1
|
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hollow Nanomaterials in Advanced Drug Delivery Systems: From Single- to Multiple Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203890. [PMID: 35998336 DOI: 10.1002/adma.202203890] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Hollow-structured nanomaterials (HSNMs) have attracted increased interest in biomedical fields, owing to their excellent potential as drug delivery systems (DDSs) for clinical applications. Among HSNMs, hollow multi-shelled structures (HoMSs) exhibit properties such as high loading capacity, sequential drug release, and multi-functionalized modification and represent a new class of nanoplatforms for clinical applications. The remarkable properties of HoMS-based DDS can simultaneously satisfy and enhance DDSs for delivering small molecular drugs (e.g., antibiotics, chemotherapy drugs, and imaging agents) and macromolecular drugs (e.g., protein/peptide- and nucleic acid-based drugs). First, the latest research advances in delivering small molecular drugs are summarized and highlight the inherent advantages of HoMS-based DDSs for small molecular drug targeting, combining continuous therapeutic drug delivery and theranostics to optimize the clinical benefit. Meanwhile, the macromolecular drugs DDSs are in the initial development stage and currently offer limited delivery modes. There is a growing need to analyze the deficiency of other HSNMs and integrate the advantages of HSNMs, providing solutions for the safe, stable, and cascade delivery of macromolecular drugs to meet vast treatment requirements. Therefore, the latest advances in HoMS-based DDSs are comprehensively reviewed, mainly focusing on the characteristics, research progress by drug category, and future research prospects.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
2
|
Yang Z, Zong S, Jiang G, Zhu K, Qian Z, Yang K, Wang Z, Cui Y. Metal nanoprobe-decorated all-inorganic perovskite nanocrystal-based fluorescence-linked immunosorbent assay for the detection of tumor-derived exosomes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1037-1046. [PMID: 36779367 DOI: 10.1039/d2ay01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
All-inorganic perovskite nanocrystals (CsPbX3 NCs, X = Cl, Br, I) are promising fluorescence materials for biological detection due to their excellent optical properties. However, there is still a challenge to obtain stable CsPbX3 NCs with more biofunctions. Here, we proposed a distinct strategy by absorbing the functionalized metal nanoprobes onto the phospholipid encapsulated CsPbX3 NCs to achieve CsPbX3-metal hybrids as probes for the detection of tumor-derived exosomes. Here, the metal nanoprobes have two functions: first, it endows phospholipid encapsulated CsPbX3 NCs with recognition ability; second, it avoids the fluorescence quenching of CsPbX3 NCs during the biological modification process by using metal nanoparticles as a bridge to connect with CsPbX3 NCs and various biomolecules. The obtained CPXD-AD exhibited a bright fluorescence signal, narrow full width at half-maximum (FWHM), and high specificity. Under optimal conditions, the CPXD-AD-based fluorescence-linked immunosorbent assay (FLISA) was successfully established and used for both qualitative and quantitative detection of tumor-derived exosomes.
Collapse
Affiliation(s)
- Zhaoyan Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Guohua Jiang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Ziting Qian
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Cao J, Gao M, Wang J, Liu Y, Zhang X, Ping Y, Liu J, Chen G, Xu D, Huang X, Liu G. Construction of nano slow-release systems for antibacterial active substances and its applications: A comprehensive review. Front Nutr 2023; 10:1109204. [PMID: 36819707 PMCID: PMC9928761 DOI: 10.3389/fnut.2023.1109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
At present, nano-carrier materials with antibacterial activity are of great significance. Due to the widespread resistance of many pathogenic microorganisms, it has seriously threatened human health. The natural antimicrobial substances extracted from fruits and vegetables can significantly improve their stability combined with nano-carrier materials. The resistance of pathogenic microorganisms will be substantially reduced, greatly enhancing the effect of active antimicrobial substances. Nanotechnology has excellent research prospects in the food industry, antibacterial preservation, food additives, food packaging, and other fields. This paper introduces nano-carrier materials and preparation techniques for loading and encapsulating active antibacterial substances in detail by constructing a nano-release system for active antibacterial substances. The antibacterial effect can be achieved by protecting them from adverse external conditions and destroying the membrane of pathogenic microorganisms. The mechanism of the slow release of the bacteriostatic active substance is also described. The mechanism of carrier loading and release is mainly through non-covalent forces between the bacteriostatic active substance and the carrier material, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, etc., as well as the loading and adsorption of the bacteriostatic active substance by the chemical assembly. Finally, its wide application in food and medicine is introduced. It is hoped to provide a theoretical basis and technical support for the efficient utilization and product development of bacteriostatic active substances.
Collapse
Affiliation(s)
- Jiayong Cao
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Jian Wang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,*Correspondence: Jian Wang, ✉
| | - Yuan Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Xuan Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Yi Ping
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Liu
- Internal Trade Food Science Research Institute Co., Ltd, Beijing, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Donghui Xu, ✉
| | - Xiaodong Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Guangyang Liu, ✉
| |
Collapse
|
4
|
Lee KX, Shameli K, Nagao Y, Yew YP, Teow SY, Moeini H. Potential use of gold-silver core-shell nanoparticles derived from Garcinia mangostana peel for anticancer compound, protocatechuic acid delivery. Front Mol Biosci 2022; 9:997471. [PMID: 36304924 PMCID: PMC9593088 DOI: 10.3389/fmolb.2022.997471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Colorectal cancer is one of the most killing cancers and this has become a global problem. Current treatment and anticancer drugs cannot specifically target the cancerous cells, thus causing toxicity towards surrounding non-cancer cells. Hence, there is an urgent need to discover a more target-specific therapeutic agent to overcome this problem. Core-shell nanoparticles have emerged as good candidate for anticancer treatment. This study aimed to synthesize core-shell nanoparticles via green method which utilised crude peels extract of Garcinia mangostana as reducing and stabilising agents for drug delivery. Gold-silver core-shell nanoparticles (Au-AgNPs) were synthesized through seed germination process in which gold nanoparticles acted as the seed. A complete coating was observed through transmission electron microscopy (TEM) when the ratio of AuNPs and AgNPs was 1:9. The size of Au-AgNPs was 38.22 ± 8.41 nm and was mostly spherical in shape. Plant-based drug, protocatechuic acid (PCA) was loaded on the Au-AgNPs to investigate their anticancer activity. In HCT116 colon cancer cells, PCA-loaded Au-AgNPs (IC50 = 10.78 μg/ml) showed higher inhibitory action than the free PCA (IC50= 148.09 μg/ml) and Au-AgNPs alone (IC50= 24.36 μg/ml). Up to 80% inhibition of HCT116 cells was observed after the treatment of PCA-loaded Au-AgNPs at 15.63 μg/ml. The PCA-loaded Au-AgNPs also showed a better selectivity towards HCT116 compared to CCD112 colon normal cells when tested at the same concentrations. These findings suggest that Au-AgNPs system can be used as a potent nanocarrier to combat cancerous cells by offering additional anticancer properties to the loaded drug.
Collapse
Affiliation(s)
- Kar Xin Lee
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Kamyar Shameli, ; Hassan Moeini,
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Yen Pin Yew
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Medical and Life Sciences (SMLS), Sunway University, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hassan Moeini
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- *Correspondence: Kamyar Shameli, ; Hassan Moeini,
| |
Collapse
|
5
|
Sun R, Liu W, Kirk TV, Chen XD. A Dual-labeled Fluorescent Probe for Visualization of Dextranase Activity in A Simulated Food Digestion System. Food Chem 2022; 405:134744. [DOI: 10.1016/j.foodchem.2022.134744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
6
|
In-situ reduction of silver nanoparticles on molybdenum disulfide for an ultrasensitive recyclable SERS detection based on electromagnetic and chemical effects. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Wu J, Lu Q, Wang H, Huang B. Passivator-Free Microwave–Hydrothermal Synthesis of High Quantum Yield Carbon Dots for All-Carbon Fluorescent Nanocomposite Films. NANOMATERIALS 2022; 12:nano12152624. [PMID: 35957054 PMCID: PMC9370708 DOI: 10.3390/nano12152624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023]
Abstract
Based on the self-passivation function of chitosan, an efficient, and green synthesis strategy was applied to prepare chitosan carbon dots (CDs). The quantum yield of carbon dots reached 35% under the conditions of hydrothermal temperature of 200 °C, hydrothermal time of 5 h, and chitosan concentration of 2%. Moreover, the obtained carbon dots had high selectivity and sensitivity to Fe3+. Based on the Schiff base reaction between the aldehyde groups of dialdehyde cellulose nanofibrils (DNF) and the amino groups of CDs, a chemically cross-linked, novel, fluorescent composite film, with high transparency and high strength, was created using one-pot processing. Knowing that the fluorescence effect of the composite film on Fe3+ had a linear relationship in the concentration range of 0–100 μM, a fluorescent probe can be developed for quantitative analysis and detection of Fe3+. Owing to their excellent fluorescent and mechanical properties, the fluorescent nanocomposite films have potential applications in the fields of Fe3+ detection, fluorescent labeling, and biosensing.
Collapse
Affiliation(s)
- Jiayin Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (H.W.)
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Qilin Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (H.W.)
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Correspondence: (Q.L.); (B.H.)
| | - Hanchen Wang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (H.W.)
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Biao Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (H.W.)
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Correspondence: (Q.L.); (B.H.)
| |
Collapse
|
8
|
Chen Y, Yu F, Wang Y, Liu W, Ye J, Xiao J, Liu X, Jiang H, Wang X. Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics. J Biomed Nanotechnol 2022; 18:1-23. [PMID: 35180897 DOI: 10.1166/jbn.2022.3246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, noble metal nanomaterials have been extensively studied in the fields of biosensing, environmental catalysis, and cancer diagnosis and treatment, due to their excellent electrical conductivity, high surface area, and individual physical and optical properties. Early research on the surface-enhanced Raman scattering (SERS) effect was focused on the cognition of the SERS phenomenon and enhancing its sensitivity for single-molecule detection. With the development of nanomaterials and nanotechnology, the advances and applications based on SERS substrates have been accelerated. Among them, noble metal nanomaterials are mainly used as SERS-active substrates to enhance SERS signals owing to their compelling surface plasmon resonance (SPR) properties. This review provides recent advances, perspectives, and challenges in SERS assays based on engineered noble metal nanomaterials for early cancer diagnosis.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fangfang Yu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiang Xiao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
9
|
Zhao D, Yang N, Xu L, Du J, Yang Y, Wang D. Hollow structures as drug carriers: Recognition, response, and release. NANO RESEARCH 2021; 15:739-757. [PMID: 34254012 PMCID: PMC8262765 DOI: 10.1007/s12274-021-3595-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 05/19/2023]
Abstract
Hollow structures have demonstrated great potential in drug delivery owing to their privileged structure, such as high surface-to-volume ratio, low density, large cavities, and hierarchical pores. In this review, we provide a comprehensive overview of hollow structured materials applied in targeting recognition, smart response, and drug release, and we have addressed the possible chemical factors and reactions in these three processes. The advantages of hollow nanostructures are summarized as follows: hollow cavity contributes to large loading capacity; a tailored structure helps controllable drug release; variable compounds adapt to flexible application; surface modification facilitates smart responsive release. Especially, because the multiple physical barriers and chemical interactions can be induced by multishells, hollow multishelled structure is considered as a promising material with unique loading and releasing properties. Finally, we conclude this review with some perspectives on the future research and development of the hollow structures as drug carriers.
Collapse
Affiliation(s)
- Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lekai Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Jiang Du
- Green Catalysis Center, and College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433 China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
10
|
Chen H, Luo C, Zhang S. Intracellular imaging and concurrent pH sensing of cancer-derived exosomes using surface-enhanced Raman scattering. Anal Bioanal Chem 2021; 413:4091-4101. [PMID: 34014359 DOI: 10.1007/s00216-021-03365-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
Exosomes have attracted significant attention as cancer diagnostic targets and therapeutic agents due to their unique biogenesis and structure. To clarify the biological activities of exosomes, it is important to obtain a picture of their intracellular distribution and how they evolve over time. In this work, a new kind of intracellular exosome imaging and concurrent pH sensing method is demonstrated by using the surface-enhanced Raman scattering (SERS) technique. Specifically, 4-mercaptobenzoic acid (4MBA)-tagged silver nanoparticles are attached onto the outer surfaces of exosomes, in which silver nanoparticles are employed as SERS generators. Raman agents 4MBA are susceptible to a specific intracellular stimulus, that is, undergo a protonation or deprotonation in response to intracellular pH variation, which correspondingly exhibit different vibrational spectra features. By using the SERS spectroscopy, tracking of the intracellular distribution of exosomes and the concurrent quantitative sensing of environmental pH were achieved, which demonstrated that, as time prolonged, exosomes first attached with the tumor cell surfaces, and then entered into the cells and accumulated in lysosomes. Such SERS-active hybridized exosomes, that are sensitive to discrete variations in intracellular pH, have proved their capability for the investigation of interactions between exosomes and cells. The spectral diversity and flexible surface modification of these hybridized exosomes are also highly expected in developing multifunctional exosome-based nanoplatforms, which offers great potential to promote the exosome-based therapeutics forward into an advanced stage.
Collapse
Affiliation(s)
- Hui Chen
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Caixia Luo
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shangtao Zhang
- Shanghai Key Laboratory of Contemporary Optics System, School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
11
|
Shen Y, Yue J, Xu W, Xu S. Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. Theranostics 2021; 11:4872-4893. [PMID: 33754033 PMCID: PMC7978302 DOI: 10.7150/thno.56409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Organelles are involved in many cell life activities, and their metabolic or functional disorders are closely related to apoptosis, neurodegenerative diseases, cardiovascular diseases, and the development and metastasis of cancers. The explorations of subcellular structures, microenvironments, and their abnormal conditions are conducive to a deeper understanding of many pathological mechanisms, which are expected to achieve the early diagnosis and the effective therapy of diseases. Organelles are also the targeted locations of drugs, and they play significant roles in many targeting therapeutic strategies. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool that can provide the molecular fingerprint information of subcellular compartments and the real-time cellular dynamics in a non-invasive and non-destructive way. This review aims to summarize the recent advances of SERS studies on subcellular compartments, including five parts. The introductions of SERS and subcellular compartments are given. SERS is promising in subcellular compartment studies due to its molecular specificity and high sensitivity, and both of which highly match the high demands of cellular/subcellular investigations. Intracellular SERS is mainly cataloged as the labeling and label-free methods. For subcellular targeted detections and therapies, how to internalize plasmonic nanoparticles or nanostructure in the target locations is a key point. The subcellular compartment SERS detections, SERS measurements of isolated organelles, investigations of therapeutic mechanisms from subcellular compartments and microenvironments, and integration of SERS diagnosis and treatment are sequentially presented. A perspective view of the subcellular SERS studies is discussed from six aspects. This review provides a comprehensive overview of SERS applications in subcellular compartment researches, which will be a useful reference for designing the SERS-involved therapeutic systems.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
12
|
Yaghoubi A, Ramazani A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J Control Release 2020; 327:198-224. [DOI: 10.1016/j.jconrel.2020.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022]
|
13
|
Extracellular vesicles for tumor targeting delivery based on five features principle. J Control Release 2020; 322:555-565. [DOI: 10.1016/j.jconrel.2020.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
14
|
Curcio M, Farfalla A, Saletta F, Valli E, Pantuso E, Nicoletta FP, Iemma F, Vittorio O, Cirillo G. Functionalized Carbon Nanostructures Versus Drug Resistance: Promising Scenarios in Cancer Treatment. Molecules 2020; 25:E2102. [PMID: 32365886 PMCID: PMC7249046 DOI: 10.3390/molecules25092102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Carbon nanostructures (CN) are emerging valuable materials for the assembly of highly engineered multifunctional nanovehicles for cancer therapy, in particular for counteracting the insurgence of multi-drug resistance (MDR). In this regard, carbon nanotubes (CNT), graphene oxide (GO), and fullerenes (F) have been proposed as promising materials due to their superior physical, chemical, and biological features. The possibility to easily modify their surface, conferring tailored properties, allows different CN derivatives to be synthesized. Although many studies have explored this topic, a comprehensive review evaluating the beneficial use of functionalized CNT vs G or F is still missing. Within this paper, the most relevant examples of CN-based nanosystems proposed for MDR reversal are reviewed, taking into consideration the functionalization routes, as well as the biological mechanisms involved and the possible toxicity concerns. The main aim is to understand which functional CN represents the most promising strategy to be further investigated for overcoming MDR in cancer.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Annafranca Farfalla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Emanuele Valli
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
| | - Elvira Pantuso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, NSW 2031, Australia; (F.S.); (E.V.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.F.); (E.P.); (F.P.N.); (F.I.)
| |
Collapse
|
15
|
Gong C, Tian J, Wang Z, Gao Y, Wu X, Ding X, Qiang L, Li G, Han Z, Yuan Y, Gao S. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology 2019; 17:93. [PMID: 31481080 PMCID: PMC6721253 DOI: 10.1186/s12951-019-0526-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023] Open
Abstract
Exosomes (Exo) hold great promise as endogenous nanocarriers that can deliver biological information between cells. However, Exo are limited in terms of their abilities to target specific recipient cell types. We developed a strategy to isolate Exo exhibiting increased binding to integrin αvβ3. Binding occurred through a modified version of a disintegrin and metalloproteinase 15 (A15) expressed on exosomal membranes (A15-Exo), which facilitated co-delivery of therapeutic quantities of doxorubicin (Dox) and cholesterol-modified miRNA 159 (Cho-miR159) to triple-negative breast cancer (TNBC) cells, both in vitro and in vivo. The targeted A15-Exo were derived from continuous protein kinase C activation in monocyte-derived macrophages. These cell-derived Exo displayed targeting properties and had a 2.97-fold higher production yield. In vitro, A15-Exo co-loaded with Dox and Cho-miR159 induced synergistic therapeutic effects in MDA-MB-231 cells. In vivo, miR159 and Dox delivery in a vesicular system effectively silenced the TCF-7 gene and exhibited improved anticancer effects, without adverse effects. Therefore, our data demonstrate the synergistic efficacy of co-delivering miR159 and Dox by targeted Exo for TNBC therapy.
Collapse
Affiliation(s)
- Chunai Gong
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jing Tian
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Zhuo Wang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yuan Gao
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Xin Wu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Xueying Ding
- Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Lei Qiang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Guorui Li
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Zhimin Han
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
16
|
Chen C, Liu W, Tian S, Hong T. Novel Surface-Enhanced Raman Spectroscopy Techniques for DNA, Protein and Drug Detection. SENSORS 2019; 19:s19071712. [PMID: 30974797 PMCID: PMC6480126 DOI: 10.3390/s19071712] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique in which the Raman scattering signal strength of molecules, absorbed by rough metals or the surface of nanoparticles, experiences an exponential growth (10³-10⁶ times and even 1014-1015 times) because of electromagnetic or chemical enhancements. Nowadays, SERS has attracted tremendous attention in the field of analytical chemistry due to its specific advantages, including high selectivity, rich informative spectral properties, nondestructive testing, and the prominent multiplexing capabilities of Raman spectroscopy. In this review, we present the applications of state-of-the-art SERS for the detection of DNA, proteins and drugs. Moreover, we focus on highlighting the merits and mechanisms of achieving enhanced SERS signals for food safety and clinical treatment. The machine learning techniques, combined with SERS detection, are also indicated herein. This review concludes with recommendations for future studies on the development of SERS.
Collapse
Affiliation(s)
- Chuanpin Chen
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Wenfang Liu
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Sanping Tian
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Tingting Hong
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
17
|
Wei S, Li L, Du X, Li Y. OFF–ON nanodiamond drug platform for targeted cancer imaging and therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00447e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pH-responsive drug delivery system (NPGD) can act as a direct OFF–ON mechanism for activatable bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Shiguo Wei
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Lin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xiangbin Du
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yingqi Li
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
18
|
He L, Pang K, Liu W, Tian Y, Chang L, Liu X, Zhao M, Liu Y, Li Y, Jiang X, Song R, Liu Y. Core–shell noble-metal@zeolitic-imidazolate-framework nanocarriers with high cancer treatment efficiency in vitro. J Mater Chem B 2019; 7:1050-1055. [DOI: 10.1039/c8tb03318h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Core–shell Au@zeolitic-imidazolate-framework nanocarriers with high drug-loading, controlled drug release properties, and high cancer treatment efficiency.
Collapse
|
19
|
Motealleh A, Dorri P, Kehr NS. Self-assembled monolayers of chiral periodic mesoporous organosilica as a stimuli responsive local drug delivery system. J Mater Chem B 2019; 7:2362-2371. [DOI: 10.1039/c8tb02507j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
pH responsive PMOs deliver higher dosages of drugs to malignant cells while delivering less of the drugs to healthy cells.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institut and Center für Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Pooya Dorri
- Physikalisches Institut and Center für Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Nermin Seda Kehr
- Physikalisches Institut and Center für Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
- California NanoSystems Institute (CNSI)
| |
Collapse
|
20
|
Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol 2019; 121:556-571. [DOI: 10.1016/j.ijbiomac.2018.10.049] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
|
21
|
Zhang Q, Gong Y, Guo XJ, Zhang P, Ding CF. Multifunctional Gold Nanoparticle-Based Fluorescence Resonance Energy-Transfer Probe for Target Drug Delivery and Cell Fluorescence Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34840-34848. [PMID: 30264982 DOI: 10.1021/acsami.8b12897] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Drug delivery system has a profound significance for imaging capabilities and monitoring apoptosis process precisely in cancer therapeutic field. Herein, we designed cysteamine (CS)-stabilized gold nanoparticles, CS-gold nanoparticles (AuNPs)-doxorubicin (DOX), for fluorescence-enhanced cell imaging and target drug delivery. For cancer therapy, DOX was incorporated to CS-AuNPs by disulfide linkages which could be cleaved by glutathione (GSH) in cancer cells specifically. In addition, red-emissive DOX was quenched effectively by particular quenching effect of fluorescence resonance energy transfer from DOX to AuNPs, rendering monitoring target drug release by visual luminescence. The released DOX-SH acted as an indicator for cancer cells with red fluorescence and was further used for stimuli-responsive drug therapy. After an overall investigation of detection for GSH, proapoptosis for cancer cells, and inhibition for tumor tissues in vivo, the CS-AuNPs-DOX nanoprobe shows an obviously enhanced performance. This proposal provides an intelligent strategy for cell imaging and drug delivery, which serves as a promising candidate for anticancer therapeutic applications.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yan Gong
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Xin-Jie Guo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Peng Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Cai-Feng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| |
Collapse
|
22
|
Hou Y, Zhang W, Li S, Wang Z, Zhong H, Liu Z, Guo Z. Investigating the autophagy pathway in silver@gold core-shell nanoparticles-treated cells using surface-enhanced Raman scattering. Analyst 2018; 143:3677-3685. [PMID: 29975376 DOI: 10.1039/c8an00405f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have shown that nanoparticles can induce autophagy, and the main approach for investigating autophagy induced by nanoparticles is via traditional methods such as TEM and biochemical assay. These methods measurements suffer from the disadvantages of complicated experimental processes, cell destruction, as well as lack of characterization of individual stages of the autophagy pathway. Surface-enhanced Raman scattering (SERS) has been extensively used in biological applications. With the combination of SERS and chemometric methods, such as principal component analysis-linear discriminant analysis (PCA-LDA), identification and distribution mapping of endosomes and lysosomes in the endocytosis of Au nanoparticles has been achieved by segregating the spectra from complex SERS data sets in the previous study. In this study, silver@gold core-shell nanoparticles (Ag@Au NPs) were synthesized by reduction of gold ions on the surface of the silver nanoparticles, and the autophagy induced by Ag@Au NPs was studied with Ag@Au NPs serving both as an autophagy inducer and as a high-performance SERS substrate. Pro-survival autophagy induced by Ag@Au NPs was proved by the western blot assay, flow cytometry and fluorescent staining. Furthermore, the autophagy pathway in Ag@Au NPs-treated cells was first elucidated by SERS combined with a modified reference-based PCA-LDA methodology. This study provides a feasible way of using SERS to elucidate the autophagy pathway induced by nanoparticles.
Collapse
Affiliation(s)
- Yuqing Hou
- MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Song C, Dou Y, Yuwen L, Sun Y, Dong C, Li F, Yang Y, Wang L. A gold nanoflower-based traceable drug delivery system for intracellular SERS imaging-guided targeted chemo-phototherapy. J Mater Chem B 2018; 6:3030-3039. [PMID: 32254338 DOI: 10.1039/c8tb00587g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate and effective drug delivery in tumor cells significantly improves the curative effect with high drug delivery efficiency, low toxicity and side effects and has become an urgent demand for anticancer therapy. In this paper, a novel traceable and targeted drug delivery nanosystem (i.e. AuNF-nanocarriers) with high drug encapsulation and pH-controlled release was prepared based on gold nanoflowers (AuNFs) for efficient intracellular SERS imaging-guided chemo-phototherapy. SERS-active flower-like gold nanoparticles with large surface area were synthesized first and then modified with Raman and RGD molecules in sequence to prepare bright, traceable and targeted SERS tags of A549 human lung cancer cells. Furthermore, thiolated-PAA (PAA-SH) was synthesized and utilized for the first time to modify the SERS tags with a layer of negative charges for efficient pH-dependent loading and release of the anticancer drug doxorubicin. Based on the A549 human lung cancer cell model, the availability of the proposed AuNF-nanocarriers for efficient intracellular SERS imaging-guided chemo-phototherapy was studied and the results indicate that the AuNF-based drug delivery system exhibited attractive characteristics such as good stability, efficiency and pH-controlled drug loading and release, traceable and targeted delivery, as well as SERS imaging and chemo-phototherapy functions, and shows great potential for powerful SERS-imaging and as a theranostic candidate for precision nanomedicine that could achieve sensitive and accurate tumor detection and therapy.
Collapse
Affiliation(s)
- Chunyuan Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
25
|
Kumar M, Sharma G, Misra C, Kumar R, Singh B, Katare OP, Raza K. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:274-282. [PMID: 29752099 DOI: 10.1016/j.msec.2018.03.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/07/2018] [Accepted: 03/30/2018] [Indexed: 12/17/2022]
Abstract
Our aim was to develop multiwalled carbon nanotubes (MWCNTs)-based nanoconstructs for the codelivery of N-desmethyl tamoxifen (N-TAM) and a mild P-gp efflux inhibitor, i.e., quercetin (QT) to treat multiple drug resistant (MDR) cancer cells. The hypothesis banks on three-tier attack on the MDR mechanisms viz. drug derivatization, MWCNT permeation and P-gp inhibition. Tamoxifen was converted to N-TAM and was conjugated to carboxylated MWCNTs mediated by a biodegradable linker, i.e., tetraethylene glycol (TEG). QT was adsorbed on the conjugate to fetch the final product, i.e., N-TAM-TEG-MWCNT-QT. Spectroscopic analysis confirmed successful conjugation of N-TAM and physical adsorption of QT. The in-vitro release of N-TAM from the N-TAM-TEG-MWCNT conjugate was minimal to that of pure drug under physiological conditions, but markedly enhanced under the acidic pH of cancer cells. The developed nanometeric formulation was found to be haemo-compatible. Reduced IC50values and better cellular uptake in drug resistant MDA-MB-231 cells were observed, followed by enhanced drug availability in the systemic circulation of rodents vis-à-vis naïve drug. The smart nanosystem conferred the desired temporal drug delivery, enhanced drug efficacy, biocompatibility and conducive pharmacokinetics, which are the crucial desired attributes to tackle the increasing concern of MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305 817, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh-160 014, India
| | - Charu Misra
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305 817, India
| | - Rajendra Kumar
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, Chandigarh-160 014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh-160 014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, Chandigarh-160 014, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh-160 014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan 305 817, India.
| |
Collapse
|
26
|
Zhou T, Luo T, Song J, Qu J. Phasor–Fluorescence Lifetime Imaging Microscopy Analysis to Monitor Intercellular Drug Release from a pH-Sensitive Polymeric Nanocarrier. Anal Chem 2018; 90:2170-2177. [DOI: 10.1021/acs.analchem.7b04511] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ting Zhou
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Teng Luo
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
27
|
Chen M, Wu W, Chen Y, Pan Q, Chen Y, Zheng Z, Zheng Y, Huang L, Weng S. A fluorescent sensor constructed from nitrogen-doped carbon nanodots (N-CDs) for pH detection in synovial fluid and urea determination. RSC Adv 2018; 8:41432-41438. [PMID: 35559313 PMCID: PMC9091950 DOI: 10.1039/c8ra08406h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
Blue luminescent nitrogen-doped carbon nanodots (N-CDs) with pH-dependent properties were prepared from citric acid (CA), glutathione (GSH), and polyethylene polyamine (PEPA) using a two-step pyrolytic route. The N-CDs showed stable and strong emission bands at approximately 455 nm under 350 nm excitation. Moreover, the fluorescence of N-CDs can be gradually decreased by gradually increasing the pH value. A good linear relationship between the fluorescence intensity of N-CDs and the pH range of 3.0–9.0 was obtained. Thus, the response mechanism of N-CDs to pH was systematically investigated. N-CDs possessed –NH2, –COOH, and –CONH– as active functional groups, which allowed the variable protonation/deprotonation of N-CDs to regulate the fluorescence emission intensities under changed pH values. Furthermore, upon combining urease-catalyzed hydrolysis of urea with increased pH values, a simple but effective fluorescence assay for urea was developed. The analytical performance for urea detection was the linear range of 0 to 10 mM with a detection limit of 0.072 mM. Additionally, the fluorescent sensor based on N-CDs was successfully applied for pH detection in synovial fluid and urea determination in serum. Blue luminescent nitrogen-doped carbon nanodots (N-CDs) with pH-dependent properties were prepared from citric acid (CA), glutathione (GSH), and polyethylene polyamine (PEPA) using a two-step pyrolytic route.![]()
Collapse
Affiliation(s)
- Min Chen
- Department of Orthopedic Surgery
- Fujian Medical University Union Hospital
- Fuzhou 350001
- China
| | - Wen Wu
- Department of Orthopedic Surgery
- Fujian Medical University Union Hospital
- Fuzhou 350001
- China
| | - Yuyuan Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy, Fujian Medical University
- Fuzhou 350122
- China
| | - Qingqing Pan
- Department of Pharmaceutical Analysis
- School of Pharmacy, Fujian Medical University
- Fuzhou 350122
- China
| | | | | | - Yanjie Zheng
- Department of Pharmaceutical Analysis
- School of Pharmacy, Fujian Medical University
- Fuzhou 350122
- China
| | - Liying Huang
- Department of Pharmaceutical Analysis
- School of Pharmacy, Fujian Medical University
- Fuzhou 350122
- China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis
- School of Pharmacy, Fujian Medical University
- Fuzhou 350122
- China
| |
Collapse
|
28
|
Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:115-126. [DOI: 10.1080/21691401.2017.1414825] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prateek Mathur
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| | - Swati Jha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| | - Suman Ramteke
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| | - N. K. Jain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Bhopal, India
| |
Collapse
|
29
|
Yue S, Sun X, Wang N, Wang Y, Wang Y, Xu Z, Chen M, Wang J. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39699-39707. [PMID: 29063750 DOI: 10.1021/acsami.7b13321] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.
Collapse
Affiliation(s)
- Shuai Yue
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Xiaoting Sun
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Ning Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Yaning Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Mingli Chen
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| |
Collapse
|
30
|
Xi W, Shrestha BK, Haes AJ. Promoting Intra- and Intermolecular Interactions in Surface-Enhanced Raman Scattering. Anal Chem 2017; 90:128-143. [DOI: 10.1021/acs.analchem.7b04225] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjing Xi
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Binaya K. Shrestha
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| |
Collapse
|
31
|
|
32
|
Li L, Yang X, Hu X, Lu Y, Wang L, Peng M, Xia H, Yin Q, Zhang Y, Han G. Multifunctional Cu 39S 28 Hollow Nanopeanuts for In Vivo Targeted Photothermal Chemotherapy. J Mater Chem B 2017; 5:6740-6751. [PMID: 29230291 PMCID: PMC5722029 DOI: 10.1039/c7tb01086a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Actively targeted hollow nanoparticles may play key roles in precise anti-cancer therapy. Here, unique Cu39S28 hollow nanopeanuts (HNPs) were synthesized via a facile one-step method and the formation mechanism was illustrated. The as-synthesized Cu39S28 HNPs exhibit outstanding photothermal conversion efficiency (41.1%) and drug storage capacity (DOX, 99.5 %). At the same time, the DOX drug loading nanocomposites have shown great sensitive response of release to either pH value or near infrared ray (NIR). In particular, the folic acid (FA) can easily conjugate with the synthesized Cu39S28 HNPs without further modification to get a targeted effect. The FA modified Cu39S28 HNPs showed an efficiently targeting effect in vitro and could considerably enhance the tumor-targeting effect more than 10 times in vivo. Moreover, the synthetical hyperthermia and drug release from Cu39S28 HNPs when under 808 nm laser could significantly improve the therapeutic efficacy compared with photothermal or chemotherapy alone both in vitro and in vivo. The histological studies in main organs also proved the well biocompatibility, while the tumor sites were in seriously destruction due to the accumulation of the nanocomposites and the combined photothermal chemo therapy effect. Therefore, the multi-functional nanocomposites is excellent antitumor agents due to their superb therapy effect in breast cancer.
Collapse
Affiliation(s)
- Lihua Li
- The China-Germany Research Center for Photonic Materials and Device, the State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, the School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
- Guangdong Key Lab of Orthopedic Technology and Implant, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Xianfeng Yang
- The China-Germany Research Center for Photonic Materials and Device, the State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, the School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xiaoming Hu
- Guangdong Key Lab of Orthopedic Technology and Implant, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Liping Wang
- The China-Germany Research Center for Photonic Materials and Device, the State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, the School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Mingying Peng
- The China-Germany Research Center for Photonic Materials and Device, the State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, the School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Hong Xia
- Guangdong Key Lab of Orthopedic Technology and Implant, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Qingshui Yin
- Guangdong Key Lab of Orthopedic Technology and Implant, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Yu Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant, Department of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
33
|
Rahoui N, Jiang B, Taloub N, Huang YD. Spatio-temporal control strategy of drug delivery systems based nano structures. J Control Release 2017; 255:176-201. [DOI: 10.1016/j.jconrel.2017.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
|
34
|
Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J. Markerfreie molekulare Bildgebung biologischer Zellen und Gewebe durch lineare und nichtlineare Raman-spektroskopische Ansätze. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christoph Krafft
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Michael Schmitt
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Iwan W. Schie
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Dana Cialla-May
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Thomas Bocklitz
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| |
Collapse
|
35
|
Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J. Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches. Angew Chem Int Ed Engl 2017; 56:4392-4430. [PMID: 27862751 DOI: 10.1002/anie.201607604] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/04/2016] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is an emerging technique in bioanalysis and imaging of biomaterials owing to its unique capability of generating spectroscopic fingerprints. Imaging cells and tissues by Raman microspectroscopy represents a nondestructive and label-free approach. All components of cells or tissues contribute to the Raman signals, giving rise to complex spectral signatures. Resonance Raman scattering and surface-enhanced Raman scattering can be used to enhance the signals and reduce the spectral complexity. Raman-active labels can be introduced to increase specificity and multimodality. In addition, nonlinear coherent Raman scattering methods offer higher sensitivities, which enable the rapid imaging of larger sampling areas. Finally, fiber-based imaging techniques pave the way towards in vivo applications of Raman spectroscopy. This Review summarizes the basic principles behind medical Raman imaging and its progress since 2012.
Collapse
Affiliation(s)
- Christoph Krafft
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Iwan W Schie
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Thomas Bocklitz
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
36
|
Fu Y, Feng Q, Chen Y, Shen Y, Su Q, Zhang Y, Zhou X, Cheng Y. Comparison of Two Approaches for the Attachment of a Drug to Gold Nanoparticles and Their Anticancer Activities. Mol Pharm 2016; 13:3308-17. [PMID: 27518201 DOI: 10.1021/acs.molpharmaceut.6b00619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yingjie Fu
- College
of Chemistry and Molecular Science, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Qishuai Feng
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Yifan Chen
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Yajing Shen
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Qihang Su
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Yinglei Zhang
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Xiang Zhou
- College
of Chemistry and Molecular Science, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yu Cheng
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| |
Collapse
|
37
|
Taylor J, Huefner A, Li L, Wingfield J, Mahajan S. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst 2016; 141:5037-55. [PMID: 27479539 PMCID: PMC5048737 DOI: 10.1039/c6an01003b] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
Abstract
Surface-enhanced Raman spectrocopy (SERS) offers ultrasensitive vibrational fingerprinting at the nanoscale. Its non-destructive nature affords an ideal tool for interrogation of the intracellular environment, detecting the localisation of biomolecules, delivery and monitoring of therapeutics and for characterisation of complex cellular processes at the molecular level. Innovations in nanotechnology have produced a wide selection of novel, purpose-built plasmonic nanostructures capable of high SERS enhancement for intracellular probing while microfluidic technologies are being utilised to reproducibly synthesise nanoparticle (NP) probes at large scale and in high throughput. Sophisticated multivariate analysis techniques unlock the wealth of previously unattainable biomolecular information contained within large and multidimensional SERS datasets. Thus, with suitable combination of experimental techniques and analytics, SERS boasts enormous potential for cell based assays and to expand our understanding of the intracellular environment. In this review we trace the pathway to utilisation of nanomaterials for intracellular SERS. Thus we review and assess nanoparticle synthesis methods, their toxicity and cell interactions before presenting significant developments in intracellular SERS methodologies and how identified challenges can be addressed.
Collapse
Affiliation(s)
- Jack Taylor
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| | - Anna Huefner
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK. and Sector for Biological and Soft Systems, Cavendish Laboratory, Department of Physics, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Li Li
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| | - Jonathan Wingfield
- Discovery Sciences, Screening and Compound Management, AstraZeneca, Unit 310 - Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Sumeet Mahajan
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
38
|
Pourjavadi A, Eskandari M, Hosseini SH, Nazari M. Synthesis of water dispersible reduced graphene oxide via supramolecular complexation with modified β-cyclodextrin. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1201766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mohammad Eskandari
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Seyed Hassan Hosseini
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mojtaba Nazari
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
39
|
Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells. Biosens Bioelectron 2016; 88:15-24. [PMID: 27321444 DOI: 10.1016/j.bios.2016.05.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023]
Abstract
One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm2), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm2). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation.
Collapse
|
40
|
|
41
|
|
42
|
Zhang Y, Xue Z, Wang J, Zhao X, Deng Y, Zhao W, Mu T. Controlled deposition of Pt nanoparticles on Fe3O4@carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural. RSC Adv 2016. [DOI: 10.1039/c6ra06792a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report core/shell structured magnetically recyclable catalysts with a well-defined spherical morphology. Using these as catalysts for the oxidation of HMF, a 100% yield of FDCA could be achieved in just 4 h at 90 °C in water .
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic Chemistry
- College of Materials Science and Technology
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Jinfang Wang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Xinhui Zhao
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Yonghui Deng
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
| | - Wancheng Zhao
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Tiancheng Mu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| |
Collapse
|