1
|
Braz BA, Hospinal-Santiani M, Martins G, Moscardi APZ, Beirão BCB, Soccol CR, Thomaz-Soccol V, Bergamini MF, Marcolino-Junior LH. A novel electrochemical immunosensor for the determination of tuberculosis diagnosis exploiting graphene-affinity peptide. Talanta 2025; 283:127146. [PMID: 39509901 DOI: 10.1016/j.talanta.2024.127146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Conventional methods for diagnosing tuberculosis (TB), a significant global health challenge, often have drawbacks like time-consuming procedures, limited sensitivity, and the need for complex, expensive infrastructure. Hence, the development of electrochemical immunosensors has emerged as a promising strategy for TB detection due to their simplicity, speed, sensitivity, portability, and cost-effectiveness. In this study, we developed a rapid, simple, and low-cost immunosensor using a lab-made screen-printed electrode (SPE) based on the peptide TB 68-G as a recognition site. This synthetic peptide is composed of two important parts, one with an affinity for graphene materials and the other able to interact with anti-M. tuberculosis antibodies. This structural configuration allows for effective modification of the electrode surface while maintaining the ability to recognize the target. The proposed label-free electrochemical immunosensor was tested against M. tuberculosis antibodies and demonstrated a detection limit of 192 ng mL-1 with an R2 value of 0.98. The diagnostic platform exhibited selectivity against nonspecific antibodies and successfully differentiated between negative and positive human serum samples with a 95 % confidence interval. This simple and affordable immunosensor holds great potential to impact TB control by enabling effective detection and improving disease surveillance.
Collapse
Affiliation(s)
- Beatriz A Braz
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil; Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Manuel Hospinal-Santiani
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Gustavo Martins
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Ana P Z Moscardi
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Breno C B Beirão
- Graduate Program in Microbiology, Parasitology, and Pathology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Carlos R Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Vanete Thomaz-Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP 81531-980, Curitiba, PR, Brazil
| | - Márcio F Bergamini
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| | - Luiz H Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Jiang R, Liu J, Liu X, Travas Sejdic J. Electrochemical biosensing platform based on AuNWs/rGO-CMC-PEDOT:PSS composite for the detection of superoxide anion released from living cells. Biosens Bioelectron 2024; 254:116228. [PMID: 38522233 DOI: 10.1016/j.bios.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Detection of superoxide anion (O2·-) levels holds significant importance for the diagnosis and even clinical treatments of oxidative stress-related diseases. Herein, we prepared a composite electrode material to encapsulate copper-zinc superoxide dismutase (SOD1) for biosensing of O2·-. The sensing material consists of gold nanowires (AuNWs), reduced graphene oxide (rGO), carboxymethyl cellulose (CMC) and PEDOT:PSS. CMC provides abundant -COOH to bind SOD1, with a high adsorption coverage of 1.499 × 10-9 mol cm-2 on the sensor surface. rGO and PEDOT endow the composite with significant conductivity, whereas PSS has antifouling capability. Moreover, AuNWs exhibit excellent electrical conductivity and a high aspect ratio, which promotes electron transfer, and ultimately enhances the catalytic performance of the enzyme. Meanwhile, SOD1(Cu2+) catalyzes the dismutation of O2·- to O2 and H2O2, and H2O2 is then electrochemically oxidized to generate amperometric signals for determination of O2·-. The sensor demonstrates outstanding detection performance for O2·- with a low detection limit of 2.52 nM, and two dynamic ranges (14.30 nM-1.34 μM and 1.34 μM-42.97 μM) with corresponding sensitivity of 0.479 and 0.052 μA μM-1cm-2, respectively. Additionally, the calculated apparent Michaelis constant (Kmapp) of 1.804 μM for SOD1 demonstrates the outstanding catalytic activity and the surface-immobilized enzyme's substrate affinity. Furthermore, the sensor shows the capability to dynamically detect the level of O2·- released from living HepG2 cells. This study provides an inovative design to obtain a biocompatible electrochemical sensing platform with plenty of immobilization sites for biomolecules, large surface area, high conductivity and flexibility.
Collapse
Affiliation(s)
- Renjun Jiang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaojiao Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, 475004, China.
| | - Jadranka Travas Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, 23 Symonds Street, Auckland, 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand.
| |
Collapse
|
3
|
Yadav AK, Verma D, Solanki PR. Enhanced Electrochemical Biosensing of the Sp17 Cancer Biomarker in Serum Samples via Engineered Two-Dimensional MoS 2 Nanosheets on the Reduced Graphene Oxide Interface. ACS APPLIED BIO MATERIALS 2023; 6:4250-4268. [PMID: 37715717 DOI: 10.1021/acsabm.3c00464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
In the present investigation, we reported a label-free and highly effective immunosensor for the first time employing a nanostructured molybdenum disulfide nanosheets@reduced graphene oxide (nMoS2 NS@rGO) nanohybrid interface for the determination of sperm protein 17 (Sp17), an emerging cancer biomarker. We synthesized the nMoS2 NS@rGO nanohybrid using a one-step hydrothermal technique and then functionalized it with 3-aminopropyltriethoxysilane (APTES). Furthermore, the anti-Sp17 monoclonal antibodies were covalently attached to the APTES/nMoS2 NS@rGO/indium tin oxide (ITO) electrode utilizing 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxy succinimide (EDC-NHS) coupling chemistry. Bovine serum albumin (BSA) was then used to block nonspecific binding regions on the anti-Sp17/APTES/nMoS2 NS@rGO/ITO bioelectrode. The morphological and structural features of the synthesized nanohybrid and the modified electrodes were studied using transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray (EDX) composition studies, atomic force microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The immunoreaction between the Sp17 antigen and anti-Sp17 antibodies on the surface of the BSA/anti-Sp17/APTES/nMoS2 NS@rGO/ITO sensing bioelectrode was applied as the basis for the detection technique, which measured the electrocatalytic current and impedimetric response change. The designed BSA/anti-Sp17/APTES/nMoS2 NS@rGO/ITO bioelectrode showed improved amperometric and impedimetric biosensing performance in the response studies, including remarkable sensitivity (23.2 μA ng-1mL cm-2 and 0.48 kΩ mL ng-1 cm-2), wider linearity (0.05-8 and 1-8 ng mL-1), an excellent lower detection limit (0.13 and 0.23 ng mL-1), and a rapid response time of 20 min. The biosensor exhibited impressive storage durability lasting 7 weeks and showed remarkable precision in identifying Sp17 in serum samples from cancer patients, as confirmed using the enzyme-linked immunosorbent assay method.
Collapse
Affiliation(s)
- Amit K Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Damini Verma
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Munteanu IG, Grădinaru VR, Apetrei C. Sensitive Detection of Rosmarinic Acid Using Peptide-Modified Graphene Oxide Screen-Printed Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193292. [PMID: 36234420 PMCID: PMC9565883 DOI: 10.3390/nano12193292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 05/15/2023]
Abstract
Peptides have been used as components in biological analysis and fabrication of novel sensors due to several reasons, including well-known synthesis protocols, diverse structures, and acting as highly selective substrates for enzymes. Bio-conjugation strategies can provide a simple and efficient way to convert peptide-analyte interaction information into a measurable signal, which can be further used for the manufacture of new peptide-based biosensors. This paper describes the sensitive properties of a peptide-modified graphene oxide screen-printed carbon electrode for accurate and sensitive detection of a natural polyphenol antioxidant compound, namely rosmarinic acid. Glutaraldehyde was chosen as the cross-linking agent because it is able to bind nonspecifically to the peptide. We demonstrated that the strong interaction between the immobilized peptide on the surface of the sensor and rosmarinic acid favors the addition of rosmarinic acid on the surface of the electrode, leading to an efficient preconcentration that determines a high sensitivity of the sensor for the detection of rosmarinic acid. The experimental conditions were optimized using different pH values and different amounts of peptide to modify the sensor surface, so that its analytical performances were optimal for rosmarinic acid detection. By using cyclic voltammetry (CV) as a detection method, a very low detection limit (0.0966 μM) and a vast linearity domain, ranging from 0.1 µM to 3.20 µM, were obtained. The novelty of this work is the development of a novel peptide-based sensor with improved performance characteristics for the quantification of rosmarinic acid in cosmetic products of complex composition. The FTIR method was used to validate the voltammetric method results.
Collapse
Affiliation(s)
- Irina Georgiana Munteanu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
| | | | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
- Correspondence: ; Tel.: +40-727-580-914
| |
Collapse
|
5
|
Kang MS, Lee H, Jeong SJ, Eom TJ, Kim J, Han DW. State of the Art in Carbon Nanomaterials for Photoacoustic Imaging. Biomedicines 2022; 10:biomedicines10061374. [PMID: 35740396 PMCID: PMC9219987 DOI: 10.3390/biomedicines10061374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Photoacoustic imaging using energy conversion from light to ultrasound waves has been developed as a powerful tool to investigate in vivo phenomena due to their complex characteristics. In photoacoustic imaging, endogenous chromophores such as oxygenated hemoglobin, deoxygenated hemoglobin, melanin, and lipid provide useful biomedical information at the molecular level. However, these intrinsic absorbers show strong absorbance only in visible or infrared optical windows and have limited light transmission, making them difficult to apply for clinical translation. Therefore, the development of novel exogenous contrast agents capable of increasing imaging depth while ensuring strong light absorption is required. We report here the application of carbon nanomaterials that exhibit unique physical, mechanical, and electrochemical properties as imaging probes in photoacoustic imaging. Classified into specific structures, carbon nanomaterials are synthesized with different substances according to the imaging purposes to modulate the absorption spectra and highly enhance photoacoustic signals. In addition, functional drugs can be loaded into the carbon nanomaterials composite, and effective in vivo monitoring and photothermal therapy can be performed with cell-specific targeting. Diverse applied cases suggest the high potential of carbon nanomaterial-based photoacoustic imaging in in vivo monitoring for clinical research.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Seung Jo Jeong
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| |
Collapse
|
6
|
Fabrication of alkoxysilane substituted polymer-modified disposable biosensing platform: Toward sperm protein 17 sensing as a new cancer biomarker. Talanta 2022; 243:123376. [DOI: 10.1016/j.talanta.2022.123376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
|
7
|
Wu Y, Lu L, Yu Z, Wang X. Electrochemical sensor based on the Mn 3O 4/CeO 2 nanocomposite with abundant oxygen vacancies for highly sensitive detection of hydrogen peroxide released from living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1672-1680. [PMID: 33861233 DOI: 10.1039/d1ay00085c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Based on the strategy of increasing the number of oxygen vacancies to improve the catalytic performance, we have developed a novel electrochemical sensor based on the multivalent metal oxides cerium dioxide and manganous oxide (Mn3O4/CeO2) for reliable determination of extracellular hydrogen peroxide (H2O2) released from living cells. The Mn3O4/CeO2 nanocomposite was characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical performance of the Mn3O4/CeO2 nanocomposite modified glassy carbon electrode (Mn3O4/CeO2/GCE) was investigated. Owing to the abundant oxygen vacancies and strong synergistic effect between the multivalent Ce and Mn, the sensor exhibited excellent catalytic activity and selectivity for the electrochemical detection of H2O2 with a low quantitation limit of 2 nM. Moreover, Mn3O4/CeO2/GCE exhibited excellent reproducibility, repeatability, and long-term storage stability. Because of these remarkable analytical advantages, the constructed sensor was able to determine H2O2 released from living cells with satisfactory results. The results showed that the Mn3O4/CeO2 sensor is a promising candidate for a nanoenzymatic H2O2 sensor with the possibility of applications in physiology and diagnosis.
Collapse
Affiliation(s)
- Yalin Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | | | | | | |
Collapse
|
8
|
Aslan S. An electrochemical immunosensor modified with titanium IV oxide/polyacrylonitrile nanofibers for the determination of a carcinoembryonic antigen. NEW J CHEM 2021. [DOI: 10.1039/d0nj05385f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A highly sensitive electrochemical carcinoembryonic antigen immunosensor based on TiO2np/polyacrylonitrile nanofibers electrospun on the surface of the discharged battery coal electrode.
Collapse
Affiliation(s)
- Sema Aslan
- Department of Chemistry
- Faculty of Science
- Mugla Sitki Kocman University
- Muğla
- Turkey
| |
Collapse
|
9
|
Ding M, Zha L, Wang H, Liu J, Chen P, Zhao Y, Jiang L, Li Y, Ouyang R, Miao Y. A frogspawn-like Ag@C core–shell structure for an ultrasensitive label-free electrochemical immunosensing of carcinoembryonic antigen in blood plasma. RSC Adv 2021; 11:16339-16350. [PMID: 35479148 PMCID: PMC9030918 DOI: 10.1039/d1ra00910a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/18/2021] [Indexed: 12/31/2022] Open
Abstract
Novel frogspawn-like Ag@C nanoparticles were successfully used to fabricate an ultrasensitive electrochemical immunosensing platform toward CEA in human blood samples.
Collapse
Affiliation(s)
- Mengkui Ding
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Ling Zha
- Department of Laboratory Diagnosis
- Changhai Hospital
- Naval Medical University
- Shanghai 20043
- P. R. China
| | - Hui Wang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Jinyao Liu
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Peiwu Chen
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuefeng Zhao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Lan Jiang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuhao Li
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuqing Miao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| |
Collapse
|
10
|
Magnetic bead-based photoelectrochemical immunoassay for sensitive detection of carcinoembryonic antigen using hollow cadmium sulfide. Talanta 2020; 219:121215. [DOI: 10.1016/j.talanta.2020.121215] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
|
11
|
Zhang L, Si X, Yan X, He H, Deng D, Luo L. A Novel Electrochemical Sensor Based on Au-rGO Nanocomposite Decorated with Poly(L-cysteine) for Determination of Paracetamol. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016999200414145325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background:
Paracetamol is a common antipyretic and analgesic drug, but its excessive
intake can accumulate toxic metabolites and cause kidney and liver damage, so it is critical to determine
the content of paracetamol for clinical diagnosis and dose use.
Methods:
Au-reduced graphene oxide (Au-rGO) nanocomposite decorated with poly(L-cysteine) on
carbon paste electrode was fabricated for the determination of paracetamol. Au-rGO was first coelectrodeposited
on the carbon paste electrode surface. Afterwards, L-cysteine was electropolymerized
to fabricate the Au-rGO/poly(L-cysteine) modified carbon paste electrode. Scanning electron
microscope was used to characterize the morphology of Au-rGO and poly(L-cysteine)/Au-rGO. The
electrochemical properties of the sensor were studied by cyclic voltammetry and differential pulse
voltammetry.
Results:
After exploring the optimal conditions, the sensor showed a wide linear response for paracetamol
detection in the range of 1-200 μM with a detection limit of 0.5 μM (S/N = 3).
Conclusion:
The fabricated sensor demonstrated good sensitivity with rapid detection capacity in real
samples.
Collapse
Affiliation(s)
- Lin Zhang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaojing Si
- Food Department, Shanghai Business School, Shanghai 200235, China
| | - Xiaoxia Yan
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Haibo He
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Sangili A, Kalyani T, Chen SM, Nanda A, Jana SK. Label-Free Electrochemical Immunosensor Based on One-Step Electrochemical Deposition of AuNP-RGO Nanocomposites for Detection of Endometriosis Marker CA 125. ACS APPLIED BIO MATERIALS 2020; 3:7620-7630. [DOI: 10.1021/acsabm.0c00821] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Arumugam Sangili
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
- Department of Biotechnology, National Institute of Technology, Papum Pare 791112, Arunachal Pradesh, India
| | - Thangapandi Kalyani
- Department of Biotechnology, National Institute of Technology, Papum Pare 791112, Arunachal Pradesh, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Amalesh Nanda
- Department of Biotechnology, National Institute of Technology, Papum Pare 791112, Arunachal Pradesh, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Papum Pare 791112, Arunachal Pradesh, India
| |
Collapse
|
13
|
Fractal SERS nanoprobes for multiplexed quantitative gene profiling. Biosens Bioelectron 2020; 156:112130. [DOI: 10.1016/j.bios.2020.112130] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
|
14
|
Li Y, Huan K, Deng D, Tang L, Wang J, Luo L. Facile Synthesis of ZnMn 2O 4@rGO Microspheres for Ultrasensitive Electrochemical Detection of Hydrogen Peroxide from Human Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3430-3437. [PMID: 31877016 DOI: 10.1021/acsami.9b19126] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed transition-metal oxides have witnessed increasing attention in catalysts and electrocatalysts. Herein, reduced graphene oxide-wrapped ZnMn2O4 microspheres (ZnMn2O4@rGO) were facilely synthesized through the solvothermal technique. The microstructure and morphology of ZnMn2O4@rGO microspheres were analyzed under Raman, X-ray photoelectron, X-ray diffraction, and energy-dispersive spectroscopies and scanning electron microscopy. The synthesized ZnMn2O4@rGO was employed as an excellent electrocatalyst for the reduction of hydrogen peroxide (H2O2). The ZnMn2O4@rGO-modified glassy carbon electrode (ZnMn2O4@rGO/GCE) exhibited a linear detection to H2O2 in a wide concentration range of 0.03-6000 μM with a detection limit of 0.012 μM. The biosensor was evaluated to determine H2O2 secreted by human breast cancer cells (MCF-7), indicating its promising applications in physiology and diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Sciences , Shanghai University , Shanghai 200444 , PR China
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , PR China
| | - Ke Huan
- College of Sciences , Shanghai University , Shanghai 200444 , PR China
| | - Dongmei Deng
- College of Sciences , Shanghai University , Shanghai 200444 , PR China
| | - Li Tang
- College of Sciences , Shanghai University , Shanghai 200444 , PR China
| | - Jinhua Wang
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , PR China
| | - Liqiang Luo
- College of Sciences , Shanghai University , Shanghai 200444 , PR China
| |
Collapse
|
15
|
Augustine S, Kumar P, Malhotra BD. Amine-Functionalized MoO3@RGO Nanohybrid-Based Biosensor for Breast Cancer Detection. ACS APPLIED BIO MATERIALS 2019; 2:5366-5378. [DOI: 10.1021/acsabm.9b00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shine Augustine
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042 India
| | - Pragati Kumar
- Administrative Supervisor, Department of Electrical Engineering, Delhi Technological University, Delhi, 110042 India
| | - Bansi D. Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042 India
| |
Collapse
|
16
|
Afzali M, Mostafavi A, Nekooie R, Jahromi Z. A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Li N, Zhang Y, Huang B, Li H. Ultrasonic dispersion temperature- and pH-tuned spectral and electrochemical properties of bovine serum albumin on carbon nanotubes and its conformational transition. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Ultrasensitive cathode photoelectrochemical immunoassay based on TiO2 photoanode-enhanced 3D Cu2O nanowire array photocathode and signal amplification by biocatalytic precipitation. Anal Chim Acta 2018; 1027:33-40. [DOI: 10.1016/j.aca.2018.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
|
19
|
Bertok T, Lorencova L, Chocholova E, Jane E, Vikartovska A, Kasak P, Tkac J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2018. [DOI: 10.1002/celc.201800848] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomas Bertok
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Erika Chocholova
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Eduard Jane
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Alica Vikartovska
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Peter Kasak
- Center for Advanced MaterialsQatar University Doha 2713 Qatar
| | - Jan Tkac
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| |
Collapse
|
20
|
Mallakpour S, Nazari HY. The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique. ULTRASONICS SONOCHEMISTRY 2018; 41:1-10. [PMID: 29137730 DOI: 10.1016/j.ultsonch.2017.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
In this study, for the first time polymeric nanocomposite (NC) films of poly(vinyl alcohol)/SiO2@bovine serum albumin (PVA/SiO2@BSA) were synthesized by solution casting method under facile and fast method of sonication. In this regard, SiO2 nanoparticles (NPs) were modified by BSA, at room temperature by using phosphate buffer and ultrasonic-assisted method. Then, PVA/SiO2@BSA NCs were prepared by insertion of variant amount (3, 6 and 9wt%) of SiO2@BSA into the PVA matrix, under ultrasonic irradiation. The morphological traits of the NCs were surveyed by Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction and field emission scanning electron microscopy. It was detected that NPs incorporation didn't remarkably affect the crystallinity and morphology of the NCs. TEM images indicated that the inserted NPs have good diffusions in the PVA matrix, and their embedment in the matrix significantly upgraded its thermal, optical and mechanical behaviors. The tensile strength showed more than 2-fold increase and the thermal stability exhibited about 37% enhancement that was higher, in comparison with those of the similar NCs. This showed that the prepared NCs can have potential application in food packaging.∗∗∗.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Hossein Yazdan Nazari
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
21
|
An ultrasensitive aptasensor for prostate specific antigen assay based on Exonuclease T-aided cyclic cleavage. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9203-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Yuan Y, Zhang L, Wang H, Chai Y, Yuan R. Self-enhanced PEI-Ru(II) complex with polyamino acid as booster to construct ultrasensitive electrochemiluminescence immunosensor for carcinoembryonic antigen detection. Anal Chim Acta 2018; 1001:112-118. [DOI: 10.1016/j.aca.2017.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/04/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
|
23
|
Li M, Wahyudi W, Kumar P, Wu F, Yang X, Li H, Li LJ, Ming J. Scalable Approach To Construct Free-Standing and Flexible Carbon Networks for Lithium-Sulfur Battery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8047-8054. [PMID: 28221020 DOI: 10.1021/acsami.6b12546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Reconstructing carbon nanomaterials (e.g., fullerene, carbon nanotubes (CNTs), and graphene) to multidimensional networks with hierarchical structure is a critical step in exploring their applications. Herein, a sacrificial template method by casting strategy is developed to prepare highly flexible and free-standing carbon film consisting of CNTs, graphene, or both. The scalable size, ultralight and binder-free characteristics, as well as the tunable process/property are promising for their large-scale applications, such as utilizing as interlayers in lithium-sulfur battery. The capability of holding polysulfides (i.e., suppressing the sulfur diffusion) for the networks made from CNTs, graphene, or their mixture is pronounced, among which CNTs are the best. The diffusion process of polysulfides can be visualized in a specially designed glass tube battery. X-ray photoelectron spectroscopy analysis of discharged electrodes was performed to characterize the species in electrodes. A detailed analysis of lithium diffusion constant, electrochemical impedance, and elementary distribution of sulfur in electrodes has been performed to further illustrate the differences of different carbon interlayers for Li-S batteries. The proposed simple and enlargeable production of carbon-based networks may facilitate their applications in battery industry even as a flexible cathode directly. The versatile and reconstructive strategy is extendable to prepare other flexible films and/or membranes for wider applications.
Collapse
Affiliation(s)
- Mengliu Li
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wandi Wahyudi
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pushpendra Kumar
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Fengyu Wu
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiulin Yang
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Henan Li
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lain-Jong Li
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Ming
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Liu L, Du R, Zhang Y, Yu X. A novel sandwich-type immunosensor based on three-dimensional graphene–Au aerogels and quaternary chalcogenide nanocrystals for the detection of carcino embryonic antigen. NEW J CHEM 2017. [DOI: 10.1039/c7nj02253k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu2ZnSnS4 nanocrystals were firstly used as electrocatalysts in H2O2 reduction for ultrasensitive detection of carcino embryonic antigen.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Ruifeng Du
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| | - Xuelian Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing
| |
Collapse
|