1
|
Wu X, Wang F, Yang X, Gong Y, Niu T, Chu B, Qu Y, Qian Z. Advances in Drug Delivery Systems for the Treatment of Acute Myeloid Leukemia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403409. [PMID: 38934349 DOI: 10.1002/smll.202403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Acute myeloid leukemia (AML) is a common and catastrophic hematological neoplasm with high mortality rates. Conventional therapies, including chemotherapy, hematopoietic stem cell transplantation (HSCT), immune therapy, and targeted agents, have unsatisfactory outcomes for AML patients due to drug toxicity, off-target effects, drug resistance, drug side effects, and AML relapse and refractoriness. These intrinsic limitations of current treatments have promoted the development and application of nanomedicine for more effective and safer leukemia therapy. In this review, the classification of nanoparticles applied in AML therapy, including liposomes, polymersomes, micelles, dendrimers, and inorganic nanoparticles, is reviewed. In addition, various strategies for enhancing therapeutic targetability in nanomedicine, including the use of conjugating ligands, biomimetic-nanotechnology, and bone marrow targeting, which indicates the potential to reverse drug resistance, are discussed. The application of nanomedicine for assisting immunotherapy is also involved. Finally, the advantages and possible challenges of nanomedicine for the transition from the preclinical phase to the clinical phase are discussed.
Collapse
Affiliation(s)
- Xia Wu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fangfang Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xijing Yang
- The Experimental Animal Center of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuping Gong
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
2
|
Ehtiati S, Naeeni B, Qeysouri B, Heidarian E, Azmon M, Ahmadzade R, Movahedpour A, Kazemi F, Motamedzadeh A, Khatami SH. Electrochemical biosensors in early leukemia detection. Clin Chim Acta 2024; 562:119871. [PMID: 39009333 DOI: 10.1016/j.cca.2024.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Leukemia, a type of blood cancer marked by an abnormal increase in white blood cells, poses a significant challenge to healthcare. The key to successful treatment lies in early detection. However, traditional methods often fall short. This review investigates the potential of electrochemical biosensors for a more accurate and earlier diagnosis of leukemia. Electrochemical biosensors are compact devices that transform biological interactions into electrical signals. Their small size, ease of use, and minimal sample requirements make them perfectly suited for point-of-care applications. Their remarkable sensitivity and specificity enable the detection of subtle biomolecular changes associated with leukemia, which is crucial for early disease detection. This review delves into studies that have utilized these biosensors to identify various types of leukemia. It examines the roles of electrodes, biorecognition elements, and signal transduction mechanisms. The discussion includes the integration of nanomaterials such as gold nanoparticles and nitrogen-doped graphene into biosensor design. These materials boost sensitivity, enhance signal amplification, and facilitate multi-analyte detection, thereby providing a more holistic view of the disease. Beyond technical advancements, the review underscores the practical benefits of these biosensors. Their portability makes them a promising tool for resource-constrained settings, enabling swift diagnosis in remote areas or at a patient's bedside. The potential for monitoring treatment effectiveness and detecting minimal residual disease to prevent relapse is also explored. This review emphasizes the transformative potential of electrochemical biosensors in combating leukemia. By facilitating earlier and more accurate diagnosis, these biosensors stand to revolutionize patient care and enhance treatment outcomes.
Collapse
Affiliation(s)
- Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Naeeni
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Qeysouri
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Heidarian
- Department of Clinical Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzyeh Azmon
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Ahmadzade
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Kazemi
- Metabolic Diseases Research Center, Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chen Z, Wang Y. A label- and enzyme-free fluorescence assay based on thioflavin T–induced G-quadruplexes for the detection of telomerase activity. JOURNAL OF CHEMICAL RESEARCH 2023. [DOI: 10.1177/17475198221139085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A label- and enzyme-free fluorescence assay based on thioflavin T–induced G-quadruplexes is developed to sensitively and specifically detect telomerase activity. Thioflavin T has a dual role as an efficient inducer and fluorescent probe, and the incorporation of thioflavin T into the thioflavin T–induced G-quadruplexes results in an intense fluorescence enhancement. In the presence of thioflavin T and K+, G-quadruplexes are formed by elongation of the telomerase substrate primer that is catalyzed by telomerase extracted from cancer cells. Thus, the telomerase activity in cancer cell extracts can be evaluated by measuring the thioflavin T fluorescence. More importantly, thioflavin T can specifically recognize and bind to G-quadruplexes, whereas it cannot recognize single- and double-stranded DNAs, which leads to the thioflavin T–based fluorescence assay exhibiting a reduced background and improved signal-to-noise ratio. As a result, the proposed assay has the linear range from 5 to 200 HeLa cells and the detection limit is 34 HeLa cells, which holds great potential for use in the detection of telomerase activity and the diagnosis of cancer.
Collapse
Affiliation(s)
- Zhe Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, P.R. China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, P.R. China
| | - Yunxia Wang
- Department of Laboratory Science, Shanxi Medical University, Taiyuan, P.R. China
- The Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, P.R. China
| |
Collapse
|
4
|
Wu Y, Choi N, Chen H, Dang H, Chen L, Choo J. Performance Evaluation of Surface-Enhanced Raman Scattering-Polymerase Chain Reaction Sensors for Future Use in Sensitive Genetic Assays. Anal Chem 2020; 92:2628-2634. [PMID: 31939280 DOI: 10.1021/acs.analchem.9b04522] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a surface-enhanced Raman scattering (SERS)-based polymerase chain reaction (PCR) assay platform for the sensitive and rapid detection of a DNA marker (pagA) of Bacillus anthracis. Real-time quantitative PCR (RT-qPCR) has been recently considered a gold standard for the quantitative evaluation of a target gene, but it still suffers from the problem of a long thermocycling time. To address this issue, we developed a conceptually new SERS-PCR platform and evaluated its performance by sequentially measuring the Raman signals of B. anthracis DNA after the completion of different thermocycling numbers. According to our experimental data, SERS-PCR has lower limits of detection (LODs) than RT-qPCR under the small cycle number of 20. Particularly, it was impossible to detect a target DNA amplicon using RT-qPCR before the number of cycles reached 15, but SERS-PCR enabled DNA detection after only five cycles with an LOD value of 960 pM. In addition, the dynamic range for SERS-PCR (0.1-1000 pM) is wider than that for RT-qPCR (150-1000 pM) under the same condition. We believe that this SERS-PCR technique has a strong potential to be a powerful tool for the rapid and sensitive diagnosis of infectious diseases in the near future.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Chemistry , Chung-Ang University , Seoul 06974 , South Korea
| | - Namhyun Choi
- Department of Bionano Technology , Hanyang University , Ansan 15588 , South Korea
| | - Hao Chen
- Department of Chemistry , Chung-Ang University , Seoul 06974 , South Korea
| | - Hajun Dang
- Department of Chemistry , Chung-Ang University , Seoul 06974 , South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003 , China
| | - Jaebum Choo
- Department of Chemistry , Chung-Ang University , Seoul 06974 , South Korea
| |
Collapse
|
5
|
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Zheng X, Zhao L, Wen D, Wang X, Yang H, Feng W, Kong J. Ultrasensitive fluorescent detection of HTLV-II DNA based on magnetic nanoparticles and atom transfer radical polymerization signal amplification. Talanta 2019; 207:120290. [PMID: 31594607 DOI: 10.1016/j.talanta.2019.120290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 02/01/2023]
Abstract
Human T-lymphotropic virus type II (HTLV-II) is a crucial retrovirus that is closely associated with a variety of human diseases. Herein, an ultrasensitive fluorescent HTLV-II DNA detection strategy was developed for the first time based on magnetic nanoparticles (MNPs) and atom transfer radical polymerization (ATRP) amplification. In this approach, hairpin DNA probes (pDNA) labelled with 5' thiol and 3' azide group terminally were immobilized on amino group modified MNPs surface through sulfo-N-succinimidyl-4-maleimidobutyrate sodium salt (sulfo-GMBS) cross-linkers. In the presence of target DNAs (tDNA), pDNA hybridized with tDNA to form double-stranded DNA, and therefore its azide group was away from the MNPs surface. Subsequently, to initiate ATRP reaction, initiators were introduced into the pDNA by a Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC). Then, large numbers of 9-anthracenylmethyl methacrylate polymer (pAMMA) were successfully labelled on the MNPs surface, resulting in significant amplification of the fluorescence signal. Under optimized conditions, the fluorescence signal was proportional to the logarithm of the concentration of tDNA over the range from 1 fM to 1 nM, with a detection limit of 0.22 fM. Moreover, this strategy was capable of discriminating mismatched bases and detecting HTLV-II DNA in human serum samples. By virtue of the high sensitivity, selectivity, simplicity and economy, this ultrasensitive biosensor demonstrates great potential for biomedical research and early clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoke Zheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Liying Zhao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Dongxiao Wen
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Xiaolan Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Weisheng Feng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
7
|
Liu Y, Wang M, Nie Y, Zhang Q, Ma Q. Sulfur Regulated Boron Nitride Quantum Dots Electrochemiluminescence with Amplified Surface Plasmon Coupling Strategy for BRAF Gene Detection. Anal Chem 2019; 91:6250-6258. [DOI: 10.1021/acs.analchem.9b00965] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yang Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qian Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Zeng J, Gan N, Zhang K, He L, Lin J, Hu F, Cao Y. Zero background and triple-signal amplified fluorescence aptasensor for antibiotics detection in foods. Talanta 2019; 199:491-498. [PMID: 30952289 DOI: 10.1016/j.talanta.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
It's important to eliminate matrix interference for accurate detecting antibiotic residues in complex food samples. In this study, we designed a zero-backgrounded fluorescence aptasensor to achieve on-site detection of antibiotic residues, with chloramphenicol (CAP) as representative analyte. Moreover, a three stir-bars assisted target recycling system (TSBTR) was designed to achieve triple signal amplification and increase the sensitivity. The bars included one magnetic stir-bar modified with two kinds of long DNA chains, and two gold stir-bars modified with Y shape-duplex DNA probes respectively. In the presence of CAP, the target could recurrently react with the probes on the bars and replace a large amount of long DNA chains into supernatant. After then, the bars were taken out and SYBR green dye was added to the solution. The dye can specifically intercalate into the duplex structures of DNA chains to emit fluorescence while not emitting a signal in its free state. Under the optimized experimental conditions, a wide linear response range of 5 orders of magnitude from 0.001 ng mL-1 to 10 ng mL-1 was achieved with a detection limit of 0.033 pg mL-1 CAP. The assay was successfully employed to detect CAP in food samples (milk & fish) with consistent results with ELISA's. High selectivity and sensitivity were attributed to the zero background signal and triple signal-amplification strategy. Moreover, the detection time can be shortened to 40 min due to that three signal amplified process can occur simultaneously. The fluorescent aptasensor was also label- and enzyme-free. All these ensure the platform to be rapid, cost-effective, easily-used, and is especially appropriate for detection antibiotics in food safety.
Collapse
Affiliation(s)
- Jin Zeng
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China.
| | - Kai Zhang
- Faculty of marine, Ningbo University, Ningbo 315211, China
| | - Liyong He
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Jianyuan Lin
- School of food and environment, Zhejiang wanli university, Ningbo 315200, China
| | - Futao Hu
- Faculty of marine, Ningbo University, Ningbo 315211, China.
| | - Yuting Cao
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Zhang K, Gan N, Shen Z, Cao J, Hu F, Li T. Microchip electrophoresis based aptasensor for multiplexed detection of antibiotics in foods via a stir-bar assisted multi-arm junctions recycling for signal amplification. Biosens Bioelectron 2019; 130:139-146. [PMID: 30735947 DOI: 10.1016/j.bios.2019.01.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
Abstract
Microchip electrophoresis (MCE) was a good available method for high-throughput and rapid detecting chemical pollutants in food samples. However, many of the reported MCE assays involve complex design of microchip, laborious operation and poor universality which limited its promotion in multiple antibiotics' detection. Herein, a multiplexed aptasensor was developed based on a universal double-T type microchip to one-step and simultaneously detect several antibiotics within 3 min using chloramphenicol (CAP) and kanamycin (Kana) as representatives. Besides, a novel stir-bar assisted DNA multi-arm junctions recycling (MAJR) strategy was designed for transducing and amplifying the signal. The brief detection mechanism was as following: the added CAP and Kana can specifically react with their aptamer probes on the stir-bar and produce different single-stranded DNA primer, respectively. Afterwards, the primers can trigger MAJR to form a lot of three- and four-arm DNA junctions corresponding to different targets. The DNA multi-arm junctions can be easily separated and detected by MCE for quantification. Moreover, the stir-bar can facilitate phase separation and obviously eliminate matrix interference in food. The assay was successfully applied in milk and fish samples, showing excellent selectivity and sensitivity with a detection limits of 0.52 pg mL-1 CAP and 0.41 pg mL-1 Kana (S/N = 3). Thus, the assay holds a great potential application for screening of antibiotics in food.
Collapse
Affiliation(s)
- Kai Zhang
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Zhipeng Shen
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Futao Hu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Tianhua Li
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
10
|
Zhang K, Cao J, Wu Y, Hu F, Li T, Wang Y, Gan N. A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles. Mikrochim Acta 2019; 186:120. [PMID: 30666478 DOI: 10.1007/s00604-018-3207-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023]
Abstract
A simple and highly sensitive fluorometric method is described for the determination of the antibiotic kanamycin (Kana) in food. Dual signal amplification is accomplished by making use of double Y-shaped aptamer DNA probes acting as a capture probes and signal amplification probes. The DNA probes were immobilized on a gold bar and on a magnetic bar, respectively. On addition of Kana, the Y-shaped aptamer probe captures Kana and then is disassembled to release two single-stranded DNAs. These trigger target recycling and HCR between the two bars simultaneously. As a result, many long duplex DNA chains are formed in the supernatant. After pulling out the bars and adding the fluorescent intercalating probe SYBR Green I, strong fluorescence (with excitation/emission peaks at 497/525 nm) is induced. The use of such double Y-shaped DNA probes obviously overcomes the unspecific signal amplification by HCR which increases selectivity and sensitivity. This is due to the fact that the hairpin of HCR is separated in being present in different arms of the Y-shaped probe. Under the optimal conditions, the assay has a limit of 0.45 pg·mL-1 for Kana. It was applied to analyze spiked milk, fish and pork samples. Graphical abstract The scheme represents a sensitive fluorometric aptamer-based method to detect kanamycin (Kana). It is making use of a double stirring bar-assisted dual amplification strategy with zero background. Abbreviations: apt: aptamer, AuNPs: gold nanoparticles, HCR: hybridization chain reaction.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of food and medicine, Ningbo University, Ningbo, 315211, China
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of food and medicine, Ningbo University, Ningbo, 315211, China.
| | - Yongxiang Wu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China
| | - Futao Hu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of food and medicine, Ningbo University, Ningbo, 315211, China
| | - Tianhua Li
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China
| | - Ying Wang
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
11
|
Wang M, Tang Y, Chen Y, Cao Y, Chen G. Catalytic hairpin assembly-programmed formation of clickable nucleic acids for electrochemical detection of liver cancer related short gene. Anal Chim Acta 2019; 1045:77-84. [DOI: 10.1016/j.aca.2018.08.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
|
12
|
Li X, Ye M, Zhang W, Tan D, Jaffrezic-Renault N, Yang X, Guo Z. Liquid biopsy of circulating tumor DNA and biosensor applications. Biosens Bioelectron 2018; 126:596-607. [PMID: 30502682 DOI: 10.1016/j.bios.2018.11.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022]
Abstract
Circulating tumor DNA (ctDNA) as a class of liquid biopsy is a type of gene fragment that contains tumor-specific gene changes in body fluids such as human peripheral blood. More and more evidences show that ctDNA is an excellent tumor biomarker for diagnosis, prognosis, tumor heterogeneity and so on. ctDNA is a tumor code in the blood. Liquid biopsy of ctDNA is firstly summarized. Compared with the traditional detection technologies of ctDNA, the biosensor is an excellent choice for the detection of ctDNA because of its portability, sensitivity, specificity and ease of use. This review mainly evaluates various biosensors applied to the detection of ctDNA. We discuss the most commonly used bioreceptors to specifically identify and bind ctDNA, including complementary DNA (cDNA), peptide nucleic acid (PNA) and anti-5 MethylCytosines, and the biotransducers which convert biological signals to analysable signs. The review also discusses signal amplification strategies in biosensors to detect ctDNA.
Collapse
Affiliation(s)
- Xuanying Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control; School of Public Health, Medical College; Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Mengsha Ye
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control; School of Public Health, Medical College; Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Weiying Zhang
- Institute for Interdisciplinary Research, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Duo Tan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control; School of Public Health, Medical College; Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, UMR-CNRS 5280, University of Lyon, 5, La Doua Street, Villeurbanne 69100, France
| | - Xu Yang
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control; School of Public Health, Medical College; Wuhan University of Science and Technology, Wuhan 430065, PR China.
| |
Collapse
|
13
|
Manikandan VS, Liu Z, Chen A. Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Hong F, Chen X, Cao Y, Dong Y, Wu D, Hu F, Gan N. Enzyme- and label-free electrochemical aptasensor for kanamycin detection based on double stir bar-assisted toehold-mediated strand displacement reaction for dual-signal amplification. Biosens Bioelectron 2018; 112:202-208. [PMID: 29709830 DOI: 10.1016/j.bios.2018.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/20/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022]
Abstract
It is critically important to detect antibiotic residues for monitoring food safety. In this study, an enzyme- and label-free electrochemical aptasensor for antibiotics, with kanamycin (Kana) as a typical analyte, was developed based on a double stir bar-assisted toehold-mediated strand displacement reaction (dSB-TMSDR) for dual-signal amplification. First, we modified two gold electrodes (E-1 and E-2) with different DNA probes (S1/S2 hybrid probe in E-1 and DNA fuel strand S3 in E-2). In the presence of Kana, an S1/S2 probe can be disassembled from E-1 to form an S2/Kana complex in supernatant. The S2/Kana could react with S3 on E-2 to form S2/S3 hybrid and release Kana through TMSDR. After then, the target recycling was triggered. Subsequently, the formed S2/S3 hybrid can also trigger a hybridization chain reaction (HCR). Consequently, the dual-signal amplification strategy was established, which resulted in many long dsDNA chains on E-2. The chains can associate with methylene blue (MB) as redox probes to produce a current response for the quantification of Kana. The assay exhibited high sensitivity and specificity with a detection limit at 16 fM Kana due to the dual-signal amplification. The double stir bars system can both increase phase separation and prevent leakage of DNA fuel to reduce background interference. Moreover, it allows flexible sequence design of the TMSDR probes. The assay was successfully employed to detect Kana residues in food and showed potential application value in food safety detection.
Collapse
Affiliation(s)
- Feng Hong
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Xixue Chen
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Yuting Cao
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China.
| | - Youren Dong
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Dazhen Wu
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Futao Hu
- Faculty of marine, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
15
|
Electrochemiluminescent quaternary Cu-Zn-In-S nanocrystals as a sensing platform: Enzyme-free and sensitive detection of the FLT3 gene based on triple signal amplification. Biosens Bioelectron 2018; 100:445-452. [DOI: 10.1016/j.bios.2017.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022]
|
16
|
Guo J, Yuan C, Yan Q, Duan Q, Li X, Yi G. An electrochemical biosensor for microRNA-196a detection based on cyclic enzymatic signal amplification and template-free DNA extension reaction with the adsorption of methylene blue. Biosens Bioelectron 2018; 105:103-108. [PMID: 29367007 DOI: 10.1016/j.bios.2018.01.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/06/2018] [Accepted: 01/17/2018] [Indexed: 01/06/2023]
Abstract
A simple and sensitive electrochemical biosensor was developed for microRNA-196a detection, which is of important diagnostic significance for pancreatic cancer. It was based on cyclic enzymatic signal amplification (CESA) and template-free DNA extension reaction. In the presence of microRNA-196a, duplex-specific nuclease (DSN) catalyzed the digestion of the 3'-PO4 terminated capture probe (CP), resulting in the target recycling amplification. Meanwhile, the 3'-OH terminal of CP was exposed. Then, template-free DNA extension reaction was triggered by terminal deoxynucleotidyl transferase (TdT), producing amounts of single-stranded DNA (ssDNA). After ssDNA absorbed numerous methylene blue (MB), an ultrasensitive electrochemical readout was obtained. Based on this dual amplification mechanism, the proposed biosensor exhibited a high sensitivity for detection of microRNA-196a down to 15 aM with a linear range from 0.05 fM to 50 pM. This biosensor displayed high specificity, which could discriminate target microRNAs from one base mismatched microRNAs. It also showed good reproducibility and stability. Furthermore, it was successfully applied to the determination of microRNA-196a in plasma samples. In conclusion, with the excellent analytical performance, this biosensor might have the potential for application in clinical diagnostics of pancreatic cancer.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Changjing Yuan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Qi Yan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Qiuyue Duan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaolu Li
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
17
|
Liu Y, Zhao Y, Fan Q, Khan MS, Li X, Zhang Y, Ma H, Wei Q. Aptamer based electrochemiluminescent thrombin assay using carbon dots anchored onto silver-decorated polydopamine nanospheres. Mikrochim Acta 2018; 185:85. [DOI: 10.1007/s00604-017-2616-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
|
18
|
Zhang H, Liu X, Liu M, Gao T, Huang Y, Liu Y, Zeng W. Gene detection: An essential process to precision medicine. Biosens Bioelectron 2018; 99:625-636. [DOI: 10.1016/j.bios.2017.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
|
19
|
Yan Q, Yang Y, Tan Z, Liu Q, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong Y. A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron 2017; 103:151-157. [PMID: 29291595 DOI: 10.1016/j.bios.2017.12.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/23/2022]
Abstract
A sensitive label-free electrochemical immunosensor was designed using a novel signal amplification system for quantitative detecting hepatitis B surface antigen (HBsAg). Nitrogen-doped graphene quantum dots (N-GQDs) supported surfactant-free AuPdCu ternary nanoparticles (AuPdCu/N-GQDs), which featured with good conductivity and excellent catalytic properties for the reduction of hydrogen peroxide (H2O2), was synthesized by a simple and benign hydrothermal procedure. At the same time, the electroactive polymer nanospheres (PS) was synthesized by infinite coordination polymers of ferrocenedicarboxylic acid, which could play as carrier and electronic mediator to load AuPdCu/N-GQDs. The PS not only improved the ability to load antibodies because of the good biocompatibility, but also accelerated electron transport of the electrode interface attribute to plentiful ferrocene unit. Thus, the prepared AuPdCu/N-GQDs@PS has abilities of good biocompatibility, catalytic activity and electrical conductivity to be applied as transducing materials to amplify electrochemical signal in detection of HBsAg. Under optimal conditions, the fabricated immunosensor exhibited high sensitivity and stability in the detection of HBsAg. A linear relationship between current signals and the concentrations of HBsAg was obtained in the range from 10fg/mL to 50ng/mL and the detection limit of HBsAg was 3.3fg/mL (signal-to-noise ratio of 3). Moreover, the designed immunosensor with excellent selectivity, reproducibility and stability shows excellent performance in detection of human serum samples. Furthermore, this label-free electrochemical immunosensor has promising application in clinical diagnosis of HBsAg.
Collapse
Affiliation(s)
- Qin Yan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yuying Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhaoling Tan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| |
Collapse
|
20
|
Applications of Magnetic Molecularly Imprinted Polymers (MMIPs) in the Separation and Purification Fields. Chromatographia 2017. [DOI: 10.1007/s10337-017-3407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Zhao Z, Chen S, Wang J, Su J, Xu J, Mathur S, Fan C, Song S. Nuclease-free target recycling signal amplification for ultrasensitive multiplexing DNA biosensing. Biosens Bioelectron 2017; 94:605-608. [DOI: 10.1016/j.bios.2017.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/17/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
|
22
|
Khoshfetrat SM, Mehrgardi MA. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry 2016; 114:24-32. [PMID: 27992855 DOI: 10.1016/j.bioelechem.2016.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023]
Abstract
The increasing demands for early, accurate and ultrasensitive diagnosis of cancers demonstrate the importance of the development of new amplification strategies or diagnostic technologies. In the present study, an aptamer-based electrochemical biosensor for ultrasensitive and selective detection of leukemia cancer cells has been introduced. The thiolated sgc8c aptamer was immobilized on gold nanoparticles-coated magnetic Fe3O4 nanoparticles (Apt-GMNPs). Ethidium bromide (EB), intercalated into the stem of the aptamer hairpin, provides the read-out signal for the quantification of the leukemia cancer cells. After introduction of the leukemia cancer cells onto the Apt-GMNPs, the hairpin structure of the aptamer is disrupted and the intercalator molecules are released, resulting in a decrease of the electrochemical signal. The immobilization of nitrogen-doped graphene nanosheets on the electrode surface provides an excellent platform for amplifying the read-out signal. Under optimal conditions, the aptasensor exhibits a linear response over a wide dynamic range of leukemia cancer cells from 10 to 1×106cellmL-1. The present protocol provides a highly sensitive, selective, simple, and robust method for early stage detection of leukemia cancer. Furthermore, the fabricated aptasensor was successfully used for the detection of leukemia cancer cells in complex media such as human blood plasma, without any serious interference.
Collapse
Affiliation(s)
| | - Masoud A Mehrgardi
- Department of chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
23
|
Zhong C, Yang G, Wang N, Ji F, Zhang Y, Ding X, Yang J, Zhang J. Hairpin Assembly Amplified Electrochemical Biosensor for Highly Sensitive and Specific Detection of DNA. ELECTROANAL 2016. [DOI: 10.1002/elan.201501178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Changli Zhong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); Department of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Gang Yang
- Department of Orthopedics; The First Affiliated Hospital of Chongqing Medical University; Chongqing 400016 PR China
| | - Nian Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); Department of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Feihu Ji
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); Department of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Ye Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); Department of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Xiaojuan Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); Department of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Junhong Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education); Department of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Jian Zhang
- Department of Orthopedics; The First Affiliated Hospital of Chongqing Medical University; Chongqing 400016 PR China
| |
Collapse
|