1
|
Yu M, Li P, Li J, Chen X, Hu Z, Wang Y, Zeng J, Han F, Gong X, Li B, Xing X. Unusual Antibacterial Property and Selectivity Enabled by Tuning Nanozyme Activities of L-Arginine Derived Carbon Dots. Adv Healthc Mater 2025; 14:e2403201. [PMID: 39539008 DOI: 10.1002/adhm.202403201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Functional integration of antimicrobial activity and cell proliferation promotion at low concentrations is important for the clinical application of carbon dots (CDs). In this study, the precursor, L-arginine, and dopant, copper salt, are used to prepare copper-doped CDs (Cu-CDs). Owing to their excellent synergistic enzyme-like activities, Cu-CDs can rapidly increase reactive oxygen species (ROS) to lethal levels, preferentially in bacteria, and exhibit potent antibacterial ability, which can mainly be attributed to the membrane disruption effect. Concurrently, the cell proliferation-promoting activity of arginine-derived CDs is inherited. The Cu-CDs achieve perfect integration of dual functions at low concentrations, especially advantageous for applications. With as little as 100 µg mL-1 of Cu-CDs, the infected wound heals obviously faster than 2 mg mL-1 of antibiotic, although the traditional antibiotic group shows slightly better antibacterial efficiency, suggesting its effect in simultaneously scavenging bacteria and promoting tissue repair effect in vivo. The super selective mechanism probably originates from the endocytosis of Cu-CDs by mammalian cells, while superoxide dismutase down-regulates ROS levels in cells to act as a mitotic signaling agent for promoting cell growth. This strategy provides an efficient, convenient, and safe solution to combat bacterial infections, and suggests a novel approach for modifying antimicrobial biomaterials.
Collapse
Affiliation(s)
- Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Peili Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China
| | - Jiaying Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xueli Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhimin Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yiran Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Zeng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fengxuan Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xuedong Gong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
2
|
Chinnappan R, Makhzoum T, Arai M, Hajja A, Abul Rub F, Alodhaibi I, Alfuwais M, Elahi MA, Alshehri EA, Ramachandran L, Mani NK, Abrahim S, Mir MS, Al-Kattan K, Mir TA, Yaqinuddin A. Recent Advances in Biosensor Technology for Early-Stage Detection of Hepatocellular Carcinoma-Specific Biomarkers: An Overview. Diagnostics (Basel) 2024; 14:1519. [PMID: 39061656 PMCID: PMC11276200 DOI: 10.3390/diagnostics14141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma is currently the most common malignancy of the liver. It typically occurs due to a series of oncogenic mutations that lead to aberrant cell replication. Most commonly, hepatocellular carcinoma (HCC) occurs as a result of pre-occurring liver diseases, such as hepatitis and cirrhosis. Given its aggressive nature and poor prognosis, the early screening and diagnosis of HCC are crucial. However, due to its plethora of underlying risk factors and pathophysiologies, patient presentation often varies in the early stages, with many patients presenting with few, if any, specific symptoms in the early stages. Conventionally, screening and diagnosis are performed through radiological examination, with diagnosis confirmed by biopsy. Imaging modalities tend to be limited by their requirement of large, expensive equipment; time-consuming operation; and a lack of accurate diagnosis, whereas a biopsy's invasive nature makes it unappealing for repetitive use. Recently, biosensors have gained attention for their potential to detect numerous conditions rapidly, cheaply, accurately, and without complex equipment and training. Through their sensing platforms, they aim to detect various biomarkers, such as nucleic acids, proteins, and even whole cells extracted by a liquid biopsy. Numerous biosensors have been developed that may detect HCC in its early stages. We discuss the recent updates in biosensing technology, highlighting its competitive potential compared to conventional methodology and its prospects as a tool for screening and diagnosis.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Amro Hajja
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Muhammad Affan Elahi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Eman Abdullah Alshehri
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Lohit Ramachandran
- Microfluidics, Sensors & Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (L.R.); (N.K.M.)
| | - Naresh Kumar Mani
- Microfluidics, Sensors & Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (L.R.); (N.K.M.)
| | - Shugufta Abrahim
- Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan;
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh 147301, Punjab, India;
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Lung Health Centre Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| |
Collapse
|
3
|
Huo GN, Zhang SS, Li YL, Li JX, Yue Z, Huang WP, Zhang SM, Zhu BL. CdS-Modified TiO 2 Nanotubes with Heterojunction Structure: A Photoelectrochemical Sensor for Glutathione. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:13. [PMID: 36615922 PMCID: PMC9824176 DOI: 10.3390/nano13010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The formation of heterojunction structures can effectively prevent the recombination of photogenerated electron-hole pairs in semiconductors and result in the enhancement of photoelectric properties. Using TiO2 nanotubes (prepared using the hydrothermal-impregnation method) as carriers, CdS-TiO2NTs were fabricated as a photoelectrochemical (PEC) sensor, which can be used under visible light and can exhibit good PEC performance due to the existence of the heterojunction structure. The experimental results show that the prepared CdS-TiO2NTs electrode had a linear response to 2-16 mM glutathione (GSH). The sensor's sensitivity and detection limit (LOD) were 102.9 µA·mM-1 cm-2 and 27.7 µM, respectively. Moreover, the biosensor had good stability, indicating the potential application of this kind of heterojunction PEC biosensor.
Collapse
Affiliation(s)
- Guo-Na Huo
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
- Chemistry and Chemical Engineering College, Xingtai University, Xingtai 054000, China
| | - Sha-Sha Zhang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Yue-Liu Li
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Xing Li
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin 300350, China
| | - Wei-Ping Huang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Min Zhang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Bao-Lin Zhu
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| |
Collapse
|
4
|
Fe-doping induced surface Fe2+/Fe3+ cycle and activated redox-inert TiO2 for enhanced Hg(II) electrochemical sensing: An efficient strategy to strengthen the redox activity. Anal Chim Acta 2022; 1232:340472. [DOI: 10.1016/j.aca.2022.340472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
5
|
Li M, Jiang F, Xue L, Peng C, Shi Z, Zhang Z, Li J, Pan Y, Wang X, Feng C, Qiao D, Chen Z, Luo Q, Chen X. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022; 27:7327. [PMID: 36364157 PMCID: PMC9658374 DOI: 10.3390/molecules27217327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 10/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, with an increasing mortality rate over the past years. The early detection of cancer contributes to early diagnosis and subsequent treatment. How to detect early cancer has become one of the hot research directions of cancer. Tumor biomarkers, biochemical parameters for reflecting cancer occurrence and progression have caused much attention in cancer early detection. Due to high sensitivity, convenience and low cost, biosensors have been largely developed to detect tumor biomarkers. This review describes the application of various biosensors in detecting tumor markers. Firstly, several typical tumor makers, such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), squamous cell carcinoma antigen (SCCA), carbohydrate, antigen19-9 (CA19-9) and tumor suppressor p53 (TP53), which may be helpful for early cancer detection in the clinic, are briefly described. Then, various biosensors, mainly focusing on electrochemical biosensors, optical biosensors, photoelectrochemical biosensors, piezoelectric biosensors and aptamer sensors, are discussed. Specifically, the operation principles of biosensors, nanomaterials used in biosensors and the application of biosensors in tumor marker detection have been comprehensively reviewed and provided. Lastly, the challenges and prospects for developing effective biosensors for early cancer diagnosis are discussed.
Collapse
Affiliation(s)
- Mantong Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Jiang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Liangyi Xue
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cheng Peng
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China
| | - Zhengzheng Shi
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zhang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Li
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yupeng Pan
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xinya Wang
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunqiong Feng
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qizhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuncai Chen
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Sakib S, Hosseini A, Zhitomirsky I, Soleymani L. Photoelectrochemical IL-6 Immunoassay Manufactured on Multifunctional Catecholate-Modified TiO 2 Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50851-50861. [PMID: 34664926 DOI: 10.1021/acsami.1c18240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is an increasing interest in using photoelectrochemistry for enhancing the signal-to-noise ratio and sensitivity of electrochemical biosensors. Nevertheless, it remains challenging to create photoelectrochemical biosensors founded on stable material systems that are also easily biofunctionalized for sensing applications. Herein, a photoelectrochemical immunosensor is reported, in which the concentration of the target protein directly correlates to a change in the measured photocurrent. The material system for the photoelectrode signal transducer involves using catecholate ligands to modify the properties of TiO2 nanostructures in a three-pronged approach of morphology tuning, photoabsorption enhancement, and facilitating bioconjugation. The catecholate-modified TiO2 photoelectrode is combined with a signal-off direct immunoassay to detect interleukin-6 (IL-6), a key biomarker for diagnosing and monitoring various diseases. Catecholate ligands are added during hydrothermal synthesis of TiO2 to enable the growth of three-dimensional nanostructures to form highly porous photoelectrodes that provide a three-dimensional scaffold for immobilizing capture antibodies. Surface modification by catecholate ligands greatly enhances photocurrent generation of the TiO2 photoelectrodes by improving photoabsorption in the visible range. Additionally, catecholate molecules facilitate bioconjugation and probe immobilization by forming a Schiff-base between their -COH group and the -NH2 group of the capture antibodies. The highest photocurrent achieved herein is 8.89 μA cm-2, which represents an enhancement by a factor of 87 from unmodified TiO2. The fabricated immunosensor shows a limit-of-detection of 3.6 pg mL-1 and a log-linear dynamic range of 2-2000 pg mL-1 for IL-6 in human blood plasma.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
| | - Amin Hosseini
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Canada
| | - Igor Zhitomirsky
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Canada
| |
Collapse
|
7
|
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical Applications of TiO 2 Nanostructures: Recent Advances. Int J Nanomedicine 2020; 15:3447-3470. [PMID: 32523343 PMCID: PMC7234979 DOI: 10.2147/ijn.s249441] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Titanium dioxide (TiO2) nanostructures are one of the most plentiful compounds that have emerged in various fields of technology such as medicine, energy and biosensing. Various TiO2 nanostructures (nanotubes [NTs] and nanowires) have been employed in photoelectrochemical (PEC) biosensing applications, greatly enhancing the detection of targets. TiO2 nanostructures, used as reinforced material or coatings for the bare surface of titanium implants, are excellent additive materials to compensate titanium implants deficiencies-like poor surface interaction with surrounding tissues-by providing nanoporous surfaces and hierarchical structures. These nanostructures can also be loaded by diversified drugs-like osteoporosis drugs, anticancer and antibiotics-and used as local drug delivery systems. Furthermore, TiO2 nanostructures and their derivatives are new emerging antimicrobial agents to overcome human pathogenic microorganisms. However, like all other nanomaterials, toxicity and biocompatibility of TiO2 nanostructures must be considered. This review highlights recent advances, along with the properties and numerous applications of TiO2-based nanostructure compounds in nano biosensing, medical implants, drug delivery and antibacterial fields. Moreover, in the present study, some recent advances accomplished on the pharmaceutical applications of TiO2 nanostructures, as well as its toxicity and biocompatibility, are presented.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Baharak Mahyad
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Islamic Republic of Iran
| | - Hadi Hashemzadeh
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Sajjad Janfaza
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, 14117, Islamic Republic of Iran
| | - Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
8
|
A novel ultrasensitive sandwich-type photoelectrochemical immunoassay for PSA detection based on dual inhibition effect of Au/MWCNTs nanohybrids on N-GQDs/CdS QDs dual sensitized urchin-like TiO2. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hao H, Hao S, Hou H, Zhang G, Hou Y, Zhang Z, Bi J, Yan S. A novel label-free photoelectrochemical immunosensor based on CdSe quantum dots sensitized Ho3+/Yb3+-TiO2 for the detection of Vibrio parahaemolyticus. Methods 2019; 168:94-101. [DOI: 10.1016/j.ymeth.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
|
10
|
Lv J, Chen X, Chen S, Li H, Deng H. A visible light induced ultrasensitive photoelectrochemical sensor based on Cu3Mo2O9/BaTiO3 p–n heterojunction for detecting oxytetracycline. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Wang Y, Fan D, Zhao G, Feng J, Wei D, Zhang N, Cao W, Du B, Wei Q. Ultrasensitive photoelectrochemical immunosensor for the detection of amyloid β-protein based on SnO2/SnS2/Ag2S nanocomposites. Biosens Bioelectron 2018; 120:1-7. [DOI: 10.1016/j.bios.2018.08.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 01/08/2023]
|
12
|
Zhang Y, Xu R, Kang Q, Zhang Y, Wei Q, Wang Y, Ju H. Ultrasensitive Photoelectrochemical Biosensing Platform for Detecting N-Terminal Pro-brain Natriuretic Peptide Based on SnO 2/SnS 2/mpg-C 3N 4 Amplified by PbS/SiO 2. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31080-31087. [PMID: 30156399 DOI: 10.1021/acsami.8b11312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A sandwich-type photoelectrochemical (PEC) immunosensor for detecting N-terminal pro-brain natriuretic peptide (NT-proBNP) was constructed on the basis of SnO2/SnS2/mpg-C3N4 nanocomposites and PbS/SiO2, with the former as a photoactive matrix and the latter as an efficient quencher. SnO2/SnS2/mpg-C3N4 was synthesized via in situ growth of SnO2 and SnS2 on mesoporous graphene like C3N4 nanocomposites (mpg-C3N4). Specifically, SnO2/SnS2/mpg-C3N4 exhibited intense PEC signal responses, which are tens of times stronger than its each single component. Because of its superior performance, SnO2/SnS2/mpg-C3N4 was applied as a photoactive matrix and signal indicator for fabricating PEC immunosensor. Interestingly, the excellent PEC signals from SnO2/SnS2/mpg-C3N4 could be reduced severely with the addition of PbS/SiO2. Hence, the secondary antibody bioconjugates (PbS/SiO2-Ab2) were prepared as an efficient quencher. The mechanism of the quench reaction was further discussed in detail. On the basis of the interaction between the matrix and the quencher, the NT-proBNP immunosensor was fabricated and a wide linear range of 0.1 pg·mL-1 to 50 ng·mL-1 was obtained with a low detection limit of 0.05 pg·mL-1. Additionally, the PEC immunosensor manifested good stability, reproducibility, and selectivity, which could underlie robust platforms for detecting multitudinous biomarkers or other targets of interest.
Collapse
|
13
|
Oliveira Monteiro T, Costa dos Santos C, Santos Damos F, de Cássia Silva Luz R. Light-emitting Diode-assisted Determination of 2-(1,1-Dimethylethyl)-1,4-Benzenediol in Cosmetic Samples Exploiting TiO2
Sensitized with Lithium 7,7′,8,8′-Tetracyanoquinodimethanide. ELECTROANAL 2018. [DOI: 10.1002/elan.201700745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thatyara Oliveira Monteiro
- Laboratory of Sensors, Devices and Analytical Methods, Department of Chemistry; Federal University of Maranhão; 65080-805 São Luís - MA Brazil
| | | | - Flávio Santos Damos
- Laboratory of Sensors, Devices and Analytical Methods, Department of Chemistry; Federal University of Maranhão; 65080-805 São Luís - MA Brazil
| | - Rita de Cássia Silva Luz
- Laboratory of Sensors, Devices and Analytical Methods, Department of Chemistry; Federal University of Maranhão; 65080-805 São Luís - MA Brazil
| |
Collapse
|
14
|
Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO2 nanorod array sensitized with Eu(III)-doped CdS quantum dots. Mikrochim Acta 2018; 185:161. [DOI: 10.1007/s00604-018-2711-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
|
15
|
Ibrahim I, Lim HN, Mohd Zawawi R, Ahmad Tajudin A, Ng YH, Guo H, Huang NM. A review on visible-light induced photoelectrochemical sensors based on CdS nanoparticles. J Mater Chem B 2018; 6:4551-4568. [DOI: 10.1039/c8tb00924d] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Discovering the distinctive photophysical properties of semiconductor nanoparticles (NPs) has made these a popular subject in recent advances in nanotechnology-related analytical methods.
Collapse
Affiliation(s)
- Izwaharyanie Ibrahim
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Hong Ngee Lim
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Ruzniza Mohd Zawawi
- Department of Chemistry
- Faculty of Science
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Asilah Ahmad Tajudin
- Department of Microbiology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Yun Hau Ng
- Particles and Catalysis Research Group
- School of Chemical Engineering
- The University of New South Wales
- Australia
| | - Hang Guo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology
- Xiamen University Xiamen
- Fujian 361005
- China
| | - Nay Ming Huang
- New Energy Science & Engineering Programme
- University of Xiamen Malaysia
- Jalan SunSuria
- Bandar SunSuria
- 43900 Sepang
| |
Collapse
|
16
|
Fan GC, Ma L, Jayachandran S, Li Z, Luo X. Separating photoanode from recognition events: toward a general strategy for a self-powered photoelectrochemical immunoassay with both high sensitivity and anti-interference capabilities. Chem Commun (Camb) 2018; 54:7062-7065. [DOI: 10.1039/c8cc02627k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A general, efficient strategy for a self-powered PEC immunoassay, with both high sensitivity and anti-interference properties, by separating the photoanode from recognition events.
Collapse
Affiliation(s)
- Gao-Chao Fan
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Linzheng Ma
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Silambarasan Jayachandran
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Zimeng Li
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
17
|
Wang B, Cao JT, Dong YX, Liu FR, Fu XL, Ren SW, Ma SH, Liu YM. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays. Chem Commun (Camb) 2018; 54:806-809. [DOI: 10.1039/c7cc08132d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An ascorbic acid oxidase–ascorbic acid bioevent-based electron donor consumption mode is introduced into the PEC bioassay for the first time.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Yu-Xiang Dong
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Fu-Rao Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Xiao-Long Fu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | | | - Shu-Hui Ma
- Xinyang Central Hospital
- Xinyang 464000
- China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| |
Collapse
|
18
|
Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA. Biosens Bioelectron 2018; 99:14-20. [DOI: 10.1016/j.bios.2017.07.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/30/2022]
|
19
|
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
20
|
Fan D, Wang H, Khan MS, Bao C, Wang H, Wu D, Wei Q, Du B. An ultrasensitive photoelectrochemical immunosensor for insulin detection based on BiOBr/Ag 2 S composite by in-situ growth method with high visible-light activity. Biosens Bioelectron 2017; 97:253-259. [DOI: 10.1016/j.bios.2017.05.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 01/16/2023]
|
21
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
22
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
23
|
Tan Y, Wang Y, Li M, Ye X, Wu T, Li C. Enhanced photoelectrochemical immunosensing of cardiac troponin I based on energy transfer between N-acetyl-L-cysteine capped CdAgTe quantum dots and dodecahedral Au nanoparticles. Biosens Bioelectron 2017; 91:741-746. [DOI: 10.1016/j.bios.2017.01.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/14/2023]
|
24
|
Zhang N, Zhang L, Ruan YF, Zhao WW, Xu JJ, Chen HY. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens Bioelectron 2017; 94:207-218. [PMID: 28285198 DOI: 10.1016/j.bios.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed methodology that provides an exquisite route for innovative biomolecular detection. Quantum dots (QDs) are semiconductor nanocrystals with unique photophysical properties that have attracted tremendous attentions among the analytical community. QDs-based PEC bioanalysis comprises an important research hotspot in the field of PEC bioanalysis due to its combined advantages and potentials. Currently, it has ignited increasing interests as demonstrated by increased research papers. This review aims to cover the most recent advances in this field. With the discussion of recent examples of QDs-PEC bioanalysis from the literatures, special emphasis will be placed on work reporting on fundamental advances in the signaling strategies of QDs-based PEC bioanalysis from 2013 to now. Future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
25
|
Bagheri S, Julkapli NM. Mixed-phase TiO2 photocatalysis: correlation between phase composition and photodecomposition of water pollutants. REV INORG CHEM 2017. [DOI: 10.1515/revic-2016-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn most cases, the combination of both anatase (up to 80%) and rutile (up to 20%) structures in a mixed-phase TiO2 semiconductor results in a better photocatalytic performance compared to the pure phase. The improvement from anatase to rutile is brought about by the enhanced transportation of photogenerated electrons. This consequently results in improved efficiency of the photoelectric and photocurrent conversion. This review highlights the effects of the morphology, particle size, and crystal structure of mixed-phase TiO2 toward the photodegradation of water pollutants. It was demonstrated that the synergistic effect between anatase and rutile TiO2 due to the interfacial electron transfer from rutile to anatase improved the photocurrent as well as the overall conversion efficiency of the anatase photoanodes. The morphologies of mixed-phase TiO2 also contributed to the final photodegradation properties. The charge and electron transfer of mixed-phase TiO2 improved the 1D structure. This consequently enables photodegradation at the visible light range.
Collapse
Affiliation(s)
- Samira Bagheri
- 1Nanotechnology and Catalysis Research Center (NANOCAT), Level 3, Block A, Institute of Postgraduate Studies (IPS) Building, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- 1Nanotechnology and Catalysis Research Center (NANOCAT), Level 3, Block A, Institute of Postgraduate Studies (IPS) Building, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Yang Y, Hu W. Bifunctional polydopamine thin film coated zinc oxide nanorods for label-free photoelectrochemical immunoassay. Talanta 2017; 166:141-147. [PMID: 28213214 DOI: 10.1016/j.talanta.2017.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
Photoelectrochemical (PEC) detection is a promising method for label-free immunoassay by reporting the specific biological recognition events with electrical signals. However, it is challenging to rationally incorporate immunosensing components with a photocurrent conversion interface, which generally necessitates multistep fabrication and careful tailoring of various components such as photoactive material and biological probe. For high detection reliability and reproducibility, it is highly desirable to rationally construct an efficient PEC interface with architecture as simple as possible. In this work, a novel yet simple PEC immunosensor based on bio-inspired polydopamine (PDA) thin film-coated zinc oxide (ZnO) nanorods was reported. In this PEC immunosensor, the PDA thin film serves simultaneously as a unique sensitizer for charge separation as well as a functional layer for probe antibody attachment. The photocurrent on this electrode under illumination decreases upon the immunoreaction on the surface, possibly due to the blocking effect of formed immunocomplexes on the access of reducing reagent to the photoelectrode, thus offering a simple and reliable platform for PEC label-free immunoassay. By using an antibody-antigen pair as a model, successful label-free immunoassay was achieved with a detection limit of 10pgmL-1 and a dynamic range from 100pgmL-1 to 500ngmL-1. This work demonstrates intriguing electro-optical property and bioconjugation activity of PDA film and may pave the way toward advanced PEC immunoassays.
Collapse
Affiliation(s)
- Yan Yang
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Weihua Hu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, China.
| |
Collapse
|
27
|
Fan D, Ren X, Wang H, Wu D, Zhao D, Chen Y, Wei Q, Du B. Ultrasensitive sandwich-type photoelectrochemical immunosensor based on CdSe sensitized La-TiO2 matrix and signal amplification of polystyrene@Ab2 composites. Biosens Bioelectron 2017; 87:593-599. [DOI: 10.1016/j.bios.2016.08.110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/06/2023]
|
28
|
Zhao WW, Yu XD, Xu JJ, Chen HY. Recent advances in the use of quantum dots for photoelectrochemical bioanalysis. NANOSCALE 2016; 8:17407-17414. [PMID: 27738694 DOI: 10.1039/c6nr05011e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed technique for innovative biomolecular detection. Quantum dots (QDs) with unique photophysical properties are key components in realization of various exquisite PEC bioanalyses. Particularly, significant progress has been made in the QD-based PEC bioanalysis. In this work, we briefly summarize the most recent and important developments in the use of traditional and newly emerging QDs for novel PEC bioanalytical applications. The future prospects in this dynamic field are also highlighted.
Collapse
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| |
Collapse
|
29
|
Development of a photoelectrochemical sensor for detection of TBHQ antioxidant based on LiTCNE-TiO2 composite under visible LED light. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Using silver nanocluster/graphene nanocomposite to enhance photoelectrochemical activity of CdS:Mn/TiO2 for highly sensitive signal-on immunoassay. Biosens Bioelectron 2016; 80:614-620. [DOI: 10.1016/j.bios.2016.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 12/24/2022]
|
31
|
Su CY, Wang CC, Hsueh YC, Gurylev V, Kei CC, Perng TP. Enabling high solubility of ZnO in TiO₂ by nanolamination of atomic layer deposition. NANOSCALE 2015; 7:19222-19230. [PMID: 26526381 DOI: 10.1039/c5nr06264k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Zn-doped TiO2 nanotubes were fabricated by nanolaminated packing of alternating layers of TiO2 and ZnO by atomic layer deposition (ALD) using a polycarbonate (PC) membrane as a template. With 400 cycles of ALD, the nanotubes with a thickness of 28 nm and an outer diameter of 220 nm were obtained after removing the PC membrane by annealing at 450 °C. The doping concentration of ZnO in TiO2 depends on the precursor cycle ratio of ZnO to TiO2. With the precursor cycle ratio of ZnO : TiO2 at 0.04, a uniform bulk solubility of ∼8 at% is obtained, and the surface concentration of Zn is even higher, ∼16 at%. From the depth profiles measured by secondary ion mass spectrometry, Zn is uniformly distributed across the thickness, which is further confirmed by analyses of X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. Additionally, from the transmission electron microscopic observation, the highly doped anatase TiO2 exhibits some regions of severe deformation that results in localized solid-state amorphization.
Collapse
Affiliation(s)
- C-Y Su
- Department of Materials Science and Engineering, National Tsing Hua University 101 Section 2, Kuang-Fu Rd, Hsinchu 300, Taiwan.
| | | | | | | | | | | |
Collapse
|