrochemical Research Institute; Karaikudi 630006, Tamilnadu India
| | - Subbiah Alwarappan
- Bio-electrochemistry Group; CSIR-Central Electrochemical Research Institute; Karaikudi 630006, Tamilnadu India
| | - Danny K. Y. Wong
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney NSW 2109 Australia
| |
Collapse
|
39
|
Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C. Electrochemical biosensors for fast detection of food contaminants – trends and perspective. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Sandwich-type electrochemical immunosensor for the detection of AFP based on Pd octahedral and APTES-M-CeO2-GS as signal labels. Biosens Bioelectron 2016; 79:482-7. [DOI: 10.1016/j.bios.2015.12.082] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022]
|
41
|
Yang J, Shen H, Zhang X, Tao Y, Xiang H, Xie G. A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres. Biosens Bioelectron 2016; 77:1119-25. [DOI: 10.1016/j.bios.2015.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023]
|
42
|
Zhang S, Huang N, Lu Q, Liu M, Li H, Zhang Y, Yao S. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate. Biosens Bioelectron 2016; 77:1078-85. [DOI: 10.1016/j.bios.2015.10.089] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022]
|
43
|
An ultrasensitive label-free electrochemical immunosensor based on signal amplification strategy of multifunctional magnetic graphene loaded with cadmium ions. Sci Rep 2016; 6:21281. [PMID: 26880596 PMCID: PMC4754691 DOI: 10.1038/srep21281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/20/2016] [Indexed: 11/10/2022] Open
Abstract
Herein, a novel and ultrasensitive label-free electrochemical immunosensor was proposed for quantitative detection of human Immunoglobulin G (IgG). The amino functionalized magnetic graphenes nanocomposites (NH2-GS-Fe3O4) were prepared to bond gold and silver core-shell nanoparticles (Au@Ag NPs) by constructing stable Au-N and Ag-N bond between Au@Ag NPs and -NH2. Subsequently, the Au@Ag/GS-Fe3O4 was applied to absorb cadmium ion (Cd2+) due to the large surface area, high conductivity and exceptional adsorption capability. The functional nanocomposites of gold and silver core-shell magnetic graphene loaded with cadmium ion (Au@Ag/GS-Fe3O4/Cd2+) can not only increase the electrocatalytic activity towards hydrogen peroxide (H2O2) but also improve the effective immobilization of antibodies because of synergistic effect presented in Au@Ag/GS-Fe3O4/Cd2+, which greatly extended the scope of detection. Under the optimal conditions, the proposed immunosensor was used for the detection of IgG with good linear relation in the range from 5 fg/mL to 50 ng/mL with a low detection limit of 2 fg/mL (S/N = 3). Furthermore, the proposed immunosensor showed high sensitivity, special selectivity and long-term stability, which had promising application in bioassay analysis.
Collapse
|
44
|
Zhang X, Ding SN. General Strategy to Fabricate Electrochemiluminescence Sandwich-Type Nanoimmunosensors Using CdTe@ZnS Quantum Dots as Luminescent Labels and Fe3O4@SiO2 Nanoparticles as Magnetic Separable Scaffolds. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xin Zhang
- School of Chemistry and Chemical
Engineering, Southeast University, Nanjing 211189, China
| | - Shou-Nian Ding
- School of Chemistry and Chemical
Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
45
|
Mu Z, Jiao L, Wei Q, Li H. Ternary Pt@Pd@Ru nanodendrite-decorated graphene oxide for sensitive electrochemical immunoassy of CEA. RSC Adv 2016. [DOI: 10.1039/c6ra07328j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nobel metal nanoparticles have attracted intense attentions in biological immunoassay due to the inhereted good catalytic activity.
Collapse
Affiliation(s)
- Zonggang Mu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Lei Jiao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - He Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|