1
|
Chen Q, Cao J, Kong H, Chen R, Wang Y, Zhou P, Huang W, Cheng H, Li L, Gao S, Feng J. SERS biosensors based on catalytic hairpin self-assembly and hybridization chain reaction cascade signal amplification strategies for ultrasensitive microRNA-21 detection. Mikrochim Acta 2024; 191:468. [PMID: 39023836 DOI: 10.1007/s00604-024-06552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
A highly sensitive surface-enhanced Raman scattering (SERS) biosensor has been developed for the detection of microRNA-21 (miR-21) using an isothermal enzyme-free cascade amplification method involving catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR). The CHA reaction is triggered by the target miR-21, which causes hairpin DNA (C1 and C2) to self-assemble into CHA products. After AgNPs@Capture captures the resulting CHA product, the HCR reaction is started, forming long-stranded DNA on the surface of AgNPs. A strong SERS signal is generated due to the presence of a large amount of the Raman reporter methylene blue (MB) in the vicinity of the SERS "hot spot" on the surface of AgNPs. The monitoring of the SERS signal changes of MB allows for the highly sensitive and specific detection of miR-21. In optimal conditions, the biosensor exhibits a satisfactory linear range and a low detection limit for miR-21 of 42.3 fM. Additionally, this SERS biosensor shows outstanding selectivity and reproducibility. The application of this methodology to clinical blood samples allows for the differentiation of cancer patients from healthy controls. As a result, the CHA-HCR amplification strategy used in this SERS biosensor could be a useful tool for miRNA detection and early cancer screening.
Collapse
Affiliation(s)
- Qiying Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China
| | - Jinru Cao
- Dongguan Key Laboratory of Precision Molecular Diagnostics, Prenatal Diagnosis Center, Dongguan Songshan Lake Central Hospital, Dongguan, 523200, Guangdong, PR China
| | - Hongxing Kong
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Ruijue Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Ying Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Pei Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Si Gao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 257 Liushi Road, Yufeng District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
2
|
Younas R, Jubeen F, Bano N, Andreescu S, Zhang H, Hayat A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol Bioeng 2024; 121:2017-2049. [PMID: 38665008 DOI: 10.1002/bit.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Porous organic frameworks (POFs) represent a significant subclass of nanoporous materials in the field of materials science, offering exceptional characteristics for advanced applications. Covalent organic frameworks (COFs), as a novel and intriguing type of porous material, have garnered considerable attention due to their unique design capabilities, diverse nature, and wide-ranging applications. The unique structural features of COFs, such as high surface area, tuneable pore size, and chemical stability, render them highly attractive for various applications, including targeted and controlled drug release, as well as improving the sensitivity and selectivity of electrochemical biosensors. Therefore, it is crucial to comprehend the methods employed in creating COFs with specific properties that can be effectively utilized in biomedical applications. To address this indispensable fact, this review paper commences with a concise summary of the different methods and classifications utilized in synthesizing COFs. Second, it highlights the recent advancements in COFs for drug delivery, including drug carriers as well as the classification of drug delivery systems and biosensing, encompassing drugs, biomacromolecules, small biomolecules and the detection of biomarkers. While exploring the potential of COFs in the biomedical field, it is important to acknowledge the limitations that researchers may encounter, which could impact the practicality of their applications. Third, this paper concludes with a thought-provoking discussion that thoroughly addresses the challenges and opportunities associated with leveraging COFs for biomedical applications. This review paper aims to contribute to the scientific community's understanding of the immense potential of COFs in improving drug delivery systems and enhancing the performance of biosensors in biomedical applications.
Collapse
Affiliation(s)
- Rida Younas
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Punjab, Pakistan
| |
Collapse
|
3
|
Li X, Wang H, Qi X, Ji Y, Li F, Chen X, Li K, Li L. PCR Independent Strategy-Based Biosensors for RNA Detection. BIOSENSORS 2024; 14:200. [PMID: 38667193 PMCID: PMC11048163 DOI: 10.3390/bios14040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
RNA is an important information and functional molecule. It can respond to the regulation of life processes and is also a key molecule in gene expression and regulation. Therefore, RNA detection technology has been widely used in many fields, especially in disease diagnosis, medical research, genetic engineering and other fields. However, the current RT-qPCR for RNA detection is complex, costly and requires the support of professional technicians, resulting in it not having great potential for rapid application in the field. PCR-free techniques are the most attractive alternative. They are a low-cost, simple operation method and do not require the support of large instruments, providing a new concept for the development of new RNA detection methods. This article reviews current PCR-free methods, overviews reported RNA biosensors based on electrochemistry, SPR, microfluidics, nanomaterials and CRISPR, and discusses their challenges and future research prospects in RNA detection.
Collapse
Affiliation(s)
- Xinran Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Haoqian Wang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China;
| | - Xin Qi
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Yi Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Kai Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.Q.); (F.L.)
| |
Collapse
|
4
|
Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, Dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; 264:130817. [PMID: 38479669 DOI: 10.1016/j.ijbiomac.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Biosensors with nanomaterials and enzymes detect and quantify specific targets in samples, converting recognition into measurable signals. The study explores the intrinsic synergy between these elements for detecting and quantifying particular targets in biological and environmental samples, with results demonstrated through bibliometric analysis and a comprehensive review of enzyme-based biosensors. Using WoS, 57,331 articles were analyzed and refined to 880. Key journals, countries, institutions, and relevant authors were identified. The main areas highlighted the multidisciplinary nature of the field, and critical keywords identified five thematic clusters, revealing the primary nanoparticles used (CNTs, graphene, AuNPs), major application fields, basic application themes, and niche topics such as sensitive detection, peroxidase activity, and quantum dot utilization. The biosensor overview covered nanomaterials and their primary applications, addressing recent advances and inherent challenges. Patent analysis emphasized the U.S. leadership in the industrial sector, contrasting with China's academic prominence. Future studies should focus on enhancing biosensor portability and analysis speed, with challenges encompassing efficient integration with recent technologies and improving stability and reproducibility in the nanomaterial-enzyme interaction.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, CEP 60440-554 Fortaleza, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil.
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil.
| |
Collapse
|
5
|
Phan QH, Dinh QT, Pan YC, Huang YT, Hong ZH, Lu TS. Decomposition Mueller matrix polarimetry for enhanced miRNA detection with antimonene-based surface plasmon resonance sensor and DNA-linked gold nanoparticle signal amplification. Talanta 2024; 270:125611. [PMID: 38181598 DOI: 10.1016/j.talanta.2023.125611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
A decomposition Mueller matrix method is proposed for detection of miRNA and enhanced by using a surface plasmon resonance (SPR). In the proposed approach, a Mueller matrix decomposition method is employed to extract the linear birefringence (LB) and circular dichroism (CD) properties of the miRNA sample. The accuracy of the LB and CD measurements is enhanced through the use of a high-resolution antimonene-based SPR prism coupler with DNA-linked gold nanoparticles (AuNPs). The feasibility of the proposed method is demonstrated by measuring the LB orientation angle (α) and CD property (R) of two miRNA aqueous solutions (hsa-miR-125-5p and hsa-miR-21-5p) over the concentration range of 0∼1000 fM in both cases. The results show that, for both samples, α and R vary linearly with the change in the miRNA concentration. Furthermore, the values of α and R obtained for the two samples are quantifiably different, and hence the selectivity of the proposed SPR sensor is confirmed. Overall, the results highlight the potential of the proposed sensor as a valuable tool for miRNA detection with prospective applications in cancer diagnosis.
Collapse
Affiliation(s)
- Quoc-Hung Phan
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan.
| | - Quoc-Thinh Dinh
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| | - Yi-Cheng Pan
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| | - Yi-Ting Huang
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| | - Zi-Hao Hong
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| | - Tzu-Shiang Lu
- Mechanical Engineering Department, National United University, Miaoli 36063, Taiwan
| |
Collapse
|
6
|
Chen Q, Chen H, Kong H, Chen R, Gao S, Wang Y, Zhou P, Huang W, Cheng H, Li L, Feng J. Enzyme-free sensitive SERS biosensor for the detection of thalassemia-associated microRNA-210 using a cascade dual-signal amplification strategy. Anal Chim Acta 2024; 1292:342255. [PMID: 38309848 DOI: 10.1016/j.aca.2024.342255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND β-thalassemia is a blood disorder caused by autosomal mutations. Gene modulation therapy to activate the γ-globin gene to induce fetal hemoglobin (HbF) synthesis has become a new option for the treatment of β-thalassemia. MicroRNA-210 (miR-210) contributes to studying the mechanism regulating γ-globin gene expression and is a potential biomarker for rapid β-thalassemia screening. Traditional miRNA detection methods perform well but necessitate complex and time-consuming miRNA sample processing. Therefore, the development of a sensitive, accurate, and simple miRNA level monitoring method is essential. RESULTS We have developed a non-enzymatic surface-enhanced Raman scattering (SERS) biosensor utilizing a signal cascade amplification of catalytic hairpin assembly reaction (CHA) and proximity hybridization-induced hybridization chain reaction (HCR). Au@Ag NPs were used as the SERS substrate, and methylene blue (MB)- modified DNA hairpins were used as the SERS tags. The SERS assay involved two stages: implementing the CHA-HCR cascade signal amplification strategy and conducting SERS measurements on the resulting product. The HCR was started by the products of target-triggered CHA, which formed lengthy nicked double-stranded DNA (dsDNA) on the Au@Ag NPs surface to which numerous SERS tags were attached, leading to a significant increase in the SERS signal intensity. High specificity and sensitivity for miR-210 detection was achieved by monitoring MB SERS intensity changes. The suggested SERS biosensor has a low detection limit of 5.13 fM and is capable of detecting miR-210 at concentration between 10 fM and 1.0 nM. SIGNIFICANCE The biosensor can detect miR-210 levels in the erythrocytes of β-thalassemia patients, enabling rapid screening for β-thalassemia and suggesting a novel approach for investigating the regulation mechanism of miR-210 on γ-globin gene expression. In the meantime, this innovative technique has the potential to detect additional miRNAs and to become an important tool for the early diagnosis of diseases and for biomedical research.
Collapse
Affiliation(s)
- Qiying Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Huagan Chen
- Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001, Guangxi, PR China
| | - Hongxing Kong
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Ruijue Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Si Gao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Ying Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Pei Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China.
| |
Collapse
|
7
|
Qiu W, Zhang J, Ma N, Kong J, Zhang X. FADH 2-mediated radical polymerization amplification for microRNA-21 detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123548. [PMID: 37871544 DOI: 10.1016/j.saa.2023.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
For early diagnosis of disease, ultrasensitive mircoRNA-21 detection has considerable potential. In this paper, an ultra-sensitive fluorescence detection method for microRNA was developed by atom transfer radical polymerization (ATRP). This ATRP reaction was first initiated by using flavin mononucleotide (FADH2). The DNA probe 1 modified with amino group was fixed on the magnetic nanoparticle Fe3O4, and microRNA-21 was added to form the probe 1-microRNA-21. Another carboxy-modified DNA 2 forms a sandwich structure with the bound microRNA-21. Two terminally modified DNA types are used as microRNA probes, using complementary base pairing to form a stable super-sandwich structure between the DNA probe and the microRNA. Under optimal conditions, microRNA was detected in PBS buffer with a detection limit of 0.19 fM. And even in 10% of human serum, microRNA-21 can be detected with a detection limit of 47.8 fM. Results show that this method has high selectivity, efficiency and stability, which broad application prospect in microRNA ultra-sensitive detection.
Collapse
Affiliation(s)
- Wenhao Qiu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, PR China
| |
Collapse
|
8
|
Zhang B, Ma X, Xie L, Li X, Chen L, He B. A dual-cycle amplification-based electrochemical platform for sensitive detection of tobramycin. Anal Chim Acta 2023; 1279:341770. [PMID: 37827631 DOI: 10.1016/j.aca.2023.341770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Tobramycin (TOB), an essential aminoglycoside antibiotic in human life, poses potential threats due to its residues in the environment. The primary concern is the adverse impact of excessive TOB on human kidneys, hearing, and other organs, significantly affecting human health. Constructing a sensitive electrochemical platform for simple and rapid trace detection is crucial. Herein, to enhance the sensitivity of TOB detection in the environment and mitigate the risks associated with residual antibiotics, an ultrasensitive electrochemical aptasensor was developed. RESULTS The sensor employs a dual-cycle amplification strategy involving catalytic hairpin assembly (CHA) and exonuclease III (Exo III) for efficient signal amplification. Simultaneously, the electrode performance was optimized by incorporating gold nanowires (AuNWs) onto the surface of reduced graphene oxide (PDA-rGO). Specifically, in the presence of TOB, which binds to the aptamer (Apt), dsDNA dissociates, releasing cDNA to open hairpin 1 (HP1) and initiate the CHA cycle with the participation of hairpin 2 (HP2). Exo III shears HP1 in the HP1/HP2 complex, freeing HP2 to participate in the CHA cycle again. Ultimately, a significant amount of signal label is retained on the electrode by hybridizing with sheared HP1, generating a robust electrical signal. SIGNIFICANCE Through the signal amplification strategy, the aptasensor design provides a broad linear range of 0.005-500 nM, with a low detection limit of 0.112 pM for TOB. It is worth mentioning that the aptasensor displayed favorable stability, specificity, and reproducibility, and has been successfully applied to practical samples, demonstrating its utility in practical applications.
Collapse
Affiliation(s)
- Baozhong Zhang
- College of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Xinyue Ma
- College of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Lingling Xie
- College of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Xiquan Li
- College of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China.
| |
Collapse
|
9
|
Yang Y, Kong D, Wu Y, Chen Y, Dai C, Chen C, Zhao J, Luo S, Liu W, Liu Y, Wei D. Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection. Anal Chem 2023; 95:13281-13288. [PMID: 37610301 DOI: 10.1021/acs.analchem.3c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10-19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Chang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
11
|
DNA walking system integrated with enzymatic cleavage reaction for sensitive surface plasmon resonance detection of miRNA. Sci Rep 2022; 12:16093. [PMID: 36167754 PMCID: PMC9515148 DOI: 10.1038/s41598-022-20453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
Abnormal expression levels of miRNA are associated with various tumor diseases, for example, glioma tumors are characterized by the up-regulation of miRNA-182. Surface plasmon resonance (SPR) assay for miRNA-182 from glioma patients was performed via DNA walking amplification strategy. The duplex between aminated swing arm DNA (swDNA) and block DNA (blDNA), and aminated track DNA (trDNA) with a biotin tag were tethered on the poly(ethylene glycol) (PEG)-modified chips. Upon formation of miRNA/blDNA duplex, the SPR signal decreased with the walking process of swDNA, as the biotinylated fragment of trDNA (biotin-TTGGAGT) was detached from the sensor surface caused by the nicking endonuclease Nb.BbvCI. Such a repeated hybridization and cleavage cycle occurred continuously and the detachment of more biotinylated fragments of trDNA from the chips led to the attachment of fewer streptavidin (SA) molecules and then smaller SPR signals. MiRNA-182 with concentrations ranging from 5.0 fM to 1.0 pM could be readily determined and a detection limit of 0.62 fM was achieved. The proposed method was highly selective and possessed remarkable capability for evaluating the expression levels of miRNA-182 in serum samples from healthy donors and glioma patients. The sensing protocol holds great promise for early diagnosis of cancer patients.
Collapse
|
12
|
Hu X, Hu R, Zhu H, Chen Q, Lu Y, Chen J, Liu Y, Chen H. Nanozyme-based cascade SPR signal amplification for immunosensing of nitrated alpha-synuclein. Mikrochim Acta 2022; 189:367. [PMID: 36056240 DOI: 10.1007/s00604-022-05465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
A self-assembled nanozyme of iron porphyrin mediated supramolecular modified gold nanoparticles (FpA) was fabricated to determine nitrated alpha-synuclein as the Tyr 39 residue (nT39 α-Syn) of a potential biomarker for early diagnosis of Parkinson's disease (PD). Mechanically, localized surface plasmon resonance (LSPR) and the mass effect caused by catalytic deposition of the nanozyme contributed to a cascade signal amplification strategy. The sensor allowed a signal amplification and selective nT39 α-Syn bioanalysis with a 1.34-fold enhancement by cascade amplified SPR signal and double specific recognition. The detection limit was 1.78 ng/mL in the detection range of 7-240 ng/mL. Benefiting from the excellent immunosensor, this method can distinguish healthy people and PD patients using actual samples. Overall, this strategy provides a nanozyme-based biosensing platform for the early diagnosis of PD and can be applied to detect other protein biomarkers, such as PD-L1.
Collapse
Affiliation(s)
- Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ruhui Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Han Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qiang Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jie Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
13
|
Role of Nano-miRNAs in Diagnostics and Therapeutics. Int J Mol Sci 2022; 23:ijms23126836. [PMID: 35743278 PMCID: PMC9223810 DOI: 10.3390/ijms23126836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNA) are key regulators of gene expression, controlling different biological processes such as cellular development, differentiation, proliferation, metabolism, and apoptosis. The relationships between miRNA expression and the onset and progression of different diseases, such as tumours, cardiovascular and rheumatic diseases, and neurological disorders, are well known. A nanotechnology-based approach could match miRNA delivery and detection to move beyond the proof-of-concept stage. Different kinds of nanotechnologies can have a major impact on the diagnosis and treatment of miRNA-related diseases such as cancer. Developing novel methodologies aimed at clinical practice represents a big challenge for the early diagnosis of specific diseases. Within this context, nanotechnology represents a wide emerging area at the forefront of research over the last two decades, whose potential has yet to be fully attained. Nanomedicine, derived from nanotechnology, can exploit the unique properties of nanometer-sized particles for diagnostic and therapeutic purposes. Through nanomedicine, specific treatment to counteract only cancer-cell proliferation will be improved, while leaving healthy cells intact. In this review, we dissect the properties of different nanocarriers and their roles in the early detection and treatment of cancer.
Collapse
|
14
|
Singh A, Jain D, Pandey J, Yadav M, Bansal KC, Singh IK. Deciphering the role of miRNA in reprogramming plant responses to drought stress. Crit Rev Biotechnol 2022; 43:613-627. [PMID: 35469523 DOI: 10.1080/07388551.2022.2047880] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drought is the most prevalent environmental stress that affects plants' growth, development, and crop productivity. However, plants have evolved adaptive mechanisms to respond to the harmful effects of drought. They reprogram their: transcriptome, proteome, and metabolome that alter their cellular and physiological processes and establish cellular homeostasis. One of the crucial regulatory processes that govern this reprogramming is post-transcriptional regulation by microRNAs (miRNAs). miRNAs are small non-coding RNAs, involved in the downregulation of the target mRNA via translation inhibition/mRNA degradation/miRNA-mediated mRNA decay/ribosome drop off/DNA methylation. Many drought-inducible miRNAs have been identified and characterized in plants. Their main targets are regulatory genes that influence growth, development, osmotic stress tolerance, antioxidant defense, phytohormone-mediated signaling, and delayed senescence during drought stress. Overexpression of drought-responsive miRNAs (Osa-miR535, miR160, miR408, Osa-miR393, Osa-miR319, and Gma-miR394) in certain plants has led to tolerance against drought stress indicating their vital role in stress mitigation. Similarly, knock down (miR166/miR398c) or deletion (miR169 and miR827) of miRNAs has also resulted in tolerance to drought stress. Likewise, engineered Arabidopsis plants with miR165, miR166 using short tandem target mimic strategy, exhibited drought tolerance. Since miRNAs regulate the expression of an array of drought-responsive genes, they can act as prospective targets for genetic manipulations to enhance drought tolerance in crops and achieve sustainable agriculture. Further investigations toward functional characterization of diverse miRNAs, and understanding stress-responses regulated by these miRNAs and their utilization in biotechnological applications is highly recommended.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Deepti Jain
- Department of Plant Molecular Biology, Interdisciplinary Centre for Plant Genomics, Delhi University South Campus, New Delhi, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Manisha Yadav
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Kailash C Bansal
- The Alliance of Bioversity International and CIAT (CGIAR), New Delhi, India
| | - Indrakant K Singh
- Department of Zoology, Molecular Biology Research Lab, Deshbandhu College, University of Delhi, New Delhi, India.,DBC i4 Center, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
15
|
Catalytic hairpin assembled polymeric tetrahedral DNA frameworks for MicroRNA imaging in live cells. Biosens Bioelectron 2022; 197:113783. [PMID: 34775254 DOI: 10.1016/j.bios.2021.113783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Dynamic DNA nanodevices-based assembly is currently well developed for a broad range of analytical applications. However, some problems persist, such as false positives, nuclease digestions, and exclusive interferences with single signal in complex cellular environment. Herein, we have established a method for imaging cellular miR-155, where it induced assembly of two tetrahedral DNA frameworks (TDFs), TDF-1 and TDF-2, both of which had four fluorescence modified hairpins (Cy3 for TDF-1 and Cy5 for TDF-2, respectively) at each angle, into polymeric tetrahedral DNA frameworks (PTDFs). The formation of PTDFs was greatly dependent on miR-155 overexpressed in breast cancer cells since miR-155 drove catalytic hairpin assembly (CHA) reaction by opening the hairpins at the vertices of TDF-1 to hybridize with TDF-2. Upon the completion of hybridization, the miR-155 was released, starting the next cycle of the CHA reaction. Measurements of atomic force microscopy (AFM) and Förster resonance energy transfer (FRET) showed that the formation of PTDFs occurred owing to the multivalent assembly of TDF-1 and TDF-2. By utilizing the formation of PTDFs, miR-155 was detected in a linear range from 0.5 nM to 30 nM with a 0.35 nM limit of determination, enabling the successful imaging of endogenous miR-155 in live cells through the FRET signal from Cy3 to Cy5. These studies demonstrated that this method significantly strengthened the resistance nuclease to digestion and stable ability with exclusive interference.
Collapse
|
16
|
Wang L, Dai X, Feng Y, Zhao Q, Liu L, Xue C, Xiao L, Wang R. Dual Catalytic Hairpin Assembly-Based Automatic Molecule Machine for Amplified Detection of Auxin Response Factor-Targeted MicroRNA-160. Molecules 2021; 26:molecules26216432. [PMID: 34770841 PMCID: PMC8588017 DOI: 10.3390/molecules26216432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNA160 plays a crucial role in plant development by negatively regulating the auxin response factors (ARFs). In this manuscript, we design an automatic molecule machine (AMM) based on the dual catalytic hairpin assembly (D-CHA) strategy for the signal amplification detection of miRNA160. The detection system contains four hairpin-shaped DNA probes (HP1, HP2, HP3, and HP4). For HP1, the loop is designed to be complementary to miRNA160. A fragment of DNA with the same sequences as miRNA160 is separated into two pieces that are connected at the 3′ end of HP2 and 5′ end of HP3, respectively. In the presence of the target, four HPs are successively dissolved by the first catalytic hairpin assembly (CHA1), forming a four-way DNA junction (F-DJ) that enables the rearrangement of separated DNA fragments at the end of HP2 and HP3 and serving as an integrated target analogue for initiating the second CHA reaction, generating an enhanced fluorescence signal. Assay experiments demonstrate that D-CHA has a better performance compared with traditional CHA, achieving the detection limit as low as 10 pM for miRNA160 as deduced from its corresponding DNA surrogates. Moreover, non-target miRNAs, as well as single-base mutation targets, can be detected. Overall, the D-CHA strategy provides a competitive method for plant miRNAs detection.
Collapse
Affiliation(s)
- Lei Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Xing Dai
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Yujian Feng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Qiyang Zhao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Chang Xue
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Correspondence: (C.X.); (L.X.); (R.W.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
- Correspondence: (C.X.); (L.X.); (R.W.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
- Correspondence: (C.X.); (L.X.); (R.W.)
| |
Collapse
|
17
|
Wang W, Zhang C, Guo J, Li G, Ye B, Zou L. Sensitive electrochemical detection of oxytetracycline based on target triggered CHA and poly adenine assisted probe immobilization. Anal Chim Acta 2021; 1181:338895. [PMID: 34556208 DOI: 10.1016/j.aca.2021.338895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023]
Abstract
Here, we developed a homogeneous electrochemical biosensor for the sensitive determination of antibiotic by the CHA reaction and the consecutive adenine mediated probe fixation. The binding of target to the target recognition sequences in the triple-helix DNA can release the trigger. It can initiate the catalytic hairpin assembly (CHA) to generate lots of mimic targets, which were labeled with electroactive substance ferrocene (Fc). Because the generated mimic target has consecutive sequence of adenines (PolyA), they can be self-assembled on the AuNPs modified electrode and finally realize electrochemical detection. Under optimal conditions, this developed biosensor achieved a satisfactory limit of detection of 0.089 nM (S/N = 3) and a linear range from 0.1 nM to 100 nM for sensitive detection of oxytetracycline with good specificity. The whole process is carried out in homogeneous solution, not only realizes signal amplification, but also avoids the complex modification process of electrode surface. Compared with some reported electrochemical sensors, the method is easier to operate and has good precision.
Collapse
Affiliation(s)
- Weihang Wang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chi Zhang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jiaxin Guo
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
18
|
Yang H, Peng Y, Xu M, Xu S, Zhou Y. Development of DNA Biosensors Based on DNAzymes and Nucleases. Crit Rev Anal Chem 2021; 53:161-176. [PMID: 34225516 DOI: 10.1080/10408347.2021.1944046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA biosensors play important roles in environmental, medical, industrial and agricultural analysis. Many DNA biosensors have been designed based on the enzyme catalytic reaction. Because of the importance of enzymes in biosensors, we present a review on this topic. In this review, the enzymes were divided into DNAzymes and nucleases according to their chemical nature. Firstly, we introduced the DNAzymes with different function inducing cleavage, metalation, peroxidase, ligation and allosterism. In this section, the G-quadruplex DNAzyme, as a hot topic in recent years, was described in detail. Then, the nucleases-assisted signal amplification method was also reviewed in three categories including exonucleases, endonucleases and other nucleases according to the digestion sites in DNA substrates. In exonucleases section, the Exo I and Exo III were selected as examples. Then, the DNase I, BamH I, nicking endonuclease, S1 nuclease, the duplex specific nuclease (DSN) and RNases were chosen to illustrate the application of endonucleases. In other nucleases section, DNA polymerases and DNA ligases were detailed. Last, the challenges and future perspectives in the field were discussed.
Collapse
Affiliation(s)
- Hualin Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Peng
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mingming Xu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shuxia Xu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China.,College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
19
|
CRISPR/Cas13-Based Approaches for Ultrasensitive and Specific Detection of microRNAs. Cells 2021; 10:cells10071655. [PMID: 34359825 PMCID: PMC8307730 DOI: 10.3390/cells10071655] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) have a prominent role in virtually every aspect of cell biology. Due to the small size of mature miRNAs, the high degree of similarity between miRNA family members, and the low abundance of miRNAs in body fluids, miRNA expression profiling is technically challenging. Biosensors based on electrochemical detection for nucleic acids are a novel category of inexpensive and very sensitive diagnostic tools. On the other hand, after recognizing the target sequence, specific CRISPR-associated proteins, including orthologues of Cas12, Cas13, and Cas14, exhibit collateral nonspecific catalytic activities that can be employed for specific and ultrasensitive nucleic acid detection from clinically relevant samples. Recently, several platforms have been developed, connecting the benefits of enzyme-assisted signal amplification and enzyme-free amplification biosensing technologies with CRISPR-based approaches for miRNA detection. Together, they provide high sensitivity, precision, and fewer limitations in diagnosis through efficient sensors at a low cost and a simple miniaturized readout. This review provides an overview of several CRISPR-based biosensing platforms that have been developed and successfully applied for ultrasensitive and specific miRNA detection.
Collapse
|
20
|
Huang Y, Sun T, Liu L, Xia N, Zhao Y, Yi X. Surface plasmon resonance biosensor for the detection of miRNAs by combining the advantages of homogeneous reaction and heterogeneous detection. Talanta 2021; 234:122622. [PMID: 34364431 DOI: 10.1016/j.talanta.2021.122622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
The hybridization and enzymolysis reactions for nucleic acid detection were carried out on the chip surface in the traditional surface plasmon resonance (SPR) biosensors. Herein, we proposed an innovative method for microRNA (miRNA) detection in which the hybridization-enzymolysis recycling reactions were performed in solution. Duplex-specific nuclease (DSN) and streptavidin-modified gold nanoparticles (SA-AuNPs) were employed for enhancing the assay sensitivity. In the absence of miRNA, the biotinylated DNA probe (bio-DNA-bio, biotin tags at both the 3' and 5' termini of DNA) was attached to the SA-modified chip through the SA-biotin binding, allowing the capture of SA-AuNPs with the same interaction. As a result, a larger SPR signal was attained. However, in the presence of miRNA, bio-DNA-bio hybridized with miRNA was digested by DSN. In this process, the miRNA strand remained intact and participated in the next hybridization-enzymolysis recycling process. Thus, one miRNA could promote the hydrolysis of many bio-DNA-bio probes and allow the generation of numerous bio-DNA fragments. Meanwhile, the produced bio-DNA competed with the undigested bio-DNA-bio to bind SA on the chip surface. The digestion of bio-DNA-bio and the competitive binding between bio-DNA-bio and bio-DNA led to the attachment of fewer SA-AuNPs and then smaller SPR signals. The change in SPR signal at the concentration as low as 1 fM miRNA has been readily determined. The strategy possessed the advantageous properties of simple operation, fast response, high sensitivity and excellent specificity, serving as a viable means for the fabrication of novel sensing platforms.
Collapse
Affiliation(s)
- Yaliang Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Ting Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; School of Chemistry and Materials Science, Guizhou Education University, Gao Xin Road 115, Wudang District, Guizhou, 550000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Yuehua Zhao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China.
| |
Collapse
|
21
|
Chang YF, Chou YT, Cheng CY, Hsu JF, Su LC, Ho JAA. Amplification-free Detection of Cytomegalovirus miRNA Using a Modification-free Surface Plasmon Resonance Biosensor. Anal Chem 2021; 93:8002-8009. [PMID: 34024100 DOI: 10.1021/acs.analchem.1c01093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytomegalovirus (CMV) is the most frequent cause of congenital infection worldwide; congenital CMV may lead to significant mortality, morbidity, or long-term sequelae, such as sensorineural hearing loss. The current study presents a newly designed surface plasmon resonance (SPR) biosensor for CMV-specific microRNAs that does not involve extra care for receptor immobilization or treatment to prevent fouling on bare gold surfaces. The modification-free approach, which utilizes a poly-adenine [poly(A)]-Au interaction, exhibited a high affinity that was comparable to that of the gold-sulfur (Au-S) interaction. In addition, magnetic nanoparticles (MNPs) were used to separate the analyte from complex sample matrixes that significantly reduced nonspecific adsorption. Moreover, the MNPs also played an important role in SPR signal amplification due to the binding-induced change in the refractive index. Our SPR biosensing platform was used successfully for the multi-detection of the microRNAs, UL22A-5p, and UL112-3p, which were associated with CMV. Our SPR biosensor offered the detection limits of 108 fM and 24 fM for UL22A-5p and UL112-3p, respectively, with an R2 of 0.9661 and 0.9985, respectively. The precision of this biosensor has an acceptable CV (coefficient of variation) value of <10%. In addition, our sensor is capable of discriminating between serum samples collected from healthy and CMV-infected newborns. Taken together, we believe that our newly developed SPR biosensing platform is a promising alternative for the diagnosis of CMV-specific microRNA in clinical settings, and its application for the detection of other miRNAs may be extended further.
Collapse
Affiliation(s)
- Ying-Feng Chang
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan.,Artificial Intelligence Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Te Chou
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Yu Cheng
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Jen-Fu Hsu
- Division of Pediatric Neonatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Chen Su
- General Education Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan.,Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
22
|
Bodulev OL, Zhao S, Sakharov IY. Improving the Sensitivity of the miRNA Assay Coupled with the Mismatched Catalytic Hairpin Assembly Reaction by Optimization of Hairpin Annealing Conditions. Anal Chem 2021; 93:6824-6830. [PMID: 33899474 DOI: 10.1021/acs.analchem.1c00820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mismatched catalytic hairpin assembly (mCHA), a programmable oligonucleotide circuit, is one of the promising isothermal amplification methods used in nucleic acid detection. Its limitations are related to a high background noise observed due to the target-independent hybridization of the reacting hairpins (HPs). In this work, it was shown that the introduction of salts such as NaCl and MgCl2 to HP1/HP2 annealing solutions sharply reduces the background in mCHA and simultaneously increases the signal-to-background (S/B) ratio. A comparison of the salts demonstrated the higher activity of MgCl2 as compared to NaCl. A similar effect of reducing the background was observed with a decrease in the concentration of H1/H2 probes in annealing solutions. Using the favorable annealing conditions allowed the development of an ultrasensitive chemiluminescence assay coupled with mCHA for miRNA quantitation. Except mCHA, the use of a streptavidin-polyHRP conjugate and an enhanced chemiluminescence reaction additionally increased the assay sensitivity. Notably, the optimization of the HP annealing diminished the detection limit of the assay by 2 orders of magnitude and increased the sensitivity and precision of miRNA-141 determination. The discovered fact of reducing the background by the variation of HP annealing conditions may be valuable not only for the mCHA performance but also likely for other HP-based biochemical methods.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, bldg. 1, Moscow 119991, Russia
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, bldg. 1, Moscow 119991, Russia
| |
Collapse
|
23
|
Hairpin DNA-Mediated isothermal amplification (HDMIA) techniques for nucleic acid testing. Talanta 2021; 226:122146. [PMID: 33676697 DOI: 10.1016/j.talanta.2021.122146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
Nucleic acid detection is of great importance in a variety of areas, from life science and clinical diagnosis to environmental monitoring and food safety. Unfortunately, nucleic acid targets are always found in trace amounts and their response signals are difficult to be detected. Amplification mechanisms are then practically needed to either duplicate nucleic acid targets or enhance the detection signals. Polymerase chain reaction (PCR) is one of the most popular and powerful techniques for nucleic acid analysis. But the requirement of costly devices for precise thermo-cycling procedures in PCR has severely hampered the wide applications of PCR. Fortunately, isothermal molecular reactions have emerged as promising alternatives. The past decade has witnessed significant progress in the research of isothermal molecular reactions utilizing hairpin DNA probes (HDPs). Based on the nucleic acid strand interaction mechanisms, the hairpin DNA-mediated isothermal amplification (HDMIA) techniques can be mainly divided into three categories: strand assembly reactions, strand decomposition reactions, and strand creation reactions. In this review, we introduce the basics of HDMIA methods, including the sensing principles, the basic and advanced designs, and their wide applications, especially those benefiting from the utilization of G-quadruplexes and nanomaterials during the past decade. We also discuss the current challenges encountered, highlight the potential solutions, and point out the possible future directions in this prosperous research area.
Collapse
|
24
|
Cui L, Zhou J, Yang XY, Dong J, Wang X, Zhang CY. Catalytic hairpin assembly-based electrochemical biosensor with tandem signal amplification for sensitive microRNA assay. Chem Commun (Camb) 2021; 56:10191-10194. [PMID: 32748919 DOI: 10.1039/d0cc04855k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We demonstrate for the first time the construction of a low background electrochemical biosensor with tandem signal amplification for sensitive microRNA assay based on target-activated catalytic hairpin assembly (CHA) of heteroduplex-templated copper nanoparticles. This electrochemical biosensor exhibits high sensitivity, good specificity, single-base mismatch discrimination capability, excellent stability and reproducibility, and it can sensitively detect microRNA in cancer cells.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Jinghua Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Xiao-Yun Yang
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jing Dong
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
| | - Xiaolei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
25
|
Xu Y, Wang X, Chen H, Chen L, Chen W, Yin X, Liu A, Lin X, Weng S, Zheng Y. A facile approach for fabrication of three-dimensional platinum-nanoporous gold film and its application for sensitive detection of microRNA-126 combining with catalytic hairpin assembly reaction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Lertvachirapaiboon C, Baba A, Shinbo K, Kato K. Dual-mode surface plasmon resonance sensor chip using a grating 3D-printed prism. Anal Chim Acta 2020; 1147:23-29. [PMID: 33485581 DOI: 10.1016/j.aca.2020.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
The method for fabricating a grating prism surface plasmon resonance (SPR) sensor chip was developed. The grating prism was 3D-printed by a stereolithography 3D printer and subsequently created a grating pattern by soft lithography. A gold film was thermally evaporated on the grating prism. Moreover, a liquid cell was 3D-printed and assembled into a gold-coated grating prism. To make the sensor chip compact and practical, a compatible prism holder was 3D-printed by a fused deposition model 3D printer. The SPR sensor chip was mounted on the rotation stage and the SPR spectrum was recorded by spectrometer. The SPR excitation of the sensor chip can be extended to the near-infrared region by creating a grating pattern on the prism surface. A gold-coated grating prism exhibited dual modes of SPR excitations, namely, prism-coupling SPR (PC-SPR) and grating-coupling SPR (GC-SPR). The dual-mode SPR excitation was observed at the incident angles of 45°-80°. When the incident angle increased, the SPR excitation of the PC-SPR mode exhibited a blue shift in the wavelength region of 480-690 nm, whereas the GC-SPR mode exhibited a red shift in the wavelength region of 670-770 nm. The surface plasmon (SP) dispersion obtained from the dual-mode SPR configuration confirmed observable PC-SPR (which corresponded to + SP0 of the gold-resin interface) and GC-SPR (which corresponded to -SP+1 of the gold-air interface), which could be excited from the developed substrate. The refractive index sensitivities of the PC-SPR and GC-SPR modes were 2924.4 and 414.9 nm RIU-1, respectively. The SPR excitations of the sensor chip exhibited a simultaneous shift when the local refractive index of the materials adjacent to the gold-coated grating prism surface was changed, especially the material that had overlapping light absorption at the SPR excitation wavelength. Using this fabrication process, the prism is designed and then printed; moreover, the grating pattern on the prism surface can be employed to tune the SPR excitation wavelength of the sensor chip for the versatility and broad perspective of the optical sensing-based SPR.
Collapse
Affiliation(s)
- Chutiparn Lertvachirapaiboon
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata, 950-2181, Japan.
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata, 950-2181, Japan.
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata, 950-2181, Japan
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
27
|
Nangare SN, Patil PO. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for In Vitro Diagnosis: A Review. ACS Biomater Sci Eng 2020; 7:2-30. [DOI: 10.1021/acsbiomaterials.0c01203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sopan N. Nangare
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| | - Pravin O. Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| |
Collapse
|
28
|
Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, Guardia MDL. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron 2020; 169:112599. [DOI: 10.1016/j.bios.2020.112599] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
|
29
|
Falkowski P, Lukaszewski Z, Gorodkiewicz E. Potential of surface plasmon resonance biosensors in cancer detection. J Pharm Biomed Anal 2020; 194:113802. [PMID: 33303267 DOI: 10.1016/j.jpba.2020.113802] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
A review is made of 71 papers on surface plasmon resonance biosensors, published between 2005 and 2020, mostly in the last decade. The reviewed papers are divided into two groups, depending on the validation of the developed biosensor. Validated biosensors are briefly characterized, while those that are not validated are listed in a table. Focus is placed on applications of SPR biosensors in testing the effectiveness of cancer markers and in the discovery of new cancer markers. Seven new markers are proposed, two of them having high sensitivity and diagnostic selectivity as determined by ROC curves. Papers concerning the determination of micro RNA and large particles such as vesicles, exosomes and cancer cells are also reviewed.
Collapse
Affiliation(s)
- Pawel Falkowski
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Zenon Lukaszewski
- Poznan University of Technology, Faculty of Chemical Technology, Poland
| | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
30
|
Real-time and rapid quantification of microRNAs in cells and tissues using target-recycled enzyme-free amplification strategy. Talanta 2020; 217:121016. [DOI: 10.1016/j.talanta.2020.121016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
|
31
|
Sensitive, enzyme-free and label-free electrochemical sensor for K-ras G12D point mutation detection based on double cascade amplification reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
“Signal-on” SERS sensing platform for highly sensitive and selective Pb2+ detection based on catalytic hairpin assembly. Anal Chim Acta 2020; 1127:106-113. [DOI: 10.1016/j.aca.2020.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
|
33
|
Label-free and self-assembled fluorescent DNA nanopompom for determination of miRNA-21. Mikrochim Acta 2020; 187:432. [PMID: 32638088 DOI: 10.1007/s00604-020-04377-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
34
|
Zhao LL, Pan HY, Zhang XX, Zhou YL. Ultrasensitive detection of microRNA based on a homogeneous label-free electrochemical platform using G-triplex/methylene blue as a signal generator. Anal Chim Acta 2020; 1116:62-69. [DOI: 10.1016/j.aca.2020.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/09/2023]
|
35
|
Sun J, Sun X. Recent advances in the construction of DNA nanostructure with signal amplification and ratiometric response for miRNA sensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Target-fueled catalytic hairpin assembly for sensitive and multiplex microRNA detection. Anal Bioanal Chem 2020; 412:3019-3027. [PMID: 32232523 DOI: 10.1007/s00216-020-02531-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
As a typical strand displacement-based DNA circuit, the catalytic hairpin assembly (CHA) has the potential to transduce and amplify signals for analytical applications, but little practice has been fulfilled in Luminex-based multiple microRNAs (miRNAs) detection. Here, we proposed a target-fueled CHA-based platform for sensitive and multiple miRNAs detection, by virtue of the multiplex characteristic of the Luminex xMAP platform. The cyclic use of target miRNA, which forms a substantial amount of H1-H2 duplexes, has amplified the fluorescent response to achieve sensitive sensing. Key experimental conditions including hairpin probe concentrations, reaction temperature, and concentration of SA-PE were optimized. Liver tumor-related miRNA-21, miRNA-122, and miRNA-222 could be simultaneously detected with LOD of 2 pM. Overall, the proposed method first combined CHA with the Luminex xMAP system to construct a sensitive sensing platform suitable for multiple miRNAs detection in real sample analysis, which could potentially be applied in biomedical research and clinical diagnosis. Graphical abstract.
Collapse
|
37
|
Zhang XL, Yang ZH, Chang YY, Liu D, Li YR, Chai YQ, Zhuo Y, Yuan R. Programmable mismatch-fueled high-efficiency DNA signal converter. Chem Sci 2019; 11:148-153. [PMID: 32110366 PMCID: PMC7012037 DOI: 10.1039/c9sc05084a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Herein, by directly introducing mismatched reactant DNA, high-reactivity and high-threshold enzyme-free target recycling amplification (EFTRA) is explored. The developed high-efficiency EFTRA (HEEFTRA) was applied as a programmable DNA signal converter, possessing higher conversion efficiency than the traditional one with perfect complement owing to the more negative reaction standard free energy (ΔG). Once traces of input target miRNA interact with the mismatched reactant DNA, amounts of ferrocene (Fc)-labeled output DNA could be converted via the EFTRA. Impressively, the Fc-labeled output DNA could be easily captured by the DNA tetrahedron nanoprobes (DTNPs) on the electrode surface to form triplex-forming oligonucleotide (TFO) at pH = 7.0 for sensitive electrochemical signal generation and the DTNPs could be regenerated at pH = 10.0, from which the conversion efficiency (N) will be accurately obtained, benefiting the selection of suitable mismatched bases to obtain high-efficiency EFTRA (HEEFTRA). As a proof of concept, the HEEFTRA as an evolved DNA signal converter is successfully applied for the ultrasensitive detection of miRNA-21, which gives impetus to the design of other signal converters with excellent efficiency for ultimate applications in sensing analysis, clinical diagnosis, and other areas.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ; ;
| | - Zhe-Han Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ; ;
| | - Yuan-Yuan Chang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ; ;
| | - Di Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ; ;
| | - Yun-Rui Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ; ;
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ; ;
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ; ;
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry , Ministry of Education , College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China . ; ;
| |
Collapse
|
38
|
Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced Evanescent-Wave Optical Biosensors for the Detection of Nucleic Acids: An Analytic Perspective. Front Chem 2019; 7:724. [PMID: 31709240 PMCID: PMC6823211 DOI: 10.3389/fchem.2019.00724] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Evanescent-wave optical biosensors have become an attractive alternative for the screening of nucleic acids in the clinical context. They possess highly sensitive transducers able to perform detection of a wide range of nucleic acid-based biomarkers without the need of any label or marker. These optical biosensor platforms are very versatile, allowing the incorporation of an almost limitless range of biorecognition probes precisely and robustly adhered to the sensor surface by covalent surface chemistry approaches. In addition, their application can be further enhanced by their combination with different processes, thanks to their integration with complex and automated microfluidic systems, facilitating the development of multiplexed and user-friendly platforms. The objective of this work is to provide a comprehensive synopsis of cutting-edge analytical strategies based on these label-free optical biosensors able to deal with the drawbacks related to DNA and RNA detection, from single point mutations assays and epigenetic alterations, to bacterial infections. Several plasmonic and silicon photonic-based biosensors are described together with their most recent applications in this area. We also identify and analyse the main challenges faced when attempting to harness this technology and how several innovative approaches introduced in the last years manage those issues, including the use of new biorecognition probes, surface functionalization approaches, signal amplification and enhancement strategies, as well as, sophisticated microfluidic solutions.
Collapse
Affiliation(s)
- Cesar S. Huertas
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| |
Collapse
|
39
|
Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly. Biosens Bioelectron 2019; 143:111619. [DOI: 10.1016/j.bios.2019.111619] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
|
40
|
Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H. Applications of Catalytic Hairpin Assembly Reaction in Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902989. [PMID: 31523917 DOI: 10.1002/smll.201902989] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/15/2019] [Indexed: 05/26/2023]
Abstract
Nucleic acids are considered as perfect programmable materials for cascade signal amplification and not merely as genetic information carriers. Among them, catalytic hairpin assembly (CHA), an enzyme-free, high-efficiency, and isothermal amplification method, is a typical example. A typical CHA reaction is initiated by single-stranded analytes, and substrate hairpins are successively opened, resulting in thermodynamically stable duplexes. CHA circuits, which were first proposed in 2008, present dozens of systems today. Through in-depth research on mechanisms, the CHA circuits have been continuously enriched with diverse reaction systems and improved analytical performance. After a short time, the CHA reaction can realize exponential amplification under isothermal conditions. Under certain conditions, the CHA reaction can even achieve 600 000-fold signal amplification. Owing to its promising versatility, CHA is able to be applied for analysis of various markers in vitro and in living cells. Also, CHA is integrated with nanomaterials and other molecular biotechnologies to produce diverse readouts. Herein, the varied CHA mechanisms, hairpin designs, and reaction conditions are introduced in detail. Additionally, biosensors based on CHA are presented. Finally, challenges and the outlook of CHA development are considered.
Collapse
Affiliation(s)
- Jumei Liu
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361006, P. R. China
| | - Li Zhao
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
41
|
Cao Z, Duan F, Huang X, Liu Y, Zhou N, Xia L, Zhang Z, Du M. A multiple aptasensor for ultrasensitive detection of miRNAs by using covalent-organic framework nanowire as platform and shell-encoded gold nanoparticles as signal labels. Anal Chim Acta 2019; 1082:176-185. [PMID: 31472706 DOI: 10.1016/j.aca.2019.07.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023]
Abstract
We report herein a novel multiple electrochemical aptasensor based on covalent-organic framework (COF) for sensitive and simultaneous detection of miRNA 155 and miRNA 122, by using shell-encoded gold nanoparticles (Au NPs) as signal labels (AgNCs@AuNPs and Cu2O@AuNPs, respectively, NCs = nanoclusters). A new COF nanowire was synthesized via condensation polymerization of 1,3,6,8-tetra(4-carboxylphenyl)pyrene and melamine (represented by TBAPy-MA-COF-COOH) for multiple aptasensor fabrication. The nanowire was then used as a platform for anchoring single-strand DNA (ssDNA), which was hybridized with the complementary aptamer (cApt) probes of miRNA 155 and miRNA 122. AgNCs@AuNPs and Cu2O@AuNPs modified with cApts show separated differential pulse voltammetry (DPV) peaks at 0.08 and -0.1 V, respectively. The signal labels immobilized with cApts were released from the hybridized DNA complex and bound to their corresponding targets when contacting miRNAs. This phenomenon results in the substantial decline of the DPV peak current density of the signal labels. The developed TBAPy-MA-COF-COOH-based aptasensor has superior performance for sensing miRNA 155 and miRNA 122 simultaneously, with ultrasensitive low detection limits of 6.7 and 1.5 fM (S/N = 3), respectively, a wide linear range of 0.01-1000 pM, and high selectivity and applicability for serum samples. The proposed TBAPy-MA-based aptasensor demonstrates potential for simultaneous detection of multiple cancer biomarkers by replacing other ssDNA and aptamer strands.
Collapse
Affiliation(s)
- Zhengming Cao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Fenghe Duan
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou, University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Xiaoyu Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China.
| | - Lei Xia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou, University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China.
| | - Miao Du
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou, University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China.
| |
Collapse
|
42
|
Chen Z, Xie Y, Huang W, Qin C, Yu A, Lai G. Exonuclease-assisted target recycling for ultrasensitive electrochemical detection of microRNA at vertically aligned carbon nanotubes. NANOSCALE 2019; 11:11262-11269. [PMID: 31162522 DOI: 10.1039/c9nr02543j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As an important biomarker for early disease diagnosis, microRNA-21 (miRNA-21) has attracted considerable attention owing to its accurate detection. Herein we combine the one-step biorecognition reaction at a vertically aligned nanostructure-based biosensor with the T7 exonuclease (Exo)-assisted target recycling to develop a novel electrochemical bioassay method for miRNA-21 detection. The vertically aligned nanointerface is constructed through the covalent attachment of terminally carboxylated single-walled carbon nanotubes (SWCNTs) at an aryldiazonium salt-modified electrode, which enables the noncovalent adsorption of a ferrocene-labeled single-stranded signal DNA to obtain the biosensor. Upon its incubation with a target miRNA-21 solution, DNA/RNA hybridized duplexes will form and release from the electrode surface, leading to the corresponding electrochemical signal decrease of the biosensor. Moreover, this biorecognition reaction can also trigger the T7 Exo-assisted target recycling to achieve great signal amplification. Together with the highly efficient biorecognition and excellent electron transfer promotion at the vertically aligned SWCNTs, this biosensor exhibits a wide linear range varying from 0.01 to 100 pM and a low detection limit down to 3.5 fM. Considering its obvious performance superiority and convenient manipulations, this vertically aligned SWCNT-based electrochemical biosensing method has extensive potential for practical applications.
Collapse
Affiliation(s)
- Zhichao Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | - Chuanying Qin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | - Aimin Yu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China. and Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn VIC 3122, Australia
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
43
|
Zhu CS, Zhu L, Tan DA, Qiu XY, Liu CY, Xie SS, Zhu LY. Avenues Toward microRNA Detection In Vitro: A Review of Technical Advances and Challenges. Comput Struct Biotechnol J 2019; 17:904-916. [PMID: 31346383 PMCID: PMC6630062 DOI: 10.1016/j.csbj.2019.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023] Open
Abstract
Over the decades, the biological role of microRNAs (miRNAs) in the post-transcriptional regulation of gene expression has been discovered in many cancer types, thus initiating the tremendous expectation of their application as biomarkers in the diagnosis, prognosis, and treatment of cancer. Hence, the development of efficient miRNA detection methods in vitro is in high demand. Extensive efforts have been made based on the intrinsic properties of miRNAs, such as low expression levels, high sequence homology, and short length, to develop novel in vitro miRNA detection methods with high accuracy, low cost, practicality, and multiplexity at point-of-care settings. In this review, we mainly summarized the newly developed in vitro miRNA detection methods classified by three key elements, including biological recognition elements, additional micro-/nano-materials and signal transduction/readout elements, their current challenges and further applications are also discussed.
Collapse
Affiliation(s)
- Chu-shu Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
- Corresponding authors.
| | - De-an Tan
- Department of Clinical Laboratory, Hospital of National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Xin-yuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Chuan-yang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Si-si Xie
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Lv-yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
- Corresponding authors.
| |
Collapse
|
44
|
Zeng J, Gan N, Zhang K, He L, Lin J, Hu F, Cao Y. Zero background and triple-signal amplified fluorescence aptasensor for antibiotics detection in foods. Talanta 2019; 199:491-498. [PMID: 30952289 DOI: 10.1016/j.talanta.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
It's important to eliminate matrix interference for accurate detecting antibiotic residues in complex food samples. In this study, we designed a zero-backgrounded fluorescence aptasensor to achieve on-site detection of antibiotic residues, with chloramphenicol (CAP) as representative analyte. Moreover, a three stir-bars assisted target recycling system (TSBTR) was designed to achieve triple signal amplification and increase the sensitivity. The bars included one magnetic stir-bar modified with two kinds of long DNA chains, and two gold stir-bars modified with Y shape-duplex DNA probes respectively. In the presence of CAP, the target could recurrently react with the probes on the bars and replace a large amount of long DNA chains into supernatant. After then, the bars were taken out and SYBR green dye was added to the solution. The dye can specifically intercalate into the duplex structures of DNA chains to emit fluorescence while not emitting a signal in its free state. Under the optimized experimental conditions, a wide linear response range of 5 orders of magnitude from 0.001 ng mL-1 to 10 ng mL-1 was achieved with a detection limit of 0.033 pg mL-1 CAP. The assay was successfully employed to detect CAP in food samples (milk & fish) with consistent results with ELISA's. High selectivity and sensitivity were attributed to the zero background signal and triple signal-amplification strategy. Moreover, the detection time can be shortened to 40 min due to that three signal amplified process can occur simultaneously. The fluorescent aptasensor was also label- and enzyme-free. All these ensure the platform to be rapid, cost-effective, easily-used, and is especially appropriate for detection antibiotics in food safety.
Collapse
Affiliation(s)
- Jin Zeng
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China.
| | - Kai Zhang
- Faculty of marine, Ningbo University, Ningbo 315211, China
| | - Liyong He
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Jianyuan Lin
- School of food and environment, Zhejiang wanli university, Ningbo 315200, China
| | - Futao Hu
- Faculty of marine, Ningbo University, Ningbo 315211, China.
| | - Yuting Cao
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
45
|
Tian R, Ning W, Chen M, Zhang C, Li Q, Bai J. High performance electrochemical biosensor based on 3D nitrogen-doped reduced graphene oxide electrode and tetrahedral DNA nanostructure. Talanta 2019; 194:273-281. [DOI: 10.1016/j.talanta.2018.09.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/19/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023]
|
46
|
Chang CC, Wang G, Takarada T, Maeda M. Target-Recycling-Amplified Colorimetric Detection of Pollen Allergen Using Non-Cross-Linking Aggregation of DNA-Modified Gold Nanoparticles. ACS Sens 2019; 4:363-369. [PMID: 30628432 DOI: 10.1021/acssensors.8b01156] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increasing prevalence of pollen allergies has raised concerns about human health. Development of a facile and precise method to detect pollen allergens would thus be of significance for environmental assessments and medical diagnoses. Here we report a sensitive colorimetric method to detect the Japanese cedar pollen allergen, Cry j 2. The method consists of two steps: a signal amplification based on the catalytic DNA hairpin self-assembly, followed by a signal transduction using the salt-induced non-cross-linking aggregation of gold nanoparticles densely modified with short DNA. The assay exhibits a detection limit of 0.2 ng/mL, which is 130-fold greater than that of the previously reported one. Moreover, the assay enables the detection of Cry j 2 spiked in soil solutions by avoiding any interference from the contaminants. The signal amplification system includes an anti-Cry j 2 DNA aptamer, which accounts for the absence of false responses to five nontarget allergen proteins. The present method could be of general applicability to various proteins by using appropriate aptamers.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31057, Taiwan
| | - Guoqing Wang
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Tohru Takarada
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
47
|
Simmel FC, Yurke B, Singh HR. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem Rev 2019; 119:6326-6369. [PMID: 30714375 DOI: 10.1021/acs.chemrev.8b00580] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic DNA nanotechnology, a subfield of DNA nanotechnology, is concerned with the study and application of nucleic acid strand-displacement reactions. Strand-displacement reactions generally proceed by three-way or four-way branch migration and initially were investigated for their relevance to genetic recombination. Through the use of toeholds, which are single-stranded segments of DNA to which an invader strand can bind to initiate branch migration, the rate with which strand displacement reactions proceed can be varied by more than 6 orders of magnitude. In addition, the use of toeholds enables the construction of enzyme-free DNA reaction networks exhibiting complex dynamical behavior. A demonstration of this was provided in the year 2000, in which strand displacement reactions were employed to drive a DNA-based nanomachine (Yurke, B.; et al. Nature 2000, 406, 605-608). Since then, toehold-mediated strand displacement reactions have been used with ever increasing sophistication and the field of dynamic DNA nanotechnology has grown exponentially. Besides molecular machines, the field has produced enzyme-free catalytic systems, all DNA chemical oscillators and the most complex molecular computers yet devised. Enzyme-free catalytic systems can function as chemical amplifiers and as such have received considerable attention for sensing and detection applications in chemistry and medical diagnostics. Strand-displacement reactions have been combined with other enzymatically driven processes and have also been employed within living cells (Groves, B.; et al. Nat. Nanotechnol. 2015, 11, 287-294). Strand-displacement principles have also been applied in synthetic biology to enable artificial gene regulation and computation in bacteria. Given the enormous progress of dynamic DNA nanotechnology over the past years, the field now seems poised for practical application.
Collapse
Affiliation(s)
| | - Bernard Yurke
- Micron School of Materials Science and Engineering , Boise State University , Boise , ID 83725 , United States
| | - Hari R Singh
- Physics Department , TU München , 85748 Garching , Germany
| |
Collapse
|
48
|
Application of hairpin DNA-based biosensors with various signal amplification strategies in clinical diagnosis. Biosens Bioelectron 2019; 129:164-174. [PMID: 30708263 DOI: 10.1016/j.bios.2019.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/09/2018] [Accepted: 01/03/2019] [Indexed: 01/12/2023]
Abstract
Biosensors have been commonly used in biomedical diagnostic tools in recent years, because of a wide range of application, such as point-of-care monitoring of treatment and disease progression, drug discovery, commonly use food control, environmental monitoring and biomedical research. Additionally, development of DNA biosensors has been increased enormously over the past few years as confirmed by the large number of scientific publications in this field. A wide range of techniques can be used for the development of DNA biosensors, such as DNA nano-machines and various signal amplification strategies. This article selectively reviews the recent advances in DNA base biosensors with various signal amplification strategies for detection of cancer DNA and microRNA, infectious microorganisms, and toxic metal ions.
Collapse
|
49
|
Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun 2019; 10:28. [PMID: 30604756 PMCID: PMC6318270 DOI: 10.1038/s41467-018-07947-8] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNA exhibits differential expression levels in cancer and can affect cellular transformation, carcinogenesis and metastasis. Although fluorescence techniques using dye molecule labels have been studied, label-free molecular-level quantification of miRNA is extremely challenging. We developed a surface plasmon resonance sensor based on two-dimensional nanomaterial of antimonene for the specific label-free detection of clinically relevant biomarkers such as miRNA-21 and miRNA-155. First-principles energetic calculations reveal that antimonene has substantially stronger interaction with ssDNA than the graphene that has been previously used in DNA molecule sensing, due to thanking for more delocalized 5s/5p orbitals in antimonene. The detection limit can reach 10 aM, which is 2.3–10,000 times higher than those of existing miRNA sensors. The combination of not-attempted-before exotic sensing material and SPR architecture represents an approach to unlocking the ultrasensitive detection of miRNA and DNA and provides a promising avenue for the early diagnosis, staging, and monitoring of cancer. Label-free molecular-level quantification of MicroRNA (miRNA) remains challenging. Here, the authors develop a new surface plasmon resonance sensor based on two-dimensional nanomaterial of antimonene for the specific label-free detection of clinically relevant biomarkers such as miRNA-21 and miRNA-155.
Collapse
|
50
|
Xing Y, Li X, Yuan T, Cheng W, Li D, Yu T, Ding X, Ding S. Engineering high-performance hairpin stacking circuits for logic gate operation and highly sensitive biosensing assay of microRNA. Analyst 2018; 142:4834-4842. [PMID: 29160870 DOI: 10.1039/c7an01624g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, hairpin stacking circuits (HSC) based on toehold-mediated strand displacement have been engineered to detect nucleic acids and proteins. However, the three metastable hairpins in a HSC system can potentially react non-specifically in the absence of a catalyst, limiting its practical application. Here, we developed a unique hairpin design guideline to eliminate circuit leakage of HSC, and the high-performance HSC was successfully implemented on logic gate building and biosensing. We began by analyzing the sources of circuit leakage and optimizing the toehold lengths of hairpins in the HSC system based on the surface plasmon resonance (SPR) technique. Next, a novel strategy of substituting two nucleotides in a specific domain, termed 'loop-domain substitution', was introduced to eliminate leakages. We also systematically altered the positions and numbers of the introduced substitutions to probe their potential contribution to circuit leakage suppression. Through these efforts, the circuit leakage of HSC was significantly reduced. Finally, by designing different DNA input strands, the logic gates could be activated to achieve the output signal. Using miRNA as a model analyte, this strategy could detect miRNA down to pM levels with minimized circuit leakage. We believe these work indicate significant progress in the DNA circuitry.
Collapse
Affiliation(s)
- Yueli Xing
- The Affiliated Hospital of Binzhou Medical University, Shandong 256603, China
| | | | | | | | | | | | | | | |
Collapse
|