1
|
Batool R, Soler M, Colavita F, Fabeni L, Matusali G, Lechuga LM. Biomimetic nanoplasmonic sensor for rapid evaluation of neutralizing SARS-CoV-2 monoclonal antibodies as antiviral therapy. Biosens Bioelectron 2023; 226:115137. [PMID: 36796306 PMCID: PMC9904857 DOI: 10.1016/j.bios.2023.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Monoclonal antibody (mAb) therapy is one of the most promising immunotherapies that have shown the potential to prevent or neutralize the effects of COVID-19 in patients at very early stages, with a few formulations recently approved by the European and American medicine agencies. However, a main bottleneck for their general implementation resides in the time-consuming, laborious, and highly-specialized techniques employed for the manufacturing and assessing of these therapies, excessively increasing their prices and delaying their administration to the patients. We propose a biomimetic nanoplasmonic biosensor as a novel analytical technique for the screening and evaluation of COVID-19 mAb therapies in a simpler, faster, and reliable manner. By creating an artificial cell membrane on the plasmonic sensor surface, our label-free sensing approach enables real-time monitoring of virus-cell interactions as well as direct analysis of antibody blocking effects in only 15 min assay time. We have achieved detection limits in the 102 TCID50/mL range for the study of SARS-CoV-2 viruses, which allows to perform neutralization assays by only employing a low-volume sample with common viral loads. We have demonstrated the accuracy of the biosensor for the evaluation of two different neutralizing antibodies targeting both Delta and Omicron variants of SARS-CoV-2, with half maximal inhibitory concentrations (IC50) determined in the ng/mL range. Our user-friendly and reliable technology could be employed in biomedical and pharmaceutical laboratories to accelerate, cheapen, and simplify the development of effective immunotherapies for COVID-19 and other serious infectious diseases or cancer.
Collapse
Affiliation(s)
- Razia Batool
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, CIBER-BBN, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, CIBER-BBN, Spain.
| | - Francesca Colavita
- National Institute for Infectious Disease "L. Spallanzani", IRCCS, Rome, Italy
| | - Lavinia Fabeni
- National Institute for Infectious Disease "L. Spallanzani", IRCCS, Rome, Italy
| | - Giulia Matusali
- National Institute for Infectious Disease "L. Spallanzani", IRCCS, Rome, Italy
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, CIBER-BBN, Spain.
| |
Collapse
|
2
|
Biosensors for circulating tumor cells (CTCs)-biomarker detection in lung and prostate cancer: Trends and prospects. Biosens Bioelectron 2022; 197:113770. [PMID: 34768065 DOI: 10.1016/j.bios.2021.113770] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading cause of death worldwide. Lung cancer (LCa) and prostate cancer (PCa) are the two most common ones particularly among men with about 20% of aggressive metastatic form leading to shorter overall survival. In recent years, circulating tumor cells (CTCs) have been investigated extensively for their role in metastatic progression and their involvement in reduced overall survival and treatment responses. Analysis of these cells and their associated biomarkers as "liquid biopsy" can provide valuable real-time information regarding the disease state and can be a potential avenue for early-stage detection and possible selection of personalized treatments. This review focuses on the role of CTCs and their associated biomarkers in lung and prostate cancer, as well as the shortcomings of conventional methods for their isolation and analysis. To overcome these drawbacks, biosensors are an elegant alternative because they are capable of providing valuable multiplexed information in real-time and analyzing biomarkers at lower concentrations. A comparative analysis of different transducing elements specific for the analysis of cancer cell and cancer biomarkers have been compiled in this review.
Collapse
|
3
|
Huertas CS, Lechuga LM. Ultrasensitive Label-Free Nucleic-Acid Biosensors Based on Bimodal Waveguide Interferometers. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2393:89-125. [PMID: 34837176 DOI: 10.1007/978-1-0716-1803-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The bimodal waveguide (BiMW) biosensor is an innovative common path interferometric sensor based on the evanescent field detection principle. This biosensor allows for the direct detection of virtually any biomolecular interaction in a label-free scheme by using specific biorecognition elements. Due to its inherent ultrasensitivity, it has been employed for the monitoring of relevant nucleic-acid sequences such as mRNA transcripts or microRNAs present at the attomolar-femtomolar concentration level in human samples. The application of the BiMW biosensor to detect these nucleic acids can be a powerful analytical tool for diagnosis and prognosis of complex illnesses, such as cancer, where these biomarkers play a major role. The BiMW sensor is fabricated using standard silicon-based microelectronics technology, which allows its miniaturization and cost-effective production, meeting the requirements of portability and disposability for the development of point-of-care (PoC) sensing platforms.In this chapter, we describe the working principle of the BiMW biosensor as well as its application for the analysis of nucleic acids. Concretely, we show a detailed description of DNA functionalization procedures and the complete analysis of two different RNA biomarkers for cancer diagnosis: (1) the analysis of mRNA transcripts generated by alternative splicing of Fas gene, and (2) the detection of miRNA 181a from urine liquid biopsies, for the early diagnosis of bladder cancer. The biosensing detection is performed by a direct assay in real time, by monitoring the changes in the intensity pattern of the light propagating through the BiMW biosensor, due to the hybridization of the target with the specific DNA probe previously functionalized on the BiMW sensor surface.
Collapse
Affiliation(s)
- Cesar S Huertas
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Ed-ICN2, Barcelona, Spain
| |
Collapse
|
4
|
Moya-Ramírez I, Bouton C, Kontoravdi C, Polizzi K. High resolution biosensor to test the capping level and integrity of mRNAs. Nucleic Acids Res 2021; 48:e129. [PMID: 33152073 PMCID: PMC7736790 DOI: 10.1093/nar/gkaa955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022] Open
Abstract
5′ Cap structures are ubiquitous on eukaryotic mRNAs, essential for post-transcriptional processing, translation initiation and stability. Here we describe a biosensor designed to detect the presence of cap structures on mRNAs that is also sensitive to mRNA degradation, so uncapped or degraded mRNAs can be detected in a single step. The biosensor is based on a chimeric protein that combines the recognition and transduction roles in a single molecule. The main feature of this sensor is its simplicity, enabling semi-quantitative analyses of capping levels with minimal instrumentation. The biosensor was demonstrated to detect the capping level on several in vitro transcribed mRNAs. Its sensitivity and dynamic range remained constant with RNAs ranging in size from 250 nt to approximately 2700 nt and the biosensor was able to detect variations in the capping level in increments of at least 20%, with a limit of detection of 2.4 pmol. Remarkably, it also can be applied to more complex analytes, such mRNA vaccines and mRNAs transcribed in vivo. This biosensor is an innovative example of a technology able to detect analytically challenging structures such as mRNA caps. It could find application in a variety of scenarios, from quality analysis of mRNA-based products such as vaccines to optimization of in vitro capping reactions.
Collapse
Affiliation(s)
- Ignacio Moya-Ramírez
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Clement Bouton
- Department of Infectious Disease, Imperial College London, London W2 1NY, UK
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Noé V, Aubets E, Félix AJ, Ciudad CJ. Nucleic acids therapeutics using PolyPurine Reverse Hoogsteen hairpins. Biochem Pharmacol 2020; 189:114371. [PMID: 33338475 DOI: 10.1016/j.bcp.2020.114371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
PolyPurine Reverse Hoogsteen hairpins (PPRHs) are DNA hairpins formed by intramolecular reverse Hoogsteen bonds which can bind to polypyrimidine stretches in dsDNA by Watson:Crick bonds, thus forming a triplex and displacing the fourth strand of the DNA complex. PPRHs were first described as a gene silencing tool in vitro for DHFR, telomerase and survivin genes. Then, the effect of PPRHs directed against the survivin gene was also determined in vivo using a xenograft model of prostate cancer cells (PC3). Since then, the ability of PPRHs to inhibit gene expression has been explored in other genes involved in cancer (BCL-2, mTOR, topoisomerase, C-MYC and MDM2), in immunotherapy (SIRPα/CD47 and PD-1/PD-L1 tandem) or in replication stress (WEE1 and CHK1). Furthermore, PPRHs have the ability to target the complementary strand of a G-quadruplex motif as a regulatory element of the TYMS gene. PPRHs have also the potential to correct point mutations in the DNA as shown in two collections of CHO cell lines bearing mutations in either the dhfr or aprt loci. Finally, based on the capability of PPRHs to form triplexes, they have been incorporated as probes in biosensors for the determination of the DNA methylation status of PAX-5 in cancer and the detection of mtLSU rRNA for the diagnosis of Pneumocystis jirovecii. Of note, PPRHs have high stability and do not present immunogenicity, hepatotoxicity or nephrotoxicity in vitro. Overall, PPRHs constitute a new economical biotechnological tool with multiple biomedical applications.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Eva Aubets
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Alex J Félix
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Huertas CS, Soler M, Estevez MC, Lechuga LM. One-Step Immobilization of Antibodies and DNA on Gold Sensor Surfaces via a Poly-Adenine Oligonucleotide Approach. Anal Chem 2020; 92:12596-12604. [PMID: 32786435 DOI: 10.1021/acs.analchem.0c02619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Label-free plasmonic biosensors have demonstrated promising capabilities as analytical tools for the detection of virtually any type of biomarker. They are presented as good candidates for precision diagnostics since they offer highly sensitive, cost-effective solutions that can be used in any clinical or laboratory setting without the need for specialized trainees. However, different surface functionalization protocols are required, depending on the nature of the biorecognition element, limiting their capabilities for integrated multi-biomarker detection. Here, we present a simple, yet efficient, one-step immobilization approach that is common for both DNA probes and antibodies. Our immobilization approach relies on the incorporation of poly-adenine (polyA) blocks in both nucleic acid probes and antibodies. PolyA sequences have a remarkable affinity for gold surfaces and can specifically interact with sufficient strength to generate stable, dense, and highly ordered monolayers. We have demonstrated excellent performance of our universal functionalization method, showing limits of detection and quantification in the pM-nM range. Moreover, it was able to reduce up to 50% of the background signal from undiluted serum samples compared to conventional methods, demonstrating the immense potential of this strategy for the direct analysis of human biofluids, essential for rapid point-of-care diagnostics. The polyA-based immobilization approach is a promising alternative for the generation of multiplexed biosensors that can detect both protein and nucleic acid biomarkers for multiparametric diagnostic assays.
Collapse
Affiliation(s)
- Cesar S Huertas
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Bellaterra, Barcelona 08193, Spain.,Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Bellaterra, Barcelona 08193, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - M-Carmen Estevez
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Bellaterra, Barcelona 08193, Spain
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
7
|
Blanco-Formoso M, Alvarez-Puebla RA. Cancer Diagnosis through SERS and Other Related Techniques. Int J Mol Sci 2020; 21:ijms21062253. [PMID: 32214017 PMCID: PMC7139671 DOI: 10.3390/ijms21062253] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer heterogeneity increasingly requires ultrasensitive techniques that allow early diagnosis for personalized treatment. In addition, they should preferably be non-invasive tools that do not damage surrounding tissues or contribute to body toxicity. In this context, liquid biopsy of biological samples such as urine, blood, or saliva represents an ideal approximation of what is happening in real time in the affected tissues. Plasmonic nanoparticles are emerging as an alternative or complement to current diagnostic techniques, being able to detect and quantify novel biomarkers such as specific peptides and proteins, microRNA, circulating tumor DNA and cells, and exosomes. Here, we review the latest ideas focusing on the use of plasmonic nanoparticles in coded and label-free surface-enhanced Raman scattering (SERS) spectroscopy. Moreover, surface plasmon resonance (SPR) spectroscopy, colorimetric assays, dynamic light scattering (DLS) spectroscopy, mass spectrometry or total internal reflection fluorescence (TIRF) microscopy among others are briefly examined in order to highlight the potential and versatility of plasmonics.
Collapse
Affiliation(s)
- Maria Blanco-Formoso
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| |
Collapse
|
8
|
Huertas CS, Bonnal S, Soler M, Escuela AM, Valcárcel J, Lechuga LM. Site-Specific mRNA Cleavage for Selective and Quantitative Profiling of Alternative Splicing with Label-Free Optical Biosensors. Anal Chem 2019; 91:15138-15146. [DOI: 10.1021/acs.analchem.9b03898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cesar S. Huertas
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Sophie Bonnal
- Centre de Regulació Genòmica and BIST, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Alfonso M. Escuela
- Institute for Applied Microelectronics (IUMA). University of Las Palmas de Gran Canaria, E-35017 Las Palmas, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica and BIST, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced Evanescent-Wave Optical Biosensors for the Detection of Nucleic Acids: An Analytic Perspective. Front Chem 2019; 7:724. [PMID: 31709240 PMCID: PMC6823211 DOI: 10.3389/fchem.2019.00724] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Evanescent-wave optical biosensors have become an attractive alternative for the screening of nucleic acids in the clinical context. They possess highly sensitive transducers able to perform detection of a wide range of nucleic acid-based biomarkers without the need of any label or marker. These optical biosensor platforms are very versatile, allowing the incorporation of an almost limitless range of biorecognition probes precisely and robustly adhered to the sensor surface by covalent surface chemistry approaches. In addition, their application can be further enhanced by their combination with different processes, thanks to their integration with complex and automated microfluidic systems, facilitating the development of multiplexed and user-friendly platforms. The objective of this work is to provide a comprehensive synopsis of cutting-edge analytical strategies based on these label-free optical biosensors able to deal with the drawbacks related to DNA and RNA detection, from single point mutations assays and epigenetic alterations, to bacterial infections. Several plasmonic and silicon photonic-based biosensors are described together with their most recent applications in this area. We also identify and analyse the main challenges faced when attempting to harness this technology and how several innovative approaches introduced in the last years manage those issues, including the use of new biorecognition probes, surface functionalization approaches, signal amplification and enhancement strategies, as well as, sophisticated microfluidic solutions.
Collapse
Affiliation(s)
- Cesar S. Huertas
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| |
Collapse
|
10
|
Aviñó A, Eritja R, Ciudad CJ, Noé V. Parallel Clamps and Polypurine Hairpins (PPRH) for Gene Silencing and Triplex‐Affinity Capture: Design, Synthesis, and Use. ACTA ACUST UNITED AC 2019; 77:e78. [DOI: 10.1002/cpnc.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Carlos J. Ciudad
- School of Pharmacy and IN2UBUniversity of Barcelona Barcelona Spain
| | - Verónica Noé
- School of Pharmacy and IN2UBUniversity of Barcelona Barcelona Spain
| |
Collapse
|
11
|
Soler M, Huertas CS, Lechuga LM. Label-free plasmonic biosensors for point-of-care diagnostics: a review. Expert Rev Mol Diagn 2018; 19:71-81. [PMID: 30513011 DOI: 10.1080/14737159.2019.1554435] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Optical biosensors, particularly those based on nanoplasmonics technology, have emerged in recent decades as a potential solution for disease diagnostics and therapy follow-up at the point-of-care (POC). These biosensor platforms could overcome some of the challenges faced in conventional diagnosis techniques offering label-free assays with immediate results and employing small and user-friendly devices. Areas covered: In this review, we will provide a critical overview of the recent advances in the development of nanoplasmonic biosensors for the POC diagnostics. We focus on those systems with demonstrated capabilities for integration in portable platforms, highlighting some of the most relevant diagnostics applications targeting proteins, nucleic acids, and cells as disease biomarkers. Expert commentary: Despite the attractive features of label-free nanoplasmonic sensors in terms of miniaturization and analytical robustness, the route toward an effective clinical implementation involves the integration of fully automated microfluidic systems for sample processing and analysis, and the optimization of surface biofunctionalization procedures. Additionally, the development of multiplexed sensors for high-throughput analysis and including specific neoantigens and novel biomarkers in detection panels will provide the means for delivering a powerful analytical technology for an accurate and improved medical diagnosis.
Collapse
Affiliation(s)
- Maria Soler
- a Nanobiosensors and Bioanalytical Applications Group , Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN , Bellaterra , Barcelona , Spain
| | - Cesar S Huertas
- a Nanobiosensors and Bioanalytical Applications Group , Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN , Bellaterra , Barcelona , Spain.,b School of Engineering , RMIT University , Melbourne , Australia
| | - Laura M Lechuga
- a Nanobiosensors and Bioanalytical Applications Group , Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN , Bellaterra , Barcelona , Spain
| |
Collapse
|
12
|
Huertas CS, Aviñó A, Kurachi C, Piqué A, Sandoval J, Eritja R, Esteller M, Lechuga LM. Label-free DNA-methylation detection by direct ds-DNA fragment screening using poly-purine hairpins. Biosens Bioelectron 2018; 120:47-54. [DOI: 10.1016/j.bios.2018.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/25/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
|
13
|
Huertas CS, Domínguez-Zotes S, Lechuga LM. Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor. Sci Rep 2017; 7:41368. [PMID: 28120920 PMCID: PMC5264646 DOI: 10.1038/srep41368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/20/2016] [Indexed: 11/09/2022] Open
Abstract
Personalized medicine is a promising tool not only for prevention, screening and development of more efficient treatment strategies, but also for diminishing the side effects caused by current therapies. Deciphering gene regulation pathways provides a reliable prognostic analysis to elucidate the origin of grave diseases and facilitate the selection of the most adequate treatment for each individual. Alternative splicing of mRNA precursors is one of these gene regulation pathways and enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression constituting a relevant and innovative class of biomarker. Herein we report a highly selective and sensitive nanophotonic biosensor based on the direct monitoring of the aberrant alternative splicing of Fas gene. Unlike conventional methods, the nanobiosensor performs a real-time detection of the specific isoforms in the fM-pM range without any cDNA synthesis or PCR amplification requirements. The nanobiosensor has been proven isoform-specific with no crosshybridization, greatly minimizing detection biases. The demonstrated high sensitivity and specificity make our nanobiosensor ideal for examining significant tumor-associated expression shifts of alternatively spliced isoforms for the early and accurate theranostics of cancer.
Collapse
Affiliation(s)
- César S. Huertas
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Santos Domínguez-Zotes
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
14
|
Wang X, Liu W, Yin B, Yu P, Duan X, Liao Z, Liu C, Sang Y, Zhang G, Chen Y, Tao Z. Colorimetric detection of gene transcript by target-induced three-way junction formation. Talanta 2016; 158:1-5. [DOI: 10.1016/j.talanta.2016.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 11/16/2022]
|
15
|
Carrascosa LG, Huertas CS, Lechuga LM. Prospects of optical biosensors for emerging label-free RNA analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Huertas CS, Fariña D, Lechuga LM. Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00162] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- César S. Huertas
- Nanobiosensors and Bioanalytical
Applications Group, Catalan Institute of Nanoscience and Nanotechnology
(ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - David Fariña
- Nanobiosensors and Bioanalytical
Applications Group, Catalan Institute of Nanoscience and Nanotechnology
(ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical
Applications Group, Catalan Institute of Nanoscience and Nanotechnology
(ICN2), CSIC, The Barcelona Institute of Science and Technology, and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|