1
|
Oushyani Roudsari Z, Karami Y, Khoramrooz SS, Rouhi S, Ghasem H, Khatami SH, Alizadeh M, Ahmad Khosravi N, Mansoriyan A, Ghasemi E, Movahedpour A, Dargahi Z. Electrochemical and optical biosensors for the detection of E. Coli. Clin Chim Acta 2024; 565:119984. [PMID: 39401653 DOI: 10.1016/j.cca.2024.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
E. coli is a common pathogenic microorganism responsible for numerous food and waterborne illnesses. Traditional detection methods often require long, multi-step processes and specialized equipment. Electrochemical and optical biosensors offer promising alternatives due to their high sensitivity, selectivity, and real-time monitoring capabilities. Recent advancements in sensor development focus on various techniques for detecting E. coli, including optical (fluorescence, colorimetric analysis, surface-enhanced Raman spectroscopy, surface plasmon resonance, localized surface plasmon resonance, chemiluminescence) and electrochemical (amperometric, voltammetry, impedance, potentiometric). Herein, the latest advancements in optical and electrochemical biosensors created for identifying E. coli with an emphasis on surface modifications employing nanomaterials and biomolecules are outlined in this review. Electrochemical biosensors exploit the unique electrochemical properties of E. coli or its specific biomolecules to generate a measurable signal. In contrast, optical biosensors rely on interactions between E. coli and optical elements to generate a detectable response. Moreover, optical detection has been exploited in portable devices such as smart phones and paper-based sensors. Different types of electrodes, nanoparticles, antibodies, aptamers, and fluorescence-based systems have been employed to enhance the sensitivity and specificity of these biosensors. Integrating nanotechnology and biorecognition (which bind to a specific region of the E. coli) elements has enabled the development of portable and miniaturized devices for on-site and point-of-care (POC) applications. These biosensors have demonstrated high sensitivity and offer low detection limits for E. coli detection. The convergence of electrochemical and optical technologies promises excellent opportunities to revolutionize E. coli detection, improving food safety and public health.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yousof Karami
- Student of Veterinary Medicine, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Hassan Ghasem
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Ahmad Khosravi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Mansoriyan
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Zahra Dargahi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Khachornsakkul K, Zeng W, Sonkusale S. Distance-based paper analytical devices integrated with molecular imprinted polymers for Escherichia coli quantification. Mikrochim Acta 2024; 191:253. [PMID: 38592400 DOI: 10.1007/s00604-024-06332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
The development of distance-based paper analytical devices (dPADs) integrated with molecularly imprinted polymers (MIPs) to monitor Escherichia coli (E. coli) levels in food samples is presented. The fluidic workflow on the device is controlled using a designed hydrophilic bridge valve. Dopamine serves as a monomer for the formation of the E. coli-selective MIP layer on the dPADs. The detection principle relies on the inhibition of the E. coli toward copper (II) (Cu2+)-triggered oxidation of o-phenylenediamine (OPD) on the paper substrate. Quantitative detection is simply determined through visual observation of the residual yellow color of the OPD in the detection zone, which is proportional to E. coli concentration. The sensing exhibits a linear range from 25.0 to 1200.0 CFU mL-1 (R2 = 0.9992) and a detection limit (LOD) of 25.0 CFU mL-1 for E. coli detection. Additionally, the technique is highly selective with no interference even from the molecules that have shown to react with OPD to form oxidized OPD. The developed device demonstrates accuracy and precision for E. coli quantification in food samples with recovery percentages between 98.3 and 104.7% and the highest relative standard deviation (RSD) of 4.55%. T-test validation shows no significant difference in E. coli concentration measured between our method and a commercial assay. The proposed dPAD sensor has the potential for selective and affordable E. coli determination in food samples without requiring sample preparation. Furthermore, this strategy can be extended to monitor other molecules for which MIP can be developed and integrated into paper-microfluidic platform.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA.
- Nano Lab, Tufts University, Medford, MA, 02155, USA.
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
- Nano Lab, Tufts University, Medford, MA, 02155, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA.
- Nano Lab, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
3
|
Yao Y, Ma J, Xing S, Zeng F, Wu L, Li Y, Du J, Yang Q, Li Y. An innovative fluorescent probe based on dicyanoisoflurone derivatives for differential detection of Hg 2+ and Cu 2+ and its applications in bacteria, cell imaging and food analysis. Anal Chim Acta 2024; 1292:342259. [PMID: 38309842 DOI: 10.1016/j.aca.2024.342259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Heavy metal pollution has become one of the world's most important environmental pollution, especially Hg2+ is enriched, it is easy to enter the human body through the food chain, bind to the sulfhydryl group in the protein, cause mercury poisoning. Traditional methods for detecting Hg2+ have obvious drawbacks, such as poor selectivity and long detection time. Fluorescence detection has attracted attention because of its good sensitivity and specificity detection ability. In previously reported probes for detecting Hg2+, Cu2+ often interferes. Therefore, it is of great practical significance to synthesize a fluorescent probe that can distinguish between Hg2+ and Cu2+. RESULTS We have successfully synthesized the probe DFS, a fluorescent probe that can differentially detect Hg2+ and Cu2+, and the probe DFS has good selectivity and anti-interference ability for Hg2+ and Cu2+. The fluorescence intensity at 530 nm increased rapidly when Hg2+ was detected; during the Cu2+ detection, the fluorescence intensity at 636 nm gradually decreased, fluorescence quenching occurred, and the detection limits of Hg2+ and Cu2+ were 7.29 × 10-9 M and 2.13 × 10-9 M, respectively. Through biological experiments, it was found that probe DFS can complete the fluorescence imaging of Hg2+ and Cu2+ in Staphylococcus aureus and HUVEC cells, which has certain research value in the field of environmental monitoring and microbiology, and the probe DFS has low cytotoxicity, so it also has broad application prospects in the field of biological imaging. In addition, the probe DFS also has good applicability for Hg2+ and Cu2+ detection in actual samples. SIGNIFICANCE AND NOVELTY This is a fluorescent probe that can distinguish between Hg2+ and Cu2+, the fluorescence emission peak appears at 530 nm when Hg2+ is detected; when detecting Cu2+, fluorescence quenching occurs at 636 nm, the fluorescence emission peak distance between Hg2+ and Cu2+ differs by 106 nm. This reduces mutual interference between Hg2+ and Cu2+ during detection, it provides a new idea for the detection of Hg2+ and Cu2+.
Collapse
Affiliation(s)
- Yixuan Yao
- College of Chemistry, Jilin University, Changchun, 130021, PR China
| | - Jinli Ma
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Changchun, 130031, PR China
| | - Shuo Xing
- College of Chemistry, Jilin University, Changchun, 130021, PR China
| | - Fudong Zeng
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Changchun, 130031, PR China
| | - Liangqiang Wu
- College of Chemistry, Jilin University, Changchun, 130021, PR China
| | - Yapeng Li
- College of Chemistry, Jilin University, Changchun, 130021, PR China
| | - Jianshi Du
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Changchun, 130031, PR China
| | - Qingbiao Yang
- College of Chemistry, Jilin University, Changchun, 130021, PR China.
| | - Yaoxian Li
- College of Chemistry, Jilin University, Changchun, 130021, PR China
| |
Collapse
|
4
|
Cui J, Luo Q, Wei C, Deng X, Liang H, Wei J, Gong Y, Tang Q, Zhang K, Liao X. Electrochemical biosensing for E.coli detection based on triple helix DNA inhibition of CRISPR/Cas12a cleavage activity. Anal Chim Acta 2024; 1285:342028. [PMID: 38057050 DOI: 10.1016/j.aca.2023.342028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Escherichia coli (E.coli) is both a commensal and a foodborne pathogenic bacterium in the human gastrointestinal tract, posing significant potential risks to human health and food safety. However, one of the major challenges in E.coli detection lies in the preparation and storage of antibodies. In traditional detection methods, antibodies are indispensable, but their instability often leads to experimental complexity and increased false positives. This underscores the need for new technologies and novel sensors. Therefore, the development of a simple and sensitive method for analyzing E.coli would make significant contributions to human health and food safety. RESULTS We constructed an electrochemical biosensor based on triple-helical DNA and entropy-driven amplification reaction (EDC) to inhibit the cleavage activity of Cas12a, enabling high-specificity detection of E.coli. Replacing antibodies with nucleic acid aptamers (Apt) as recognition elements, we utilized the triple-helical DNA generated by the binding of DNA2 and DNA5/DNA6 double-helical DNA through the entropy-driven amplification reaction to inhibit the collateral cleavage activity of clustered regularly interspaced short palindromic repeats gene editing system (CRISPR) and its associated proteins (Cas). By converting E.coli into electrical signals and recording signal changes in the form of square wave voltammetry (SWV), rapid detection of E.coli was achieved. Optimization of experimental conditions and data detection under the optimal conditions provided high sensitivity, low detection limits, and high specificity. SIGNIFICANCE With a minimal detection limit of 5.02 CFU/mL and a linear range of 1 × 102 - 1 × 107 CFU/mL, the suggested approach was successfully verified to analyze E.coli at various concentrations. Additionally, after examining E.coli samples from pure water and pure milk, the recoveries ranged between 95.76 and 101.20%, demonstrating the method's applicability. Additionally, it provides a feasible research direction for the detection of pathogenic bacteria causing other diseases using the CRISPR/Cas gene editing system.
Collapse
Affiliation(s)
- Jiuying Cui
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qisheng Luo
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Cheng Wei
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xiandong Deng
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Hongqu Liang
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jihua Wei
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yuanxun Gong
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qianli Tang
- Guangxi key laboratory of basic and translational research of Bone and joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, P. R. China.
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
5
|
Sharifi AR, Ardalan S, Tabatabaee RS, Soleimani Gorgani S, Yousefi H, Omidfar K, Kiani MA, Dincer C, Naghdi T, Golmohammadi H. Smart Wearable Nanopaper Patch for Continuous Multiplexed Optical Monitoring of Sweat Parameters. Anal Chem 2023; 95:16098-16106. [PMID: 37882624 DOI: 10.1021/acs.analchem.3c02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Notwithstanding the substantial progress in optical wearable sensing devices, developing wearable optical sensors for simultaneous, real-time, and continuous monitoring of multiple biomarkers is still an important, yet unmet, demand. Aiming to address this need, we introduced for the first time a smart wearable optical sensor (SWOS) platform combining a multiplexed sweat sensor sticker with its IoT-enabled readout module. We employed our SWOS system for on-body continuous, real-time, and simultaneous fluorimetric monitoring of sweat volume (physical parameter) and pH (chemical marker). Herein, a variation in moisture (5-45 μL) or pH (4.0-7.0) causes a color/fluorescence change in the copper chloride/fluorescein immobilized within a transparent chitin nanopaper (ChNP) in a selective and reversible manner. Human experiments conducted on athletic volunteers during exercise confirm that our developed SWOS platform can be efficiently exploited for smart perspiration analysis toward personalized health monitoring. Moreover, our system can be further extended for the continuous and real-time multiplexed monitoring of various biomarkers (metabolites, proteins, or drugs) of sweat or other biofluids (for example, analyzing exhaled breath by integrating onto a facemask).
Collapse
Affiliation(s)
- Amir Reza Sharifi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Sina Ardalan
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Raziyeh Sadat Tabatabaee
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Sara Soleimani Gorgani
- Biosensor Research Center, Endocrinology and Metabolism Cellular and Molecular Sciences Institute, Tehran University of Medical Sciences, 14395/1179 Tehran, Iran
| | - Hossein Yousefi
- Laboratory of Sustainable Nanomaterials, Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Cellular and Molecular Sciences Institute, Tehran University of Medical Sciences, 14395/1179 Tehran, Iran
| | - Mohammad Ali Kiani
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Can Dincer
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg 79110, Germany
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
6
|
Rodoplu Solovchuk D, Boyaci IH, Tamer U, Sahiner N, Cetin D. A simple gradient centrifugation method for bacteria detection in skim milk. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Eshun GB, Crapo HA, Yazgan I, Cronmiller L, Sadik OA. Sugar-Lectin Interactions for Direct and Selective Detection of Escherichia coli Bacteria Using QCM Biosensor. BIOSENSORS 2023; 13:337. [PMID: 36979549 PMCID: PMC10046022 DOI: 10.3390/bios13030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pathogenic Escherichia coli (E. coli) remains a safety concern in the preservation and quality of green leafy vegetables. Sugar-lectin interactions provide a reliable, specific, and effective sensing platform for the detection of bacteria as compared to the tedious conventional plate counting technique. Herein, we present the synthesis of 4-(N-mannosyl) benzoic acid (4-NMBA) and 4-thiophenyl-N-mannose (4-TNM) via a two-step reductive amination for the detection of E. coli using a quartz crystal microbalance (QCM) biosensor. The 4-NMBA was synthesized with mannose and para-aminobenzoic (4-PBA), while the 4-TNM was synthesized with mannose and 4-aminophenyl disulfide (4-AHP) using water and acetic acid in a 1:1 ratio. The resultant structure of mannose derivatives (4-NMBA and 4-TNM) was characterized and confirmed using analytical tools, such as Mass Spectrometer, SEM, and FTIR. The choice of ligands (mannose derivatives) is ascribed to the specific recognition of mannose to the FimH lectin of the type 1 pilus of E. coli. Furthermore, the 4-PBA and 4-AHP conjugated to mannose increase the ligand affinity to FimH lectins. The setup of the QCM biosensor was composed of modification of the crystal surface and the covalent attachment of ligands for the detection of E. coli. The piezoelectric effect (frequency shift of the quartz) was proportional to the change in mass added to the gold crystal surface. Both the 4-NMBA- and 4-TNM-coated QCM sensors had a limit of detection of 3.7 CFU/mL and 6.6 CFU/mL with a sensitivity of 2.56 × 103 ng/mL and 8.99 × 10-5 ng/mL, respectively, within the dynamic range of 103 to 106 CFU/mL. This study demonstrates the application of ligand-coated QCM biosensors as a cost-effective, simple, and label-free technology for monitoring pathogenic bacteria via molecular interactions on crystal surfaces.
Collapse
Affiliation(s)
- Gaddi B. Eshun
- Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Heather A. Crapo
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Idris Yazgan
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Lauren Cronmiller
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Omowunmi A. Sadik
- Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
8
|
Zhao L, Rosati G, Piper A, de Carvalho Castro e Silva C, Hu L, Yang Q, Della Pelle F, Alvarez-Diduk RR, Merkoçi A. Laser Reduced Graphene Oxide Electrode for Pathogenic Escherichia coli Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9024-9033. [PMID: 36786303 PMCID: PMC9951213 DOI: 10.1021/acsami.2c20859] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Graphene-based materials are of interest in electrochemical biosensing due to their unique properties, such as high surface areas, unique electrochemical properties, and biocompatibility. However, the scalable production of graphene electrodes remains a challenge; it is typically slow, expensive, and inefficient. Herein, we reported a simple, fast, and maskless method for large-scale, low-cost reduced graphene oxide electrode fabrication; using direct writing (laser scribing and inkjet printing) coupled with a stamp-transferring method. In this process, graphene oxide is simultaneously reduced and patterned with a laser, before being press-stamped onto polyester sheets. The transferred electrodes were characterized by SEM, XPS, Raman, and electrochemical methods. The biosensing utility of the electrodes was demonstrated by developing an electrochemical test for Escherichia coli. These biosensors exhibited a wide dynamic range (917-2.1 × 107 CFU/mL) of low limits of detection (283 CFU/mL) using just 5 μL of sample. The test was also verified in spiked artificial urine, and the sensor was integrated into a portable wireless system driven and measured by a smartphone. This work demonstrates the potential to use these biosensors for real-world, point-of-care applications. Hypothetically, the devices are suitable for the detection of other pathogenic bacteria.
Collapse
Affiliation(s)
- Lei Zhao
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Department
of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra,
Barcelona, Spain
| | - Giulio Rosati
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Andrew Piper
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Cecilia de Carvalho Castro e Silva
- MackGraphe-Mackenzie
Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, Consolação Street
930, 01302-907 São
Paulo, Brazil
| | - Liming Hu
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Department
of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra,
Barcelona, Spain
| | - Qiuyue Yang
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Department
of Material Science, Universitat Autònoma
de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Flavio Della Pelle
- Faculty
of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, via Renato Balzarini 1, 64100 Teramo, Italy
| | - Ruslán R. Alvarez-Diduk
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Arben Merkoçi
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| |
Collapse
|
9
|
A surface-enhanced Raman scattering aptasensor for Escherichia coli detection based on high-performance 3D substrate and hot spot effect. Anal Chim Acta 2022; 1221:340141. [DOI: 10.1016/j.aca.2022.340141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
|
10
|
Jia J, Zhang H, Qu J, Wang Y, Xu N. Immunosensor of Nitrofuran Antibiotics and Their Metabolites in Animal-Derived Foods: A Review. Front Chem 2022; 10:813666. [PMID: 35721001 PMCID: PMC9198595 DOI: 10.3389/fchem.2022.813666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Nitrofuran antibiotics have been widely used in the prevention and treatment of animal diseases due to the bactericidal effect. However, the residual and accumulation of their metabolites in vivo can pose serious health hazards to both humans and animals. Although their usage in feeding and process of food-derived animals have been banned in many countries, their metabolic residues are still frequently detected in materials and products of animal-derived food. Many sensitive and effective detection methods have been developed to deal with the problem. In this work, we summarized various immunological methods for the detection of four nitrofuran metabolites based on different types of detection principles and signal molecules. Furthermore, the development trend of detection technology in animal-derived food is prospected.
Collapse
Affiliation(s)
| | | | | | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| | - Naifeng Xu
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| |
Collapse
|
11
|
Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Phooplub K, Ouiganon S, Thavarungkul P, Kanatharana P, Buranachai C. Portable device for dual detection of fluorescence and absorbance for biosensing or chemical sensing applications. HARDWAREX 2022; 11:e00268. [PMID: 35509944 PMCID: PMC9058716 DOI: 10.1016/j.ohx.2022.e00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Early detection is key to prevent health problems and could be performed by biosensors and chemical sensors. However, a lot of them still need bulky benchtop equipment. This work presents a portable device for measuring fluorescence and light absorption that can be used with optical biosensors or chemical sensors. It uses a small laser diode as a light source and three filter-mounted photodiodes as detectors, all of which are inexpensive, customizable and widely available commercially. The results from our device show good correlation with that from commercial instruments. Therefore, it could be beneficial for early or on-site detection.
Collapse
Affiliation(s)
- Kittirat Phooplub
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Sirirat Ouiganon
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Panote Thavarungkul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Proespichaya Kanatharana
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Chittanon Buranachai
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
13
|
He K, Bu T, Zheng X, Xia J, Bai F, Zhao S, Sun XY, Dong M, Wang L. "Lighting-up" methylene blue-embedded zirconium based organic framework triggered by Al 3+ for advancing the sensitivity of E. coli O157:H7 analysis in dual-signal lateral flow immunochromatographic assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128034. [PMID: 34896715 DOI: 10.1016/j.jhazmat.2021.128034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The sensitive detection of foodborne pathogens is of great significance for ensuring food safety and quality. Herein, on the basis of methylene blue-embedded zirconium based organic framework (UIO@MB) as the remarkable capture carrier and signal indicator, with the Al3+-assisted the fluorescent signal response, we developed a label-free and dual-signal lateral flow immunochromatographic assay (LDLFIA) for sensitive detection of Escherichia coli (E. coli) O157:H7. The UIO@MB sensing carrier without monoclonal antibodies (mAbs) was manufactured, which adhered to bacteria to form the UIO@MB-E. coli O157:H7 conjugate, resulting in visible blue band. Then the fluorescent response of the OH-rich UIO@MB was excited by introducing Al3+, arising from capturing of Al3+ by -OH through coordination and electrostatic affinity, thus generating a green fluorescent band. Impressively, a smartphone-based portable reading system was developed that can reflect the test results of UIO@MB-LDLFIA immediately. Under optimum conditions, UIO@MB-LDLFIA can complete colorimetric and fluorescent mode detection within 90 min, with a detection sensitivity of 103 CFU/mL, which were 100 times lower than traditional gold nanoparticles-based LFIA and polymerase chain reaction (PCR). Moreover, the feasibility of the method was further evaluated by the determination of E. coli O157: H7 in drinking water and cabbage with average recoveries of 85.1-123.0%.
Collapse
Affiliation(s)
- Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaohan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junfang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Yu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengna Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Fang S, Yang H, Liu C, Tian Y, Wu M, Wu Y, Liu Q. Bacterial coloration immunofluorescence strip for ultrasensitive rapid detection of bacterial antibodies and targeted antibody-secreting hybridomas. J Immunol Methods 2022; 501:113208. [PMID: 34933017 DOI: 10.1016/j.jim.2021.113208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023]
Abstract
The indirect enzyme-linked immunosorbent assay (ELISA) is the gold standard method for monoclonal antibody (McAb) detection and plays a unique role in the preparation of bacterial antibodies. To solve the laborious issues associated with indirect ELISA, a novel bacterial coloration immunofluorescence strip (BCIFS) for antibody detection using colored bacteria instead of a labeled antibody as the antigen and tracer simultaneously and goat anti-mouse IgG as the test line was developed. The affinity range survey of BCIFS indicated that hybridoma cell cultures of E. coli O157:H7 (D3, E7) and Vibrio parahemolyticus (H7, C9) were detected, which complied with the results of indirect ELISA. Compared with the traditional indirect ELISA, the BCIFS sensitivity for E7 cell cultures, ascites, and purified antibodies was at least 4-fold more sensitive, and the BCIFS cross-reactivity for E7 cell cultures was almost consistent with that of indirect ELISA. In addition, the BCIFS isotypes for E. coli O157:H7 cell cultures and Vibrio parahemolyticus were IgG2a and IgG1, respectively, which were identical to the indirect ELISA. Furthermore, the BCIFS method was confirmed by McAb preparation, effective antibody use, and targeted antibody-secreted hybridoma preparation and screening, which showed excellent performance and substitution of the indirect ELISA method. Combined with methylcellulose semisolid medium, BCIFS offers a novel, easy to operate, rapid preparation method for antigen-specific hybridomas. This is the first report using BCIFS instead of indirect ELISA for bacterial antibody detection and application in different samples, which demonstrates a rapid and powerful tool for antibody engineering.
Collapse
Affiliation(s)
- Shuiqin Fang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; College of Food and Bioengineering, Bengbu University, Bengbu 233030, China
| | - Hao Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yachen Tian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meijiao Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Youxue Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
15
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
16
|
Fang S, Liu C, Wan S, Tian Y, Li D, Wu M, Wu Y, Liu Q. A novel antigen immunochromatography fluorometric strip for rapid detection and application of pathogenic bacterial high-quality antibody. J Immunol Methods 2021; 494:113014. [PMID: 33753095 DOI: 10.1016/j.jim.2021.113014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/25/2022]
Abstract
Unlike traditional immunoassay strips, a novel antigen immunechromatography fluorometric strip (AICFS) using inactivated bacterial antigen instead of an antibody as a test line and goat anti-mouse IgG-FITC as a tracer was developed. The applicability survey of AICFS indicated that E. coli O157:H7 (D3) and Acidovorax citrulli (6F) hybridoma cell cultures could be detected, but Vibrio parahemolyticus (H7, C9) hybridoma cell cultures were missed compared with the indirect enzyme-linked immunosorbent assay (ELISA). The four antibody affinity constants (Ka) were measured and compared, and AICFS could be suitable for high-affinity antibody detection. Compared with the traditional indirect ELISA, the AICFS sensitivity for D3 cell cultures, ascites, and purified antibodies was at least 2-fold more sensitive, the AICFS specific for D3 cell cultures by comparative interpretation was compliant except for the strain ATCC 43895, and the indirect ELISA missed it. More importantly, the AICFS method was confirmed by various real samples that it could be used in different scenarios regarding the antibody, including McAb preparation, the effective antibody use, and high-affinity antibody-secreted hybridoma auxiliary preparation and screening. It could be an excellent alternative method with less than 5% corresponding processing time for indirect ELISA method for pathogenic bacterial high-quality antibody detection. This is the first report of using AICFS for bacterial high-quality antibody detection and application in different samples, which demonstrates a rapid auxiliary tool for high-affinity antibody secreted-hybridoma screening and an excellent alternative method for high-quality antibody application.
Collapse
Affiliation(s)
- Shuiqin Fang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Cheng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Shaoye Wan
- Shanghai Prajna Biology Technique Co.Ltd., Shangai 200433, China
| | - Yachen Tian
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Dezhi Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Meijiao Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Youxue Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
17
|
Shi L, Xu L, Xiao R, Zhou Z, Wang C, Wang S, Gu B. Rapid, Quantitative, High-Sensitive Detection of Escherichia coli O157:H7 by Gold-Shell Silica-Core Nanospheres-Based Surface-Enhanced Raman Scattering Lateral Flow Immunoassay. Front Microbiol 2020; 11:596005. [PMID: 33240250 PMCID: PMC7677456 DOI: 10.3389/fmicb.2020.596005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli O157:H7 is regarded as one of the most harmful pathogenic microorganisms related to foodborne diseases. This paper proposes a rapid-detection biosensor for the sensitive and quantitative analysis of E. coli O157:H7 in biological samples by surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFIA). A novel gold-shell silica-core (SiO2/Au) nanosphere (NP) with monodispersity, good stability, and excellent SERS activity was utilized to prepare high-performance tags for the SERS-based LFIA system. The SiO2/Au SERS tags, which were modified with two layers of Raman reporter molecules and monoclonal antibodies, effectively bind with E. coli O157:H7 and form sandwich immune complexes on the test lines. E. coli O157:H7 was quantitatively detected easily by detecting the Raman intensity of the test lines. Under optimal conditions, the limit of detection (LOD) of the SiO2/Au-based SERS-LIFA strips for the target bacteria was 50 cells/mL in PBS solution, indicating these strips are 2,000 times more sensitive than colloidal Au-based LFIA strips. Moreover, the proposed assay demonstrated high applicability in E. coli O157:H7 detection in biological samples, including tap water, milk, human urine, lettuce extract and beef, with a low LOD of 100 cells/mL. Results indicate that the proposed SERS-based LFIA strip is applicable for the sensitive and quantitative determination of E. coli O157:H7.
Collapse
Affiliation(s)
- Luoluo Shi
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, China
- Beijing Institute of Radiation Medicine, Beijing, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ling Xu
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zihui Zhou
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chongwen Wang
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, China
- Beijing Institute of Radiation Medicine, Beijing, China
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Gu
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Wang L, Huang X, Wang C, Tian X, Chang X, Ren Y, Yu S. Applications of surface functionalized Fe 3O 4 NPs-based detection methods in food safety. Food Chem 2020; 342:128343. [PMID: 33097322 DOI: 10.1016/j.foodchem.2020.128343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 01/04/2023]
Abstract
Food safety has always been an issue of great concern to people. The development of rapid, sensitive and specific detection technology of food pollutants is one of the hot issues in food science field. The rapid development of functionalized Fe3O4 nanoparticles (NPs) provides unprecedented opportunities and technical support for the innovation of food safety detection. The surface functionalized Fe3O4 NPs, which combine superparamagnetic with nanoscale feature, have become an excellent tool for food quality and safety detection. This review highlights the mechanism, principles, and applications of surface functionalized Fe3O4 NPs-based detection technique in the agrifood industry. Then the relevant characteristics, functional roles and general mechanisms of nanomaterial-based detection of various endogenous components and exogenous pollutants in foods are discussed in detail. Ultimately, this review is expected to promote the optimization of functionalized Fe3O4 NPs and provide direction for the diversity of signal recognition and the sustainability of detection methods.
Collapse
Affiliation(s)
- Li Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| | - Xiaoyu Tian
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Xianhui Chang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Yi Ren
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
19
|
Abdelrasoul GN, Anwar A, MacKay S, Tamura M, Shah MA, Khasa DP, Montgomery RR, Ko AI, Chen J. DNA aptamer-based non-faradaic impedance biosensor for detecting E. coli. Anal Chim Acta 2020; 1107:135-144. [PMID: 32200887 DOI: 10.1016/j.aca.2020.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023]
Abstract
Developing a real-time, portable, and inexpensive sensor for pathogenic bacteria is crucial since the conventional detection approaches such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assays are high cost, time-consuming, and require an expert operator. Here we present a portable, inexpensive, and convenient impedance-based biosensor using Interdigitated Electrode (IDE) arrays to detect Escherichia coli (E. coli) as a model to demonstrate the feasibility of an impedance-based biosensor. We manipulated the affinity of the IDE array towards E. coli (E. coli BL21 series) by functionalizing the IDEs' surface with an E. coli outer membrane protein (OMP) Ag1 Aptamer. To determine the dominant factors affecting the sensitivity and the performance of the biosensor in detecting E. coli, we investigated the roles of the substrate material used in the fabrication of the IDE, the concentration of the aptamer, and the composition of the carboxy aliphatic thiol mixture used in the pre-treatment of the IDE surface. In the sensing experiments we used an E. coli concentration range of 25-1000 cfu mL-1 and confirmed the binding of the OMP Ag1 Aptamer to the outer membrane protein of the E. coli by Field Emission Scanning Electron Microscopy (FESEM), Optical Microscopy, and Atomic Force Microscopy (AFM). By tuning the surface chemistry, the IDEs' substrate material, and the concentration of the OMP Ag1 Aptamer, our sensor could detect E. coli with the analytical sensitivity of approximately 1.8 Ohm/cfu and limit of detection of 9 cfu mL-1. We found that the molecular composition of the self-assembled monolayer (SAM) formed on the top of the IDEs before the attachment of the OMP Ag1 Aptamer significantly impacted the sensitivity of the sensor. Notably, with straightforward changes to the molecular recognition elements, this platform device can be used to detect a wide range of other microorganisms and chemicals relevant for environmental monitoring and public health.
Collapse
Affiliation(s)
- Gaser N Abdelrasoul
- Electrical, and Computer Engineering Department, University of Alberta, Edmonton, AB, Canada
| | - Afreen Anwar
- Electrical, and Computer Engineering Department, University of Alberta, Edmonton, AB, Canada; Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Scott MacKay
- Electrical, and Computer Engineering Department, University of Alberta, Edmonton, AB, Canada
| | - Marcus Tamura
- Electrical, and Computer Engineering Department, University of Alberta, Edmonton, AB, Canada
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Damase P Khasa
- Centre for Forest Research (CEF), Institute for Integrative and Systems Biology (IBIS), and Canada Research Chair in Forest and Environmental Genomics, Université Laval, Québec, QC, G1V0A6, Canada
| | - Ruth R Montgomery
- Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Jie Chen
- Electrical, and Computer Engineering Department, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Li D, Kumari B, Makabenta JM, Gupta A, Rotello V. Effective detection of bacteria using metal nanoclusters. NANOSCALE 2019; 11:22172-22181. [PMID: 31746916 PMCID: PMC8582014 DOI: 10.1039/c9nr08510f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic-resistant bacterial infections cause more than 700 000 deaths each year worldwide. Detection of bacteria is critical in limiting infection-based damage. Nanomaterials provide promising sensing platforms owing to their ability to access new interaction modalities. Nanoclusters feature sizes smaller than traditional nanomaterials, providing great sensitive ability for detecting analytes. The distinct optical and catalytic properties of nanoclusters combined with their biocompatibility enables them as efficient biosensors. In this review, we summarize multiple strategies that utilize nanoclusters for detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Dan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | | | | | | | | |
Collapse
|
21
|
Martynenko IV, Kusić D, Weigert F, Stafford S, Donnelly FC, Evstigneev R, Gromova Y, Baranov AV, Rühle B, Kunte HJ, Gun’ko YK, Resch-Genger U. Magneto-Fluorescent Microbeads for Bacteria Detection Constructed from Superparamagnetic Fe3O4 Nanoparticles and AIS/ZnS Quantum Dots. Anal Chem 2019; 91:12661-12669. [DOI: 10.1021/acs.analchem.9b01812] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Irina V. Martynenko
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
| | - Dragana Kusić
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
- Federal Institute for Materials Research and Testing (BAM), Division Biodeterioration and Reference Organisms, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Florian Weigert
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
| | | | | | - Roman Evstigneev
- ITMO University, 49 Kronverksky Prospekt, St. Petersburg 197101, Russia
| | - Yulia Gromova
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | | | - Bastian Rühle
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
| | - Hans-Jörg Kunte
- Federal Institute for Materials Research and Testing (BAM), Division Biodeterioration and Reference Organisms, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Yurii K. Gun’ko
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
- ITMO University, 49 Kronverksky Prospekt, St. Petersburg 197101, Russia
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter Strasse 11, D-12489 Berlin, Germany
| |
Collapse
|
22
|
Babamiri B, Bahari D, Salimi A. Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future directions. Biosens Bioelectron 2019; 142:111530. [PMID: 31398687 DOI: 10.1016/j.bios.2019.111530] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/03/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
Abstract
Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL) has attracted much attention in various fields of analysis due to the potential remarkably high sensitivity, extremely wide dynamic range and excellent controllability. Electrochemiluminescence biosensor, by taking the advantage of the selectivity of the biological recognition elements and the high sensitivity of ECL technique was applied as a powerful analytical device for ultrasensitive detection of biomolecule. In this review, we summarize the latest sensing applications of ECL bioanalysis in the field of bio affinity ECL sensors including aptasensors, immunoassays and DNA analysis, cytosensor, molecularly imprinted sensors, ECL resonance energy transfer and ratiometric biosensors and give future perspectives for new developments in ECL analytical technology. Furthermore, the results herein discussed would demonstrate that the use of nanomaterials with unique chemical and physical properties in the ECL biosensing systems is one of the most interesting research lines for the development of ultrasensitive electrochemiluminescence biosensors. In addition, ECL based sensing assays for clinical samples analysis and medical diagnostics and developing of immunosensors, aptasensors and cytosensor for this purpose is also highlighted.
Collapse
Affiliation(s)
- Bahareh Babamiri
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Delnia Bahari
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran; Department of Chemistry, University of Western Ontario, N6A 5B7, London, Ontario, Canada.
| |
Collapse
|
23
|
Li S, Liu Y, Ma Q. A novel polydopamine electrochemiluminescence organic nanoparticle-based biosensor for parathyroid hormone detection. Talanta 2019; 202:540-545. [PMID: 31171219 DOI: 10.1016/j.talanta.2019.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 01/06/2023]
Abstract
In this work, polydopamine electrochemiluminescence (ECL)-organic nanoparticles (EONs) based immunosensing strategy was designed for parathyroid hormone (PTH) detection. Dopamine is oxidized and polymerized to form polydopamine organic nanoparticle via self-polymerization process. Unlike the low photoluminescent efficiency and unsatisfactory fluorescence characters of the fluorescent organic nanoparticles (FONs), the polydopamine EONs do not only show unique physicochemical properties and excellent biocompatibility, but also provide ideal electrochemical properties and bright ECL signals, which can be employed as high-quality ECL luminophores. The ECL-related properties and performance of the EONs are further discussed in this paper. The sensing method has a linear response in the range of 0.05-8 ng/mL with a detection limit of 17 pg/mL. The applicability of this method is evaluated through the determination of PTH in human plasma samples with satisfactory results. To our best knowledge, this was the first time about the exploration of polydopamine organic nanoparticles as ECL luminophores in the biosensing application.
Collapse
Affiliation(s)
- Shijie Li
- Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130021, China
| | - Yang Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Qianwei Road 10, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Qianwei Road 10, Changchun, 130012, China.
| |
Collapse
|
24
|
Liu Y, Wang M, Nie Y, Zhang Q, Ma Q. Sulfur Regulated Boron Nitride Quantum Dots Electrochemiluminescence with Amplified Surface Plasmon Coupling Strategy for BRAF Gene Detection. Anal Chem 2019; 91:6250-6258. [DOI: 10.1021/acs.analchem.9b00965] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yang Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qian Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
25
|
Tang X, Yin Z, Lei X, Zeng Y, Zhang Z, Lu Y, Zhou G, Li L, Wu X. Colorimetric Method for Sensitive Detection of Microcystin-LR Using Surface Copper Nanoparticles of Polydopamine Nanosphere as Turn-On Probe. NANOMATERIALS 2019; 9:nano9030332. [PMID: 30832300 PMCID: PMC6473965 DOI: 10.3390/nano9030332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023]
Abstract
A novel, facile sensor was further developed for microcystin-LR (MC-LR) determination by visible spectroscopy. Antibody-functionalized SiO2-coated magnetic nanoparticles (Fe3O4@SiO2) and aptamer-functionalized polydopamine nanospheres decorated with Cu nanoparticles (PDA/CuNPs) recognized specific sites in MC-LR and then the sandwich-type composites were separated magnetically. The Cu in the separated composites was converted to Cu2+ ions in solution and turn-on visible absorption was achieved after reaction with bis(cyclohexanone)oxaldihydrazone (BCO) (λmax = 600 nm). There was a quantitative relationship between the spectral intensity and MC-LR concentration. In addition, under the optimum conditions, the sensor turns out to be a linear relationship from 0.05 to 25 nM, with a limit of detection of 0.05 nM (0.05 μg/L) (S/N = 3) for MC-LR. The sensitivity was dependent on the low background absorption from the off-to-on spectrum and label amplification by the polydopamine (PDA) surface. The sensor had high selectivity, which shows the importance of dual-site recognition by the aptamer and antibody and the highly specific color formed by BCO with Cu2+. The bioassay was complete within 150 min, which enabled quick determination. The sensor was successfully used with real spiked samples. These results suggest it has potential applications in visible detection and could be used to detect other microcystin analogs.
Collapse
Affiliation(s)
- Xiaodi Tang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Zhengzhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaoling Lei
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yanbo Zeng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Zulei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yixia Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Guobao Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaohua Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
26
|
Morosanu AC, Dimitriu DG, Dorohoi DO. Excited state dipole moment of the fluorescein molecule estimated from electronic absorption spectra. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Binding strategies for capturing and growing Escherichia coli on surfaces of biosensing devices. Talanta 2019; 192:270-277. [DOI: 10.1016/j.talanta.2018.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
|
28
|
Zhang X, Shi C, Liu Z, Pan F, Meng R, Bu X, Xing H, Deng Y, Guo N, Yu L. Antibacterial activity and mode of action of ε-polylysine against Escherichia coli O157:H7. J Med Microbiol 2018; 67:838-845. [DOI: 10.1099/jmm.0.000729] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiaowei Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Ce Shi
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fengguang Pan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Rizeng Meng
- Jilin Entry–Exit Inspection and Quarantine Bureau, Changchun 130062, PR China
| | - Xiujuan Bu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Heqin Xing
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yanhong Deng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Na Guo
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Lu Yu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| |
Collapse
|
29
|
Liu Y, Cao N, Gui W, Ma Q. Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection. Talanta 2018; 183:339-344. [PMID: 29567185 DOI: 10.1016/j.talanta.2018.01.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
In this paper, a test strip-based sensor was developed for thiacloprid quantitative detection based on PDA molecularly imprinted polymer (MIP) and nitrogen-doped graphene quantum dots (N-GQDs). Thiacloprid is a new type of nicotine insecticide, which can block the normal neurotransmitter delivery process in insects. In the sensing system, N-GQDs were immersed into filter paper at first. Then, dopamine (DA) with thiacloprid can be self-polymerized on test strip surface to form the uniform PDA film. After removed thiacloprid template, the established poly dopamine (PDA) MIP can selectively recognize thiacloprid. As a result, captured thiacloprid can enhance the fluorescence intensity of N-GQDs into the test strip. As a result, the fluorescence intensity of N-GQDs can be linearly related within a certain range of thiacloprid concentration. Under the optimum conditions, the proposed sensor for thiacloprid detection exhibited a linear ranging from 0.1 mg/L to 10 mg/L with a low detection limit of 0.03 mg/L. The N-GQDs based test strip-based sensor for thiaclopridis reported for the first time. The sensing system has high selectivity to thiacloprid and provides new opportunities in the pesticide detection.
Collapse
Affiliation(s)
- Yang Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Nan Cao
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenying Gui
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
30
|
Yun J, Duan F, Liu L, Chen X, Liu J, Luo Q, Wu J. A selective and sensitive nanosensor for fluorescent detection of specific IgEs to purified allergens in human serum. RSC Adv 2018; 8:3547-3555. [PMID: 35542943 PMCID: PMC9077676 DOI: 10.1039/c7ra10377h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/07/2018] [Indexed: 01/11/2023] Open
Abstract
Food allergies are increasingly recognized as a major healthcare concern. In order to sensitively and specifically detect allergies from blood samples of at-risk allergic patients, an effective magnetic fluorescence sensing platform (EMFP) was constructed. The EMFP incorporated hollow mesoporous silica nanospheres (HMNs) to amplify signal from the target IgE in addition to magnetic nanoparticles (MNPs) to capture and separate the target IgE. The application of EMFP to immunoassays indicated a detection limit of 0.0159 ng mL−1 for low concentration specific immunoglobulin E (sIgE) against purified shellfish Metapenaeus ensis (Meta. E.) allergens, which is 15 fold more sensitive than the commercially available Food and Drug Administration-approved analyzers. Notably, EMFP was specific for the targeted sIgE even with interference by other sIgEs. In addition, the detection time is only 75 min, considerably faster than current commercial ELISA kits for IgE assays. Together, these results demonstrated that EMFP has excellent sensitivity and selectivity for the rapid detection of sIgE. The method thus exhibits potential toward the rapid monitoring of sIgE against Meta. E. allergens in clinical application. The effective magnetic fluorescence sensing platform was employed to amplify signal and capture target IgE in one step.![]()
Collapse
Affiliation(s)
- Jianrong Yun
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Fang Duan
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Liming Liu
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Xiulai Chen
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Jia Liu
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Qiuling Luo
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Jing Wu
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- P. R. China
- The Key Laboratory of Industrial Biotechnology
| |
Collapse
|
31
|
Cheng C, Yang L, Zhong M, Deng W, Tan Y, Xie Q, Yao S. Au nanocluster-embedded chitosan nanocapsules as labels for the ultrasensitive fluorescence immunoassay of Escherichia coli O157:H7. Analyst 2018; 143:4067-4073. [DOI: 10.1039/c8an00987b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasensitive fluorescence immunoassay of Escherichia coli O157:H7 is described using Au nanocluster-embedded chitosan nanocapsules as labels.
Collapse
Affiliation(s)
- Chang Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Lu Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Miao Zhong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- China
| |
Collapse
|
32
|
Rapid and selective detection of E. coli O157:H7 combining phagomagnetic separation with enzymatic colorimetry. Food Chem 2017; 234:332-338. [DOI: 10.1016/j.foodchem.2017.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/06/2017] [Accepted: 05/02/2017] [Indexed: 01/15/2023]
|
33
|
Wen J, Zhou S, Yu Z, Chen J, Yang G, Tang J. Decomposable quantum-dots/DNA nanosphere for rapid and ultrasensitive detection of extracellular respiring bacteria. Biosens Bioelectron 2017; 100:469-474. [PMID: 28963964 DOI: 10.1016/j.bios.2017.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 01/17/2023]
Abstract
Extracellular respiring bacteria (ERB) are a group of bacteria capable of transferring electrons to extracellular acceptors and have important application in environmental remediation. In this study, a decomposable quantum-dots (QDs)/DNA nanosphere probe was developed for rapid and ultrasensitive detection of ERB. The QDs/DNA nanosphere was self-assembled from QDs-streptavidin conjugate (QDs-SA) and Y-shaped DNA nanostructure that is constructed based on toehold-mediated strand displacement. It can release numerous fluorescent QDs-SA in immunomagnetic separation (IMS)-based immunoassay via simple biotin displacement, which remarkably amplifies the signal of antigen-antibody recognizing event. This QDs/DNA-nanosphere-based IMS-fluorescent immunoassay is ultrasensitive for model ERB Shewanella oneidensis, showing a wide detection range between 1.0 cfu/mL and 1.0 × 108 cfu/mL with a low detection limit of 1.37 cfu/mL. Moreover, the proposed IMS-fluorescent immunoassay exhibits high specificity, acceptable reproducibility and stability. Furthermore, the proposed method shows acceptable recovery (92.4-101.4%) for detection of S. oneidensis spiked in river water samples. The proposed IMS-fluorescent immunoassay advances an intelligent strategy for rapid and ultrasensitive quantitation of low-abundance analyte and thus holds promising potential in food, medical and environmental applications.
Collapse
Affiliation(s)
- Junlin Wen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Shungui Zhou
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China.
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Jia Tang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| |
Collapse
|
34
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
35
|
Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography. Anal Bioanal Chem 2017; 409:4709-4718. [DOI: 10.1007/s00216-017-0415-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022]
|
36
|
Exploiting pH-Regulated Dimer-Tetramer Transformation of Concanavalin A to Develop Colorimetric Biosensing of Bacteria. Sci Rep 2017; 7:1452. [PMID: 28469128 PMCID: PMC5431225 DOI: 10.1038/s41598-017-01371-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Gold nanoparticles (AuNPs) aggregation-based colorimetric biosensing remains a challenge for bacteria due to their large size. Here we propose a novel colorimetric biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk samples based on pH-regulated transformation of dimer/tetramer of Concanavalin A (Con A) and the Con A-glycosyl recognition. Briefly, antibody-modified magnetic nanoparticles was used to capture and concentrate E. coli O157:H7 and then to label with Con A; pH adjusted to 5 was then applied to dissociate Con A tetramer to release dimer, which was collected and re-formed tetramer at pH of 7 to cause the aggregation of dextran-modified AuNPs. The interesting pH-dependent conformation-transformation behavior of Con A innovated the design of the release from the bacteria surface and then the reconstruction of Con A. Therefore, we realized the sensitive colorimetric biosensing of bacteria, which are much larger than AuNPs that is generally not suitable for this kind of method. The proposed biosensor exhibited a limit of detection down to 41 CFU/mL, short assay time (~95 min) and satisfactory specificity. The biosensor also worked well for the detection in milk sample, and may provide a universal concept for the design of colorimetric biosensors for bacteria and virus.
Collapse
|
37
|
Wang N, Wei X, Zheng AQ, Yang T, Chen ML, Wang JH. Dual Functional Core-Shell Fluorescent Ag 2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment. ACS Sens 2017; 2:371-378. [PMID: 28723213 DOI: 10.1021/acssensors.6b00688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A dual functional fluorescent core-shell Ag2S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag2S nanocomposite shortly as Ag2S@C). The nanostructure exhibits strong fluorescent emission at λex/λem = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag2S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag2S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag2S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL-1. Meanwhile, the Ag2S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 106-107 cfu mL-1 with 3.3 or 10 μg mL-1 of Ag2S@C with an interaction time of 5 or 0.5 min, respectively.
Collapse
Affiliation(s)
- Ning Wang
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Xing Wei
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - An-Qi Zheng
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Ting Yang
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Ming-Li Chen
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| | - Jian-Hua Wang
- Research Center for Analytical
Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China, 110819
| |
Collapse
|
38
|
Chen S, Chen X, Zhang L, Gao J, Ma Q. Electrochemiluminescence Detection of Escherichia coli O157:H7 Based on a Novel Polydopamine Surface Imprinted Polymer Biosensor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5430-5436. [PMID: 28098973 DOI: 10.1021/acsami.6b12455] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, a facilely prepared electrochemiluminescence (ECL) biosensor was developed for Escherichia coli O157:H7 quantitative detection based on a polydopamine (PDA) surface imprinted polymer (SIP) and nitrogen-doped graphene quantum dots (N-GQDs). N-GQDs with a high quantum yield of 43.2% were synthesized. The uniform PDA SIP film for E. coli O157:H7 was established successfully with a facile route. The dopamine and target bacteria were electropolymerized directly on the electrode. After removal of the E. coli O157:H7 template, the established PDA SIP can selectively recognize E. coli O157:H7. Accordingly, E. coli O157:H7 polyclonal antibody (pAb) was labeled with N-GQDs. The bioconjugation of SIP-E. coli O157:H7/pAb-N-GQDs can generate intensive ECL irradiation with K2S2O8. As a result, E. coli O157:H7 was detected with the ECL sensing system. Under optimal conditions, the linear relationships between the ECL intensity and E. coli O157:H7 concentration were obtained from 101 colony-forming units (CFU) mL-1 to 107 CFU mL-1 with a limit of detection of 8 CFU mL-1. The biosensor based on this SIP film was applied in water sample detection successfully. The N-GQD-based ECL analytical method for E. coli O157:H7 was reported for the first time. The sensing system had high selectivity to the target analyte, provided new opportunities for use, and increased the rate of disease diagnosis and treatment and the prevention of pathogens.
Collapse
Affiliation(s)
- Shufan Chen
- Department of Analytical Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
| | - Xueqian Chen
- Department of Analytical Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
| | - Lijuan Zhang
- State Key Laboratory for Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, China
| | - Juanjuan Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University , Changchun 130012, China
| |
Collapse
|
39
|
|
40
|
Wang X, Tu M, Tian B, Yi Y, Wei Z, Wei F. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells. Anal Biochem 2016; 512:8-17. [PMID: 27523645 DOI: 10.1016/j.ab.2016.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Miaomiao Tu
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoming Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yanjie Yi
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - ZhenZhen Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Fang Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|