1
|
García-Guzmán JJ, Jiménez Heras JM, López-Iglesias D, González-Álvarez RJ, Cubillana-Aguilera L, González Macías C, Fernández Alba JJ, Palacios-Santander JM. New spin coated multilayer lactate biosensor for acidosis monitoring in continuous flow assisted with an electrochemical pH probe. Mikrochim Acta 2024; 191:526. [PMID: 39120744 PMCID: PMC11315777 DOI: 10.1007/s00604-024-06602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
A LOx-based electrochemical biosensor for high-level lactate determination was developed. For the construction of the biosensor, chitosan and Nafion layers were integrated by using a spin coating procedure, leading to less porous surfaces in comparison with those recorded after a drop casting procedure. The analytical performance of the resulting biosensor for lactate determination was evaluated in batch and flow regime, displaying satisfactory results in both modes ranging from 0.5 to 20 mM concentration range for assessing the lactic acidosis. Finally, the lactate levels in raw serum samples were estimated using the biosensor developed and verified with a blood gas analyzer. Based on these results, the biosensor developed is promising for its use in healthcare environment, after its proper miniaturization. A pH probe based on common polyaniline-based electrochemical sensor was also developed to assist the biosensor for the lactic acidosis monitoring, leading to excellent results in stock solutions ranging from 6.0 to 8.0 mM and raw plasma samples. The results were confirmed by using two different approaches, blood gas analyzer and pH-meter. Consequently, the lactic acidosis monitoring could be achieved in continuous flow regime using both (bio)sensors.
Collapse
Affiliation(s)
- Juan José García-Guzmán
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario 'Puerta del Mar', Universidad de Cádiz, 11009, Cádiz, Spain
| | - José Manuel Jiménez Heras
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario 'Puerta del Mar', Universidad de Cádiz, 11009, Cádiz, Spain
| | - David López-Iglesias
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario 'Puerta del Mar', Universidad de Cádiz, 11009, Cádiz, Spain
| | - Rafael Jesús González-Álvarez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario 'Puerta del Mar', Universidad de Cádiz, 11009, Cádiz, Spain
| | - Laura Cubillana-Aguilera
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, República Saharaui, S/N. 11510, Puerto Real, Cádiz, Spain.
| | - Carmen González Macías
- Departamento de Obstetricia y Ginecología, Hospital Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - Juan Jesús Fernández Alba
- Departamento de Obstetricia y Ginecología, Hospital Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain.
| | - José María Palacios-Santander
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, República Saharaui, S/N. 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
2
|
Ban S, Lee H, Chen J, Kim HS, Hu Y, Cho SJ, Yeo WH. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens Bioelectron 2024; 257:116302. [PMID: 38648705 DOI: 10.1016/j.bios.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA
| | - Hee-Seok Kim
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, 98195, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Li Y, Dang W, Deng Z, Chen X, Tang W, Zhang J, Song X. Preparation of a novel DNA-imprinted sensor based on chitosan and its highly sensitive detection of Pb 2. Int J Biol Macromol 2024; 272:132703. [PMID: 38823744 DOI: 10.1016/j.ijbiomac.2024.132703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Lead ion is very harmful to the environment, so it is very important to study its detection methods. In this study, a novel electrochemical sensor was constructed by modifying deoxyribonucleic acid (DNA) on the electrode, which can be used for the detection of Pb2+ in the environment. Part of the mixed solution of chitosan (CS) and Pb2+ template ions was dropped onto the surface of a glassy carbon electrode. CS-Pb2+ film was cross-linked through sodium tripolyphosphate. And a novel DNA-imprinted sensor was prepared by electrodepositing CS-Pb2+ thin film with gold nanoparticles (AuNPs), removing Pb2+ templates, and immobilizing specific double-stranded DNA. The electroactive area, surface morphology, sensitivity, and electrochemical reaction mechanism of the DNA-imprinted sensor were analyzed. The elementary reaction steps were studied through electrochemical reaction kinetics analysis. The experimental results indicate that the DNA-imprinted electrochemical biosensor can quantitatively detect Pb2+ in the range of 10-100 μM (R2 = 0.9935), and its detection limit is 6.5074 μM (3σ/slope). The sensitivity of the electrochemical biosensor is 1.55233 × 10-6 A/μM, and its active areas is 6.233 cm2. The desorption mechanism and adsorption mechanism have been explored through dynamic parameter analysis. The novel DNA imprinted electrochemical biosensor developed in this paper provides a robust method for detecting lead ions in solution. Additionally, it establishes a solid groundwork for detecting other metal ions.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education/ College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Wanping Dang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education/ College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Ziqi Deng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education/ College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Xingyu Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education/ College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Weirui Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education/ College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Jingjing Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education/ College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education/ College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| |
Collapse
|
4
|
Patil SM, Karade VC, Kim JH, Chougale AD, Patil PB. Electrochemical Detection of a Breast Cancer Biomarker with an Amine-Functionalized Nanocomposite Pt-Fe 3O 4-MWCNTs-NH 2 as a Signal-Amplifying Label. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25601-25609. [PMID: 38727578 DOI: 10.1021/acsami.3c15531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
We report an ultrasensitive sandwich-type electrochemical immunosensor to detect the breast cancer biomarker CA 15-3. Amine-functionalized composite of reduced graphene oxide and Fe3O4 nanoparticles (MRGO-NH2) was used as an electrochemical sensing platform material to modify the electrodes. The nanocomposite comprising Pt and Fe3O4 nanoparticles (NPs) anchored on multiwalled carbon nanotubes (Pt-Fe3O4-MWCNTs-NH2) was utilized as a pseudoenzymatic signal-amplifying label. Compared to reduced graphene oxide, the composite MRGO-NH2 platform material demonstrated a higher electrochemical signal. In the Pt-Fe3O4-MWCNTs-NH2 label, multiwalled carbon nanotubes provided the substratum to anchor abundant catalytic Pt and Fe3O4 NPs. The nanocomposites were thoroughly characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. An electroanalytical study and prevalidation of the immunosensor was carried out. The immunosensor exhibited exceptional capabilities in detecting CA 15-3, offering a wider linear range of 0.0005-100 U mL-1 and a lower detection limit of 0.00008 U mL-1. Moreover, the designed immunosensor showed good specificity, reproducibility, and acceptable stability. The sensor was successfully applied to analyze samples from breast cancer patients, yielding reliable results.
Collapse
Affiliation(s)
- Sunil M Patil
- Department of Physics, The New College, Shivaji University, Kolhapur 416012, Maharashtra, India
| | - Vijay C Karade
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Jin Hyeok Kim
- Optoelectronic Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Ashok D Chougale
- Department of Chemistry, The New College, Shivaji University, Kolhapur 416012, Maharashtra, India
| | - Prashant B Patil
- Department of Physics, The New College, Shivaji University, Kolhapur 416012, Maharashtra, India
| |
Collapse
|
5
|
Wu ZQ, Cao XQ, Hua Y, Yu CM. A Bifunctional Wearable Sensor Based on a Nanoporous Membrane for Simultaneous Detection of Sweat Lactate and Temperature. Anal Chem 2024. [PMID: 38320230 DOI: 10.1021/acs.analchem.3c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wearable sensors for non-invasive, real-time detection of sweat lactate have far-reaching implications in the fields of health care and exercise physiological responses. Here, we propose a wearable electrochemical sensor with gold nanoelectrode arrays fabricated on the nanoporous polycarbonate (PC) membrane by encapsulating lactate oxidase (LOx) in chitosan (CS) hydrogel for detecting body temperature and sweat lactate concurrently. Flexible gold nanoporous electrodes not only enhance electrode area but also offer a nanoconfined space to accelerate the catalytic reaction of LOx and control substrate concentration on the surface of LOx to decrease substrate inhibition. The proposed sensor has a long durability of 13 days and better selectivity for the detection of sweat lactate over a wide linear range (0.01-35 mM) with a low detection limit (0.144 μM). Furthermore, temperature-dependent transmembrane currents passing through the sensor are used to estimate body temperature. We then use multiple linear regression to adjust the effect of temperature on lactate detection and succeed in monitoring lactate molecules in sweat and body temperature during exercise.
Collapse
Affiliation(s)
- Zeng-Qiang Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Qing Cao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Hua
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chun-Mei Yu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
6
|
Dong M, Gao Z, Zhang Y, Cai J, Li J, Xu P, Jiang H, Gu J, Wang J. Ultrasensitive electrochemical biosensor for detection of circulating tumor cells based on a highly efficient enzymatic cascade reaction. RSC Adv 2023; 13:12966-12972. [PMID: 37124001 PMCID: PMC10130820 DOI: 10.1039/d3ra01160g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
There has been great interest in the enzymatic cascade amplification strategy for the electrochemical detection of circulating tumor cells (CTCs). In this work, we designed a highly efficient enzymatic cascade reaction based on a multiwalled carbon nanotubes-chitosan (MWCNTs-CS) composite for detection of CTCs. A high electrochemical effective surface area was obtained for a MWCNTs-CS-modified glassy carbon electrode (GCE) for loading glucose oxidase (GOD), as well as a high loading rate and high electrical activity of the enzyme. As a 'power source', the MWCNTs-CS composites provided a strong driving power for horseradish peroxidase (HRP) on the surface of polystyrene (PS) microspheres, which acted as probes for capturing CTCs and allowed the reaction to proceed with further facilitation of electron transfer. Aptamer, CTCs, and PS microspheres with HRP and anti-epithelial cell adhesion molecule (anti-EpCAM) antibody were assembled on the MWCNTs-CS/GCE to allow for the modulation of enzyme distance at the micrometer level, and thus ultra-long-range signal transmission was made possible. An ultrasensitive response to CTCs was obtained via this proposed sensing strategy, with a linear range from 10 cell mL-1 to 6 × 106 cell mL-1 and a detection limit of 3 cell mL-1. Moreover, this electrochemical sensor possessed the capability to detect CTCs in serum samples with satisfactory accuracy, which indicated great potential for early diagnosis and clinical analysis of cancer.
Collapse
Affiliation(s)
- Min Dong
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Zhihong Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Yating Zhang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jiahui Cai
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jian Li
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Panpan Xu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Hong Jiang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
7
|
Amin M, Abdullah BM, Wylie SR, Rowley-Neale SJ, Banks CE, Whitehead KA. The Voltammetric Detection of Cadaverine Using a Diamine Oxidase and Multi-Walled Carbon Nanotube Functionalised Electrochemical Biosensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:36. [PMID: 36615946 PMCID: PMC9824597 DOI: 10.3390/nano13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cadaverine is a biomolecule of major healthcare importance in periodontal disease; however, current detection methods remain inefficient. The development of an enzyme biosensor for the detection of cadaverine may provide a cheap, rapid, point-of-care alternative to traditional measurement techniques. This work developed a screen-printed biosensor (SPE) with a diamine oxidase (DAO) and multi-walled carbon nanotube (MWCNT) functionalised electrode which enabled the detection of cadaverine via cyclic voltammetry and differential pulse voltammetry. The MWCNTs were functionalised with DAO using carbodiimide crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS), followed by direct covalent conjugation of the enzyme to amide bonds. Cyclic voltammetry results demonstrated a pair of distinct redox peaks for cadaverine with the C-MWCNT/DAO/EDC-NHS/GA SPE and no redox peaks using unmodified SPEs. Differential pulse voltammetry (DPV) was used to isolate the cadaverine oxidation peak and a linear concentration dependence was identified in the range of 3-150 µg/mL. The limit of detection of cadaverine using the C-MWCNT/DAO/EDC-NHS/GA SPE was 0.8 μg/mL, and the biosensor was also found to be effective when tested in artificial saliva which was used as a proof-of-concept model to increase the Technology Readiness Level (TRL) of this device. Thus, the development of a MWCNT based enzymatic biosensor for the voltammetric detection of cadaverine which was also active in the presence of artificial saliva was presented in this study.
Collapse
Affiliation(s)
- Mohsin Amin
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Badr M. Abdullah
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Stephen R. Wylie
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Samuel J. Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Kathryn A. Whitehead
- Microbiology at Interfaces Group, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
8
|
Aghris S, Azriouil M, Matrouf M, Ettadili F, Laghrib F, Saqrane S, Farahi A, Bakasse M, Lahrich S, El Mhammedi M. Chitosan biopolymer coated graphite electrode as a robust electrochemical platform for the detection of the insecticide flubendiamide. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
García-Guzmán JJ, Sierra-Padilla A, Palacios-Santander JM, Fernández-Alba JJ, Macías CG, Cubillana-Aguilera L. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. BIOSENSORS 2022; 12:919. [PMID: 36354428 PMCID: PMC9688009 DOI: 10.3390/bios12110919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Monitoring of lactate is spreading from the evident clinical environment, where its role as a biomarker is notorious, to the agrifood ambit as well. In the former, lactate concentration can serve as a useful indicator of several diseases (e.g., tumour development and lactic acidosis) and a relevant value in sports performance for athletes, among others. In the latter, the spotlight is placed on the food control, bringing to the table meaningful information such as decaying product detection and stress monitoring of species. No matter what purpose is involved, electrochemical (bio)sensors stand as a solid and suitable choice. However, for the time being, this statement seems to be true only for discrete measurements. The reality exposes that real and continuous lactate monitoring is still a troublesome goal. In this review, a critical overview of electrochemical lactate (bio)sensors for clinical and agrifood situations is performed. Additionally, the transduction possibilities and different sensor designs approaches are also discussed. The main aim is to reflect the current state of the art and to indicate relevant advances (and bottlenecks) to keep in mind for further development and the final achievement of this highly worthy objective.
Collapse
Affiliation(s)
- Juan José García-Guzmán
- Instituto de Investigación e Innovación Biomédica de Cadiz (INiBICA), Hospital Universitario ‘Puerta del Mar’, Universidad de Cadiz, 11009 Cadiz, Spain
| | - Alfonso Sierra-Padilla
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| | - Juan Jesús Fernández-Alba
- Department of Obstetrics and Gynecology, Hospital Universitario de Puerto Real, Puerto Real, 11510 Cadiz, Spain
| | - Carmen González Macías
- Department of Obstetrics and Gynecology, Hospital Universitario de Puerto Real, Puerto Real, 11510 Cadiz, Spain
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
10
|
Sainz R, Pozo MD, Vázquez L, Vilas-Varela M, Castro-Esteban J, Blanco E, Petit-Domínguez MD, Quintana C, Casero E. Lactate biosensing based on covalent immobilization of lactate oxidase onto chevron-like graphene nanoribbons via diazotization-coupling reaction. Anal Chim Acta 2022; 1208:339851. [DOI: 10.1016/j.aca.2022.339851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
|
11
|
Toppo AL, Jujjavarapu SE. New insights for integration of nano particle with microfluidic systems for sensor applications. Biomed Microdevices 2022; 24:13. [PMID: 35171352 DOI: 10.1007/s10544-021-00598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 11/29/2022]
Abstract
A biosensor is a compact device, which utilizes biological derived recognition component, immobilized on a transducer to analyze an analyte. Nanoparticles with their unique chemical and physical properties are versatile in their applications to develop as sensors. Different nanoparticles play different roles in the sensing systems like metal and metal oxide nanoparticles. The application of Gold, Silver and Copper nanoparticles will be discussed in brief. The nanoparticles typically function as substrates for immobilization of biomolecules, as catalytic agent, electron transfer agent between electrode surface and the biomolecules, and as reactants. Microfluidic deals with manipulating very small volumes of fluids (micro and nanoliters). This miniaturized platform enhances control of flow conditions and mixing rate of fluids. The microfluidics improves the sensitivity of the analysis, and reduces the volumes of sample and reagent in the analysis. The review specifically aims at representing microfluidics-based sensors and nanoparticle based sensors. This review will also focus on probable merger of these two fields to take advantage of both the fields and this will help in pushing the boundaries of these fields further more.
Collapse
Affiliation(s)
- A L Toppo
- Deparment of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - S E Jujjavarapu
- Deparment of Biotechnology, National Institute of Technology Raipur, Raipur, India.
| |
Collapse
|
12
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. BIOSENSORS 2021; 11:410. [PMID: 34821626 PMCID: PMC8615953 DOI: 10.3390/bios11110410] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
The use of sensors in critical areas for human development such as water, food, and health has increased in recent decades. When the sensor uses biological recognition, it is known as a biosensor. Nowadays, the development of biosensors has been increased due to the need for reliable, fast, and sensitive techniques for the detection of multiple analytes. In recent years, with the advancement in nanotechnology within biocatalysis, enzyme-based biosensors have been emerging as reliable, sensitive, and selectively tools. A wide variety of enzyme biosensors has been developed by detecting multiple analytes. In this way, together with technological advances in areas such as biotechnology and materials sciences, different modalities of biosensors have been developed, such as bi-enzymatic biosensors and nanozyme biosensors. Furthermore, the use of more than one enzyme within the same detection system leads to bi-enzymatic biosensors or multi-enzyme sensors. The development and synthesis of new materials with enzyme-like properties have been growing, giving rise to nanozymes, considered a promising tool in the biosensor field due to their multiple advantages. In this review, general views and a comparison describing the advantages and disadvantages of each enzyme-based biosensor modality, their possible trends and the principal reported applications will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (L.A.-R.); (M.R.-A.); (J.R.-R.); (J.E.S.-H.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|
13
|
Kurup CP, Mohd-Naim NF, Ahmed MU. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Crit Rev Biotechnol 2021; 42:794-812. [PMID: 34632900 DOI: 10.1080/07388551.2021.1960792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ultrasensitive biosensors have become a necessity in the world of scientific research, and several signal enhancement strategies have been employed to attain exceptionally low detection limits. Nanotechnology turns out to be a strong contender for signal amplification, as they can be employed as platform modifiers, catalysts, carriers or labels. Here, we have described the most recent advancements in the utilization of nanomaterials as signal amplification components in aptamer-based electrochemical biosensors. We have briefly reviewed the methods that utilized nanomaterials, namely gold and carbon, as well as nanocomposites such as: graphene, carbon nanotubes, quantum dots, and metal-organic frameworks.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.,PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
14
|
Affiliation(s)
- Beant Kaur Billing
- University Centre for Research and Development Chandigarh University Gharuan Mohali 140413 India
| |
Collapse
|
15
|
Voltammetric determination of lactic acid in milk samples using carbon paste electrode modified with chitosan-based magnetic molecularly imprinted polymer. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Ferrari AGM, Crapnell RD, Banks CE. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. BIOSENSORS 2021; 11:291. [PMID: 34436093 PMCID: PMC8392528 DOI: 10.3390/bios11080291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.
Collapse
Affiliation(s)
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.G.-M.F.); (R.D.C.)
| |
Collapse
|
17
|
|
18
|
Electrochemical synthesis of composite materials based on titanium carbide and titanium dioxide with poly(N-phenyl-o-phenylenediamine) for selective detection of uric acid. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Abstract
![]()
Wearable lactate
sensors for sweat analysis are highly appealing
for both the sports and healthcare fields. Electrochemical biosensing
is the approach most widely used for lactate determination, and this
technology generally demonstrates a linear range of response far below
the expected lactate levels in sweat together with a high influence
of pH and temperature. In this work, we present a novel analytical
strategy based on the restriction of the lactate flux that reaches
the enzyme lactate oxidase, which is immobilized in the biosensor
core. This is accomplished by means of an outer plasticized polymeric
layer containing the quaternary salt tetradodecylammonium tetrakis(4-chlorophenyl)
borate (traditionally known as ETH500). Also, this layer prevents
the enzyme from being in direct contact with the sample, and hence,
any influence with the pH and temperature is dramatically reduced.
An expanded limit of detection in the millimolar range (from 1 to
50 mM) is demonstrated with this new biosensor, in addition to an
acceptable response time; appropriate repeatability, reproducibility,
and reversibility (variations lower than 5% for the sensitivity);
good resiliency; excellent selectivity; low drift; negligible influence
of the flow rate; and extraordinary correlation (Pearson coefficient
of 0.97) with a standardized method for lactate detection such as
ion chromatography (through analysis of 22 sweat samples collected
from 6 different subjects performing cycling or running). The developed
lactate biosensor is suitable for on-body sweat lactate monitoring
via a microfluidic epidermal patch additionally containing pH and
temperature sensors. This applicability was demonstrated in three
different body locations (forehead, thigh, and back) in a total of
five on-body tests while cycling, achieving appropriate performance
and validation. Moreover, the epidermal patch for lactate sensing
is convenient for the analysis of sweat stimulated by iontophoresis
in the subjects’ arm, which is of great potential toward healthcare
applications.
Collapse
Affiliation(s)
- Xing Xuan
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Clara Pérez-Ràfols
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Chen Chen
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gaston A. Crespo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
20
|
Critical reviews of electro-reactivity of screen-printed nanocomposite electrode to safeguard the environment from trace metals. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02802-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Hernández-Ibáñez N, Montiel V, Gomis-Berenguer A, Ania C, Iniesta J. Effect of confinement of horse heart cytochrome c and formate dehydrogenase from Candida boidinii on mesoporous carbons on their catalytic activity. Bioprocess Biosyst Eng 2021; 44:1699-1710. [PMID: 33813652 PMCID: PMC8238777 DOI: 10.1007/s00449-021-02553-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/01/2022]
Abstract
This study reports the immobilization of two biocatalysts (e.g., cytochrome c-Cyt c-and the non-metalloenzyme formate dehydrogenase from Candida boidinii-cbFDH) on a series of mesoporous carbons with controlled pore sizes. The catalytic activity of the nanoconfined proteins was correlated with the pore size distribution of the carbon materials used as supports. The electrochemical behaviour of nanoconfined Cyt c showed direct electron transfer electroactivity in pore sizes matching tightly the protein dimension. The pseudo-peroxidase activity towards H2O2 reduction was enhanced at pH 4.0, due to the protein conformational changes. For cbFDH, the reduction of CO2 towards formic acid was evaluated for the nanoconfined protein, in the presence of nicotinamide adenine dinucleotide (NADH). The carbons displayed different cbFDH uptake capacity, governed by the dimensions of the main mesopore cavities and their accessibility through narrow pore necks. The catalytic activity of nanoconfined cbFDH was largely improved, compared to its performance in free solution. Regardless of the carbon support used, the production of formic acid was higher upon immobilization with lower nominal cbFDH:NADH ratios.
Collapse
Affiliation(s)
- Naiara Hernández-Ibáñez
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain
| | - Vicente Montiel
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain
| | - Alicia Gomis-Berenguer
- CEMHTI, CNRS (UPR 3079) University of Orléans, 45071, Orléans, France.,Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, Teknikringen 30, SE-100 44, Stockholm, Sweden
| | - Conchi Ania
- INCAR, CSIC, Apdo 26, 33011, Oviedo, Spain. .,CEMHTI, CNRS (UPR 3079) University of Orléans, 45071, Orléans, France.
| | - Jesús Iniesta
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain.
| |
Collapse
|
22
|
Fonseca WT, Castro KR, Oliveira TR, Faria RC. Disposable and Flexible Electrochemical Paper‐based Analytical Devices Using Low‐cost Conductive Ink. ELECTROANAL 2021. [DOI: 10.1002/elan.202060564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wilson Tiago Fonseca
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| | - Karla Ribeiro Castro
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| | - Tássia Regina Oliveira
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| | - Ronaldo Censi Faria
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís km 235 – SP-310 São Carlos SP 13565–905 Brazil
| |
Collapse
|
23
|
Djisalov M, Knežić T, Podunavac I, Živojević K, Radonic V, Knežević NŽ, Bobrinetskiy I, Gadjanski I. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. BIOLOGY 2021; 10:204. [PMID: 33803111 PMCID: PMC7998526 DOI: 10.3390/biology10030204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Meat cultivation via cellular agriculture holds great promise as a method for future food production. In theory, it is an ideal way of meat production, humane to the animals and sustainable for the environment, while keeping the same taste and nutritional values as traditional meat and having additional benefits such as controlled fat content and absence of antibiotics and hormones used in the traditional meat industry. However, in practice, there is still a number of challenges, such as those associated with the upscale of cultured meat (CM). CM food safety monitoring is a necessary factor when envisioning both the regulatory compliance and consumer acceptance. To achieve this, a multidisciplinary approach is necessary. This includes extensive development of the sensitive and specific analytical devices i.e., sensors to enable reliable food safety monitoring throughout the whole future food supply chain. In addition, advanced monitoring options can help in the further optimization of the meat cultivation which may reduce the currently still high costs of production. This review presents an overview of the sensor monitoring options for the most relevant parameters of importance for meat cultivation. Examples of the various types of sensors that can potentially be used in CM production are provided and the options for their integration into bioreactors, as well as suggestions on further improvements and more advanced integration approaches. In favor of the multidisciplinary approach, we also include an overview of the bioreactor types, scaffolding options as well as imaging techniques relevant for CM research. Furthermore, we briefly present the current status of the CM research and related regulation, societal aspects and challenges to its upscaling and commercialization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.Dj.); (T.K.); (I.P.); (K.Ž.); (V.R.); (N.Ž.K.); (I.B.)
| |
Collapse
|
24
|
Park JH, Yu K, Min J, Chung Y, Yoon JY. A Dual‐Functional Lactate Sensor Based on Silver Nanoparticle‐coated Carbon Dots. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joo Hee Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University Daejeon 34134 Republic of Korea
| | - Kai Yu
- School of Energy and Power Engineering, Jiangsu University Zhenjiang 212013 China
| | - Jin‐Young Min
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Cheongju 28119 Republic of Korea
| | - Young‐Ho Chung
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University Daejeon 34134 Republic of Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Cheongju 28119 Republic of Korea
| | - Ji Young Yoon
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Cheongju 28119 Republic of Korea
| |
Collapse
|
25
|
García-Miranda Ferrari A, Rowley-Neale SJ, Banks CE. Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. Anal Bioanal Chem 2021; 413:663-672. [PMID: 33284404 PMCID: PMC7808977 DOI: 10.1007/s00216-020-03068-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
2D hexagonal boron nitride (2D-hBN) is a lesser utilised material than other 2D counterparts in electrochemistry due to initial reports of it being non-conductive. As we will demonstrate in this review, this common misconception is being challenged, and researchers are starting to utilise 2D-hBN in the field of electrochemistry, particularly as the basis of electroanalytical sensing platforms. In this critical review, we overview the use of 2D-hBN as an electroanalytical sensing platform summarising recent developments and trends and highlight future developments of this interesting, often overlooked, 2D material.
Collapse
Affiliation(s)
| | - Samuel J Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
26
|
Covalent attachment of laccase to carboxymethyl-botryosphaeran in aqueous solution for the construction of a voltammetric biosensor to quantify quercetin. Bioelectrochemistry 2020; 135:107543. [PMID: 32450282 DOI: 10.1016/j.bioelechem.2020.107543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022]
Abstract
Laccase from Botryosphaeria rhodina MAMB-05 was covalently immobilized on carboxymethyl-botryosphaeran by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) in aqueous solution. This approach was employed to fabricate a novel laccase-based biosensor to electrochemically quantify quercetin (QCT), using a simple carbon black paste electrode as a transducer. The proposed biosensor was characterized by electrochemical impedance spectroscopy and Nyquist plots were used to evaluate the immobilization of the enzyme. For determining QCT, variables were optimized, that included experimental conditions for laccase immobilization, pH of the supporting electrolyte, and instrumental parameters of the electroanalytical technique. From square-wave-voltammograms, a linear dependence between the cathodic current peak and QCT concentration was observed within the range 4.98-50.0 × 10-8 mol L-1, with a theoretical detection limit of 2.6 × 10-8 mol L-1. The proposed method was successfully applied to determine QCT in beverages, pharmaceuticals, and biological samples. The proposed biosensor device presented good selectivity in the presence of uric acid, various inorganic ions, as well as other phenolic compounds, demonstrating the potential application of this biosensing platform in chemically complex solutions. Operational and analytical stability of the laccase-biosensor were evaluated, and good intra-day (SD = 1.23%) and inter-day (SD = 2.32%) repeatability, and long storage stability (SD = 3.47%) are presented.
Collapse
|
27
|
Design of A Low-Cost and Disposable Paper-Based Immunosensor for the Rapid and Sensitive Detection of Aflatoxin B1. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a paper-based electrochemical immunosensor made with sustainable materials to detect aflatoxin B1 (AFB1), a highly toxic, carcinogenic mycotoxin found in food. The immunosensor was prepared with a waterproof paper substrate and low-cost graphite-based conductive ink through a simple cut-printing method. The working electrode was functionalized with a drop-cast film of multiwalled carbon nanotubes (MWCNT)/chitosan on which a layer of anti-AFB1 monoclonal antibodies was immobilized covalently. The architecture of the immunosensor was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and electrochemical impedance spectroscopy (EIS), including the effective immobilization of the active layer of anti-AFB1. With EIS as the principle of detection, the immunosensor could detect AFB1 in the range from 1 to 30 ng·mL−1, and detection limit of 0.62 ng·mL−1. This sensitivity is sufficient to detect AFB1 in food according to regulatory agencies. The immunosensor exhibited good repeatability, reproducibility, stability, and selectivity in experiments with a possible interferent. Furthermore, detection of AFB1 in maize flour samples yielded recovery of 97–99%, in a demonstration of the possible use of the paper-based immunosensor to detect AFB1 using extraction solutions from food samples.
Collapse
|
28
|
Tang Y, Petropoulos K, Kurth F, Gao H, Migliorelli D, Guenat O, Generelli S. Screen-Printed Glucose Sensors Modified with Cellulose Nanocrystals (CNCs) for Cell Culture Monitoring. BIOSENSORS-BASEL 2020; 10:bios10090125. [PMID: 32933204 PMCID: PMC7557574 DOI: 10.3390/bios10090125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/03/2023]
Abstract
Glucose sensors are potentially useful tools for monitoring the glucose concentration in cell culture medium. Here, we present a new, low-cost, and reproducible sensor based on a cellulose-based material, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized-cellulose nanocrystals (CNCs). This novel biocompatible and inert nanomaterial is employed as a polymeric matrix to immobilize and stabilize glucose oxidase in the fabrication of a reproducible, operationally stable, highly selective, cost-effective, screen-printed glucose sensor. The sensors have a linear range of 0.1–2 mM (R2 = 0.999) and a sensitivity of 5.7 ± 0.3 µA cm−2∙mM−1. The limit of detection is 0.004 mM, and the limit of quantification is 0.015 mM. The sensor maintains 92.3 % of the initial current response after 30 consecutive measurements in a 1 mM standard glucose solution, and has a shelf life of 1 month while maintaining high selectivity. We demonstrate the practical application of the sensor by monitoring the glucose consumption of a fibroblast cell culture over the course of several days.
Collapse
Affiliation(s)
- Ye Tang
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008 Bern, Switzerland;
| | - Konstantinos Petropoulos
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
| | - Felix Kurth
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
| | - Hui Gao
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
| | - Davide Migliorelli
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
| | - Olivier Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008 Bern, Switzerland;
| | - Silvia Generelli
- Swiss Center for Electronics and Microtechnology (CSEM, Landquart), Bahnhofstrasse 1, 7302 Landquart, Switzerland; (Y.T.); (K.P.); (F.K.); (H.G.); (D.M.)
- Correspondence: ; Tel.: +41-81-307-8139
| |
Collapse
|
29
|
Selective Nonenzymatic Amperometric Detection of Lactic Acid in Human Sweat Utilizing a Multi-Walled Carbon Nanotube (MWCNT)-Polypyrrole Core-Shell Nanowire. BIOSENSORS-BASEL 2020; 10:bios10090111. [PMID: 32872302 PMCID: PMC7559985 DOI: 10.3390/bios10090111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 01/04/2023]
Abstract
Lactic acid plays an important role as a biochemical indicator for sports medicine and clinical diagnosis. The detection of lactic acid in sweat is a promising technique without any intrusive inconvenience or risk of infection. In this study, we present a selective nonenzymatic amperometric detection method for lactic acid in human sweat utilizing a multi-wall carbon nanotube (MWCNT)-polypyrrole core-shell nanowire. Because polypyrrole is a p-type conducting polymer, onto which anions are exclusively doped, leading to charge transfer, it offers selective detection for lactate anions at a specific potential, while being inert to the neutral and cationic species contained in human sweat. A chronoamperometric study reveals good sensing performance for lactic acid with a high sensitivity of 2.9 μA mM−1 cm−2 and detection limit of 51 μM. Furthermore, the MWCNT-polypyrrole nanowire exhibits excellent selectivity for lactic acid over interfering species, such as sodium chloride, glucose, urea, and riboflavin, which coexist with lactic acid in sweat. Finally, a nonenzymatic amperometric sensor for the selective detection of lactic acid in human sweat is demonstrated on commercial flexible electrodes. The results demonstrate the potential applications of the MWCNT-polypyrrole core-shell nanowire as a nonenzymatic amperometric lactate sensor.
Collapse
|
30
|
Wei P, Li Z, Zhao X, Song R, Zhu Z. Fe3O4/SiO2/CS surface ion-imprinted polymer modified glassy carbon electrode for highly sensitivity and selectivity detection of toxic metal ions. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Ding F, Fu J, Tao C, Yu Y, He X, Gao Y, Zhang Y. Recent Advances of Chitosan and its Derivatives in Biomedical Applications. Curr Med Chem 2020; 27:3023-3045. [DOI: 10.2174/0929867326666190405151538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Chitosan is the second-most abundant natural polysaccharide. It has unique characteristics,
such as biodegradability, biocompatibility, and non-toxicity. Due to the existence of its free amine
group and hydroxyl groups on its backbone chain, chitosan can undergo further chemical modifications
to generate Chitosan Derivatives (CDs) that permit additional biomedical functionality. Chitosan
and CDs can be fabricated into various forms, including Nanoparticles (NPs), micelles, hydrogels,
nanocomposites and nano-chelates. For these reasons, chitosan and CDs have found a tremendous
variety of biomedical applications in recent years. This paper mainly presents the prominent
applications of chitosan and CDs for cancer therapy/diagnosis, molecule biosensing, viral infection,
and tissue engineering over the past five years. Moreover, future research directions on chitosan are
also considered.
Collapse
Affiliation(s)
- Fei Ding
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Jiawei Fu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Chuang Tao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yanhua Yu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Xianran He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yangguang Gao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
32
|
Kalambate PK, Rao Z, Dhanjai, Wu J, Shen Y, Boddula R, Huang Y. Electrochemical (bio) sensors go green. Biosens Bioelectron 2020; 163:112270. [PMID: 32568692 DOI: 10.1016/j.bios.2020.112270] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
Electrochemical (bio) sensors are now widely acknowledged as a sensitive detection tool for disease diagnosis as well as the detection of numerous species of pharmaceutical, clinical, industrial, food, and environmental origin. The term 'green' demonstrates the development of electrochemical (bio) sensing platforms utilizing biodegradable and sustainable materials. Development of green sensing platforms is one of the most active areas of research minimizing the use of toxic/hazardous reagents and solvent systems, thereby further reducing the production of chemical wastes in sensor fabrication. The present review includes green electrochemical (bio) sensors which are based on firstly, green sensors comprising natural and non-hazardous materials (e.g., paper/clay/zeolites/biowastes), secondly sensors based on nanomaterials synthesized by green methods and lastly sensors constituting green solvents (e.g., ionic liquids/deep eutectic solvents). Electrochemical performances of such green sensors and their benefits such as biodegradability, non-toxicity, sustainability, low-cost, sensitive surfaces, etc. Have been discussed for quantification of various target analytes. Associated challenges, possible solutions, and opportunities towards fabricating green electrochemical sensors and biosensors have been provided in the conclusion section.
Collapse
Affiliation(s)
- Pramod K Kalambate
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Zhixiang Rao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Dhanjai
- Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Alberta, T5B 4E4, Canada
| | - Jingyi Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Yue Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Rajender Boddula
- Chinese Academy of Sciences (CAS), Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, National Centre for Nanoscience and Technology, Beijing, 100190, PR China
| | - Yunhui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
33
|
Pieklarz K, Tylman M, Modrzejewska Z. Current Progress in Biomedical Applications of Chitosan-Carbon Nanotube Nanocomposites: A Review. Mini Rev Med Chem 2020; 20:1619-1632. [PMID: 32400329 DOI: 10.2174/1389557520666200513120407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022]
Abstract
The currently observed development of medical science results from the constant search for innovative solutions to improve the health and quality of life of patients. Particular attention is focused on the design of a new generation of materials with a high degree of biocompatibility and tolerance towards the immune system. In addition, apart from biotolerance, it is important to ensure appropriate mechanical and technological properties of materials intended for intra-body applications. Knowledge of the above parameters becomes the basis for considerations related to the possibilities of choosing the appropriate polymer materials. The researchers' interest, as evidenced by the number of available publications, is attracted by nanobiocomposites based on chitosan and carbon nanotubes, which, due to their properties, enable integration with the tissues of the human body. Nanosystems can be used in many areas of medicine. They constitute an excellent base for use as dressing materials, as they exhibit antimicrobial properties. In addition, they can be carriers of drugs and biological macromolecules and can be used in gene therapy, tissue engineering, and construction of biosensors. For this reason, potential application areas of chitosan-carbon nanotube nanocomposites in medical sciences are presented in this publication, considering the characteristics of the system components.
Collapse
Affiliation(s)
- Katarzyna Pieklarz
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Michał Tylman
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Zofia Modrzejewska
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
34
|
Mattioli IA, Cervini P, Cavalheiro ÉTG. Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: a comparative study. Mikrochim Acta 2020; 187:318. [PMID: 32388628 DOI: 10.1007/s00604-020-04259-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022]
Abstract
Disposable screen-printed electrodes based on the use of graphite-polyurethane composites modified with magnetite nanoparticles (MNP-SPE) or chitosan-coated magnetite nanoparticles (CHMNP-SPE) are described. The MNP and CHMNP were synthetized and comparatively characterized by TEM, XRD, FTIR, and TGA/DTG. The MNP-SPE and CHMNP-SPE were characterized by SEM and EDX. After optimization of the MNP percentage in MNP-SPE, the materials were electrochemically characterized by cyclic voltammetry, EIS, and chronocoulometry. The electrodes were tested for their performance towards sensing of epinephrine (EP). The CHMNP-SPE is found to have better electrochemical responses in comparison to the MNP-SPE. This is assumed to be due to the chitosan coating which also protects the MNPs from oxidation under air and at different applied potential fields. The performances of the MNP-SPE and CHMNP-SPE were studied by DPV after optimization of equilibration time and DPV parameters. Response is linear in the 0.1-0.8 μM EP concentration range, at 0.03 V (vs. pseudo-Ag/AgCl), and the detection limit is 25 nM for the MNP-SPE. The linear response for the CHMNP-SPE was 0.1-0.6 μM, at 0.0 V (vs. pseudo-Ag/AgCl), and a LOD of 14 nM was achieved. The devices were used for the quantification of EP in synthetic urine and in cerebrospinal synthetic fluids. Recoveries from spiked samples are in the 95.6-102.2% range for the CHMNP-SPE and in the 98.3-109% range for MNP-SPE. The stability of the respective sensors was investigated and compared over a period of 5 months. The EP peak currents were found to decrease by only 4% for the CHMNP-SPE, while the MNP-SPE lost 23% of its EP peak current. Accordingly, the CHMNP-SPE was chosen as the most stable and sensitive sensor for EP. Graphical abstract Schematic figure of modification of a graphite-polyurethane screen-printed composite electrode with magnetite nanoparticles (MNPs) and chitosan-coated magnetite nanoparticles (CHMNPs) for the voltammetric determination of epinephrine (EP). Improved response of CHMNP-SPE (black voltammogram) in comparison to MNP-SPE (red voltammogram) was attributed to the protection of MNP from oxidation.
Collapse
Affiliation(s)
- Isabela A Mattioli
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP, CEP 13566-590, Brazil
| | - Priscila Cervini
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP, CEP 13566-590, Brazil
| | - Éder T G Cavalheiro
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP, CEP 13566-590, Brazil.
| |
Collapse
|
35
|
Single-Use Printed Biosensor for L-Lactate and Its Application in Bioprocess Monitoring. Processes (Basel) 2020. [DOI: 10.3390/pr8030321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is a profound need in bioprocess manufacturing for low-cost single-use sensors that allow timely monitoring of critical product and production attributes. One such opportunity is screen-printed enzyme-based electrochemical sensors, which have the potential to enable low-cost online and/or off-line monitoring of specific parameters in bioprocesses. In this study, such a single-use electrochemical biosensor for lactate monitoring is designed and evaluated. Several aspects of its fabrication and use are addressed, including enzyme immobilization, stability, shelf-life and reproducibility. Applicability of the biosensor to off-line monitoring of bioprocesses was shown by testing in two common industrial bioprocesses in which lactate is a critical quality attribute (Corynebacterium fermentation and mammalian Chinese hamster ovary (CHO) cell cultivation). The specific response to lactate of the screen-printed biosensor was characterized by amperometric measurements. The usability of the sensor at typical industrial culture conditions was favorably evaluated and benchmarked with commonly used standard methods (HPLC and enzymatic kits). The single-use biosensor allowed fast and accurate detection of lactate in prediluted culture media used in industrial practice. The design and fabrication of the biosensor could most likely be adapted to several other critical bioprocess analytes using other specific enzymes. This makes this single-use screen-printed biosensor concept a potentially interesting and versatile tool for further applications in bioprocess monitoring.
Collapse
|
36
|
Multiwalled carbon nanotubes bound beta-galactosidase: It's activity, stability and reusability. Methods Enzymol 2020. [PMID: 31931994 DOI: 10.1016/bs.mie.2019.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Carbon nanotubes (CNTs) based biosensors are recognized to be a next generation building block for ultrasensitive and fast biosensing systems. This article starting with a brief history on CNTs provides an overview on the recent expansion of research in the field of CNT-based biosensors. This is followed by the discussion on structure and properties related to CNTs. Furthermore, the basic and some newly developed synthetic methods of CNTs are summarized. In this chapter, we used polyaniline cobalt multiwalled CNTs to immobilize β-galactosidase, by adopting both noncovalent and covalent strategies. Herein, the methodologies of both techniques have been discussed in detail. The η (effectiveness factor) values for nanocomposite bound β-galactosidase by physical adsorption and covalent method were calculated to be 0.93 and 0.97, respectively. The covalently bound β-galactosidase retained 92% activity even after its 10th successive reuse as compared to the adsorbed enzyme which exhibited only 74% of its initial activity. CNT armored enzymes demonstrated remarkably high catalytic stability at both sides of temperature and pH-optima along with easy recovery from the reaction medium which can be utilized in various biotechnological applications. Lastly, the scientific and technological challenges in the field are discussed at the end of this chapter.
Collapse
|
37
|
A nanocomposite prepared from platinum particles, polyaniline and a Ti3C2 MXene for amperometric sensing of hydrogen peroxide and lactate. Mikrochim Acta 2019; 186:752. [DOI: 10.1007/s00604-019-3845-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/17/2019] [Indexed: 11/26/2022]
|
38
|
Exploring the exocellular fungal biopolymer botryosphaeran for laccase-biosensor architecture and application to determine dopamine and spironolactone. Talanta 2019; 204:475-483. [DOI: 10.1016/j.talanta.2019.06.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 11/23/2022]
|
39
|
Ghalkhani M, Bakirhan NK, Ozkan SA. Combination of Efficiency with Easiness, Speed, and Cheapness in Development of Sensitive Electrochemical Sensors. Crit Rev Anal Chem 2019; 50:538-553. [DOI: 10.1080/10408347.2019.1664281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran
| | - Nurgul K. Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Science, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
40
|
Amperometric lactate nanobiosensor based on reduced graphene oxide, carbon nanotube and gold nanoparticle nanocomposite. Mikrochim Acta 2019; 186:680. [DOI: 10.1007/s00604-019-3791-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023]
|
41
|
An ion-imprinted sensor based on chitosan-graphene oxide composite polymer modified glassy carbon electrode for environmental sensing application. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Bi Y, Ye L, Mao Y, Wang L, Qu H, Liu J, Zheng L. Porous carbon supported nanoceria derived from one step in situ pyrolysis of Jerusalem artichoke stalk for functionalization of solution-gated graphene transistors for real-time detection of lactic acid from cancer cell metabolism. Biosens Bioelectron 2019; 140:111271. [PMID: 31154253 DOI: 10.1016/j.bios.2019.04.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 01/21/2023]
Abstract
Effective detection of biomarkers for tumor cells has been the focus of attention. In this work, we have successfully fabricated a highly sensitive sensor based on solution-gated graphene transistors (SGGT) for detecting lactic acid content accumulated in tumor cells through their glycolysis metabolism. The sensing mechanism of the lactic acid sensor is attributed to electrochemical catalysis of H2O2 produced by the oxidation of lactic acid by lactate oxidase near the gate electrode. The key component of the sensor is the functionalization of porous carbon loaded with ceria nanoparticles derived from a novel one step in situ pyrolysis of pretreated Jerusalem artichoke stalk, which significantly improved the sensor sensitivity, i.e. a detection limit as low as 300 nM and linear range from 3 μM to 300 μM. The optimized lactic acid sensor has successfully applied to the detection of lactic acid in practical cell culture samples with high credibility. The SGGT-based lactic acid biosensor shows great potential for the application in tumor microenvironment due to its superior biocompatibility and accuracy.
Collapse
Affiliation(s)
- Yulong Bi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Lihui Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
43
|
Pérez JAC, Sosa-Hernández JE, Hussain SM, Bilal M, Parra-Saldivar R, Iqbal HM. Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Kucherenko I, Topolnikova Y, Soldatkin O. Advances in the biosensors for lactate and pyruvate detection for medical applications: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Merzendorfer H. Chitosan Derivatives and Grafted Adjuncts with Unique Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Layer-by-layer chitosan-decorated pristine graphene on screen-printed electrodes by one-step electrodeposition for non-enzymatic hydrogen peroxide sensor. Talanta 2018; 190:70-77. [DOI: 10.1016/j.talanta.2018.07.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
|
47
|
Wayu MB, Pannell MJ, Labban N, Case WS, Pollock JA, Leopold MC. Functionalized carbon nanotube adsorption interfaces for electron transfer studies of galactose oxidase. Bioelectrochemistry 2018; 125:116-126. [PMID: 30449323 DOI: 10.1016/j.bioelechem.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
Modified electrodes featuring specific adsorption platforms able to access the electrochemistry of the copper containing enzyme galactose oxidase (GaOx) were explored, including interfaces featuring nanomaterials such as nanoparticles and carbon nanotubes (CNTs). Electrodes modified with various self-assembled monolayers (SAMs) including those with attached nanoparticles or amide-coupled functionalized CNTs were examined for their ability to effectively immobilize GaOx and study the redox activity related to its copper core. While stable GaOx electrochemistry has been notoriously difficult to achieve at modified electrodes, strategically designed functionalized CNT-based interfaces, cysteamine SAM-modified electrode subsequently amide-coupled to carboxylic acid functionalized single wall CNTs, were significantly more effective with high GaOx surface adsorption along with well-defined, more reversible, stable (≥ 8 days) voltammetry and an average ET rate constant of 0.74 s-1 in spite of increased ET distance - a result attributed to effective electronic coupling at the GaOx active site. Both amperometric and fluorescence assay results suggest embedded GaOx remains active. Fundamental ET properties of GaOx may be relevant to biosensor development targeting galactosemia while the use functionalized CNT platforms for adsorption/electrochemistry of electroactive enzymes/proteins may present an approach for fundamental protein electrochemistry and their future use in both direct and indirect biosensor schemes.
Collapse
Affiliation(s)
- Mulugeta B Wayu
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Michael J Pannell
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Najwa Labban
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - William S Case
- Department of Biology, Chemistry, and Physics, Converse College, Spartanburg, SC 29302, United States
| | - Julie A Pollock
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Michael C Leopold
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States.
| |
Collapse
|
48
|
Cheng H, Hu C, Ji Z, Ma W, Wang H. A solid ionic Lactate biosensor using doped graphene-like membrane of Au-EVIMC-titania nanotubes-polyaniline. Biosens Bioelectron 2018; 118:97-101. [DOI: 10.1016/j.bios.2018.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 01/23/2023]
|
49
|
Detection of Phosphatidylcholine Content in Crude Oil with Bio-Enzyme Screen-Printed Electrode. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1354-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Cummins G, Kremer J, Bernassau A, Brown A, Bridle HL, Schulze H, Bachmann TT, Crichton M, Denison FC, Desmulliez MPY. Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2648. [PMID: 30104478 PMCID: PMC6111374 DOI: 10.3390/s18082648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
This article reviews existing clinical practices and sensor research undertaken to monitor fetal well-being during labour. Current clinical practices that include fetal heart rate monitoring and fetal scalp blood sampling are shown to be either inadequate or time-consuming. Monitoring of lactate in blood is identified as a potential alternative for intrapartum fetal monitoring due to its ability to distinguish between different types of acidosis. A literature review from a medical and technical perspective is presented to identify the current advancements in the field of lactate sensors for this application. It is concluded that a less invasive and a more continuous monitoring device is required to fulfill the clinical needs of intrapartum fetal monitoring. Potential specifications for such a system are also presented in this paper.
Collapse
Affiliation(s)
- Gerard Cummins
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Jessica Kremer
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Anne Bernassau
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Andrew Brown
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK.
| | - Helen L Bridle
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Holger Schulze
- Division of Infection and Pathway Medicine, Edinburgh Medical School, The Chancellor's Building, The University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK.
| | - Till T Bachmann
- Division of Infection and Pathway Medicine, Edinburgh Medical School, The Chancellor's Building, The University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK.
| | - Michael Crichton
- Institute of Mechanical, Processing and Energy Engineering, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Fiona C Denison
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK.
| | - Marc P Y Desmulliez
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| |
Collapse
|