1
|
Liu L, Xiong H, Wang X, Jiang H. Gold nanomaterials: important vectors in biosensing of breast cancer biomarkers. Anal Bioanal Chem 2024; 416:3869-3885. [PMID: 38277010 DOI: 10.1007/s00216-024-05151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women worldwide, and its incidence is increasing every year. Early diagnosis and treatment are critical to improve the curability and prognosis of patients. However, existing detection methods often suffer from insufficient sensitivity and specificity, which limits their clinical application. Fortunately, the rapid development of nanotechnology offers new possibilities for diagnosing BC. For example, the unique physicochemical properties of gold nanomaterials (Au NMs), such as fascinating optical properties and quantum size effect, along with excellent biocompatibility and modifiability, enable them to manifest great potential in the field of biosensing, especially in the detection of BC biomarkers. Through fine surface modification and functionalization, Au NMs can accurately bind to specific antibodies, nucleic acids, and other biomolecules, thus achieving sensitive and precise detection of specific biomarkers. Here, we focus on the research progress of Au NMs as a key biosensing vector in BC biomarker detection. From four major perspectives of early diagnosis, prognostic evaluation, risk prediction, and bioimaging applications, we have thoroughly analyzed the broad application of Au NMs in BC biomarker detection and prospectively addressed its possible future trends. We hope this review will provide more comprehensive ideas for future researchers and promote the further development of this field.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
2
|
Liang H, Xiao Y, Chen R, Li Y, Zhou S, Liu J, Song Y, Wang L. Immunosensing of neuron-specific enolase based on signal amplification strategies via catalysis of ascorbic acid by heteropolysate COF. Biosens Bioelectron 2023; 238:115593. [PMID: 37597283 DOI: 10.1016/j.bios.2023.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
In view of the importance of quantification of neuron-specific enolase (NSE), an electrochemical NSE immunosensor was developed. The sandwich voltammetric immunosensor utilized vinyl-functionalized crystalline covalent organic framework (COFTAPT-Dva) modified electrode to load lots of Ab1 via thiol-ene "click" reaction as matrix. A crystalline cationic EB-COF:Br was used to load Au nanoparticles (AuNPs) and H3[PMo12O40] (PMo12) as immunoprobe. The AuNPs with the size of about 30 nm were firstly grown on EB-COF:Br and then a large number of electroactive PMo12 were uniformly assembled on AuNPs/EB-COF:Br via ion exchanging reaction. The AuNPs not only facilitated the bonding of Ab2 based on Au-S bond, but also improved performance of Ab2/AuNPs/EB-COF:PMo12 immunoprobe. The sensitivity of sandwich electrochemical immunosensor could be primarily amplified based on loaded abundant PMo12. Secondary sensitivity amplification of immunosensor could be achieved by using PMo12 to catalyze ascorbic acid. The linear range of sandwich voltammetric immunosensor based on current change of differential pulse voltammetry is 500 ± 36 fg mL-1 - 100 ± 8 ng mL-1. Thanks to the dual sensitivity amplification strategy, the sensitivity is as high as 54.06 ± 3.2 μA cm-2/lg(cNSE/ng mL-1), and the detection limit is as low as 166 ± 10.8 fg mL-1. It proves that it is completely feasible to amplify sensitivity of sandwich voltammetric immunosensors using polyoxometalate-COF and its catalytic substrate.
Collapse
Affiliation(s)
- Huihui Liang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Yawen Xiao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Rongfang Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Yanyan Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Shilin Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Jianming Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Yonghai Song
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| | - Li Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| |
Collapse
|
3
|
Hao X, Liu Z, Fan Y, Wang J, Cui C, Hu L. Signal-amplified electrochemiluminescence aptasensor for mucin 1 determination using CdS QDs/g-C 3N 4 and Au NPs@TEOA. Mikrochim Acta 2023; 190:304. [PMID: 37466700 DOI: 10.1007/s00604-023-05864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 07/20/2023]
Abstract
A novel electrochemiluminescence (ECL) aptasensor, using graphite carbonitride (g-C3N4) capped CdS quantum dots (CdS QDs@g-C3N4) and Au nanoparticles decorated triethanolamine (AuNPs@TEOA) as dual coreactants, was proposed for the determination of mucin 1 (MUC1). Higher ECL efficiency was acquired due to the double enhancement contribution of CdS QDs and TEOA to Ru (bpy)32+ ECL. Additionally, AuNPs@TEOA also acted as nanocarrier for MUC1 aptamer immobilization. After the aptasensor was incubated in target MUC1, the decreased ECL emission was obtained because of the poor conductivity of MUC1. The ECL aptasensor displayed a good linear correlation for MUC1 in the range 0.1 pg mL-1 -1000 ng mL-1, and the detection limit was 33 fg mL-1. MUC1 spiked into human serum samples was quantified to assess the practicability of the ECL aptasensor.
Collapse
Affiliation(s)
- Xuanxuan Hao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Zhimin Liu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| | - Yunfeng Fan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jie Wang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Chen Cui
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Leqian Hu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
4
|
Qin X, Wang B, Li X, Ding Y, Yang X, Zhou Y, Xu W, Xu M, Gu C. Toluidine blue-assisted synthesis of functionalized M (M=Cu, Co, Zn)-metal-organic frameworks for electrochemical immunoassay of proteins. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Rehman AU, Fayaz M, Lv H, Liu Y, Zhang J, Wang Y, Du L, Wang R, Shi K. Controllable Synthesis of a Porous PEI-Functionalized Co 3O 4/rGO Nanocomposite as an Electrochemical Sensor for Simultaneous as Well as Individual Detection of Heavy Metal Ions. ACS OMEGA 2022; 7:5870-5882. [PMID: 35224348 PMCID: PMC8867791 DOI: 10.1021/acsomega.1c05989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The present study focuses on the strategy of employing an electrochemical sensor with a porous polyethylenimine (PEI)-functionalized Co3O4/reduced graphene oxide (rGO) nanocomposite (NCP) to detect heavy metal ions (HMIs: Cd2+, Pb2+, Cu2+, and Hg2+). The porous PEI-functionalized Co3O4/rGO NCP (rGO·Co3O4·PEI) was prepared via a hydrothermal method. The synthesized NCP was based on a conducting polymer PEI, rGO, nanoribbons of Co3O4, and highly dispersed Co3O4 nanoparticles (NPs), which have shown excellent performance in the detection of HMIs. The as-prepared PEI-functionalized rGO·Co3O4·PEI NCP-modified electrode was used for the sensing/detection of HMIs by means of both square wave anodic stripping voltammetry (SWV) and differential normal pulse voltammetry (DNPV) methods for the first time. Both methods were employed for the simultaneous detection of HMIs, whereas SWV was employed for the individual analysis as well. The limits of detection (LOD; 3σ method) for Cd2+, Pb2+, Cu2+, and Hg2+ determined using the rGO·Co3O4·PEI NCP-modified electrode were 0.285, 1.132, 1.194, and 1.293 nM for SWV, respectively. Similarly, LODs of Cd2+, Pb2+, Cu2+, and Hg2+ were 1.069, 0.285, 2.398, and 1.115 nM, respectively, by DNPV during simultaneous analysis, whereas they were 0.484, 0.878, 0.462, and 0.477 nM, respectively, by SWV in individual analysis.
Collapse
Affiliation(s)
- Afrasiab Ur Rehman
- Department
of Chemistry, Khushal Khan Khattak University,
Karak, 27200 Karak, Khyber Pakhtunkhawa, Pakistan
- Key
Laboratory of Functional Inorganic Material Chemistry, Ministry of
Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Muhammad Fayaz
- Department
of Chemistry, Khushal Khan Khattak University,
Karak, 27200 Karak, Khyber Pakhtunkhawa, Pakistan
| | - He Lv
- Key
Laboratory of Functional Inorganic Material Chemistry, Ministry of
Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yang Liu
- Key
Laboratory of Functional Inorganic Material Chemistry, Ministry of
Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Jiawei Zhang
- Modern
Experiment Center, Harbin Normal University, Harbin 150025, P. R. China
| | - Yang Wang
- Key
Laboratory of Functional Inorganic Material Chemistry, Ministry of
Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Lijuan Du
- Modern
Experiment Center, Harbin Normal University, Harbin 150025, P. R. China
| | - Ruihong Wang
- Key
Laboratory of Functional Inorganic Material Chemistry, Ministry of
Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Keying Shi
- Key
Laboratory of Functional Inorganic Material Chemistry, Ministry of
Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
6
|
Dong Y, Qin X, Wang M, Gu C, Zhu Z, Yang D, Shao Y. Electrochemiluminescent Detection of Proteins Based on Fullerenols Modified Gold Nanoparticles and Triple Amplification Approaches. Anal Chem 2020; 92:1890-1897. [DOI: 10.1021/acs.analchem.9b04087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yifan Dong
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xiaoli Qin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Minghan Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Chaoyue Gu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Di Yang
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanhua Shao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Zhong M, Yang L, Yang H, Cheng C, Deng W, Tan Y, Xie Q, Yao S. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens Bioelectron 2018; 126:493-500. [PMID: 30476880 DOI: 10.1016/j.bios.2018.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
We report here cadmium sulfide quantum dots (CdS QDs)-encapsulated metal-organic frameworks as signal-amplifying tags for ultrasensitive electrochemical detection of Escherichia coli O157:H7 (E. coli O157:H7). CdS QDs were encapsulated in zeolitic imidazolate framework-8 (ZIF-8) to form CdS@ZIF-8 muti-core-shell particles by in situ growth of ZIF-8 in the presence of CdS QDs. To specifically recognize E. coli O157:H7 cells, CdS@ZIF-8 particles were coated with polyethyleneimine to introduce amino groups on their surfaces, followed by surface modification of anti-E. coli O157:H7 antibody. A sandwich-type electrochemical immunobiosensor for the detection of E. coli O157:H7 was fabricated using CdS@ZIF-8 particles as signal tags. Cd(II) ions were released from CdS@ZIF-8 tags by HCl leaching, enabling the detection of E. coli O157:H7 by differential pulse voltammetry. Under the optimized conditions, the linear range of the biosensor is from 10 to 108 colony forming units (CFU) per mL for E. coli O157:H7 detection, with the detection limit of 3 CFU mL-1 (S/N = 3). The sensitivity of the biosensor for E. coli O157:H7 detection using CdS@ZIF-8 particles as signal tags is 16 times that of a biosensor using CdS QDs as signal tags, because the number of CdS QDs labeled to each bacterial cell increases greatly resulting from a great number of CdS QDs encapsulated in each CdS@ZIF-8 label. This method was successfully used to detect E. coli O157:H7 in milk samples.
Collapse
Affiliation(s)
- Miao Zhong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Lu Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hui Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Chang Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
8
|
Sui Y, Xu A, Jin X, Zheng J, He X, Cheng Y, Xie Q, Liu R. In situ enzymatic generation of gold for ultrasensitive amperometric sandwich immunoassay of procalcitonin. Biosens Bioelectron 2018; 117:422-428. [PMID: 29966921 DOI: 10.1016/j.bios.2018.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 01/13/2023]
Abstract
Procalcitonin (PCT) is an important indicator for bacterial inflammatory diseases, and its sensitive, accurate and rapid detection has important clinical value. On the basis of sandwich immunoassay, glucose oxidase-catalyzed gold deposition and in-situ microliter-droplet anodic stripping voltammetry (ASV) of the enzyme-generated gold directly on the immunoelectrode, the ultrasensitive electrochemical detection of PCT is achieved. A new method of the chemical dissolution of gold by an appropriately diluted aqua regia and the simultaneous cathodic preconcentration of gold on the immunoelectrode is suggested, which gives the better performance for the ASV analysis of gold than the reported one. Under optimized conditions, the ASV peak current is linear with the common logarithm of PCT concentration from 0.05 fg mL-1 to 500 ng mL-1, with a limit of detection (LOD, S/N = 3) as low as 0.04 fg mL-1. Our method has also been used for detection of PCT in serum samples with satisfactory results.
Collapse
Affiliation(s)
- Yuyun Sui
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Aigui Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiaorui Jin
- College of Medicine, Hunan Normal University, Changsha 410013, China
| | - Jiao Zheng
- College of Medicine, Hunan Normal University, Changsha 410013, China
| | - Xin He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yan Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Rushi Liu
- College of Medicine, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
9
|
Qin X, Gu C, Wang M, Dong Y, Nie X, Li M, Zhu Z, Yang D, Shao Y. Triethanolamine-Modified Gold Nanoparticles Synthesized by a One-Pot Method and Their Application in Electrochemiluminescent Immunoassy. Anal Chem 2018; 90:2826-2832. [DOI: 10.1021/acs.analchem.7b04952] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoli Qin
- Beijing
National Research Center for Molecular Sciences, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chaoyue Gu
- Beijing
National Research Center for Molecular Sciences, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Minghan Wang
- Beijing
National Research Center for Molecular Sciences, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yifan Dong
- Beijing
National Research Center for Molecular Sciences, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin Nie
- Beijing
National Research Center for Molecular Sciences, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing
National Research Center for Molecular Sciences, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing
National Research Center for Molecular Sciences, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Di Yang
- Institute
of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanhua Shao
- Beijing
National Research Center for Molecular Sciences, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Qin X, Sui Y, Xu A, Liu L, Li Y, Tan Y, Chen C, Xie Q. Ultrasensitive immunoassay of proteins based on in-situ enzymatic formation of quantum dots and microliter-droplet anodic stripping voltammetry. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
C-dots assisted synthesis of gold nanoparticles as labels to catalyze copper deposition for ultrasensitive electrochemical sensing of proteins. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9204-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Kokkinos C, Economou A. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels – A review. Anal Chim Acta 2017; 961:12-32. [DOI: 10.1016/j.aca.2017.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
|
13
|
Qin X, Xu A, Liu L, Sui Y, Li Y, Tan Y, Chen C, Xie Q. Selective staining of CdS on ZnO biolabel for ultrasensitive sandwich-type amperometric immunoassay of human heart-type fatty-acid-binding protein and immunoglobulin G. Biosens Bioelectron 2016; 91:321-327. [PMID: 28039809 DOI: 10.1016/j.bios.2016.12.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
We report on an ultrasensitive metal-labeled amperometric immunoassay of proteins, which is based on the selective staining of nanocrystalline cadmium sulfide (CdS) on ZnO nanocrystals and in-situ microliter-droplet anodic stripping voltammetry (ASV) detection on the immunoelectrode. Briefly, antibody 1 (Ab1), bovine serum albumin (BSA), antigen and ZnO-multiwalled carbon nanotubes (MWCNTs) labeled antibody 2 (Ab2-ZnO-MWCNTs) were successively anchored on a β-cyclodextrin-graphene sheets (CD-GS) nanocomposite modified glassy carbon electrode (GCE), forming a sandwich-type immunoelectrode (Ab2-ZnO-MWCNTs/antigen/BSA/Ab1/CD-GS/GCE). CdS was selectively grown on the catalytic ZnO surfaces through chemical reaction of Cd(NO3)2 and thioacetamide (ZnO-label/CdS-staining), due to the presence of an activated cadmium hydroxide complex on ZnO surfaces that can decompose thioacetamide. A beforehand cathodic "potential control" in air and then injection of 7μL of 0.1M aqueous HNO3 on the immunoelectrode allow dissolution of the stained CdS and simultaneous cathodic preconcentration of atomic Cd onto the electrode surface, thus the following in-situ ASV detection can be used for immunoassay with enhanced sensitivity. Under optimized conditions, human immunoglobulin G (IgG) and human heart-type fatty-acid-binding protein (FABP) are analyzed by this method with ultrahigh sensitivity, excellent selectivity and small reagent-consumption, and the limits of detection (LODs, S/N=3) are 0.4fgmL-1 for IgG and 0.3fgmL-1 for FABP (equivalent to 73 FABP molecules in the 6μL sample employed).
Collapse
Affiliation(s)
- Xiaoli Qin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Aigui Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yuyun Sui
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yunlong Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Chao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), Synergetic Innovation Center for Quantum Effects and Applications, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
14
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
15
|
Qin X, Wang L, Xie Q. Sensitive Bioanalysis Based on in-Situ Droplet Anodic Stripping Voltammetric Detection of CdS Quantum Dots Label after Enhanced Cathodic Preconcentration. SENSORS 2016; 16:s16091342. [PMID: 27563894 PMCID: PMC5038621 DOI: 10.3390/s16091342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 12/22/2022]
Abstract
We report a protocol of CdS-labeled sandwich-type amperometric bioanalysis with high sensitivity, on the basis of simultaneous chemical-dissolution/cathodic-enrichment of the CdS quantum dot biolabel and anodic stripping voltammetry (ASV) detection of Cd directly on the bioelectrode. We added a microliter droplet of 0.1 M aqueous HNO3 to dissolve CdS on the bioelectrode and simultaneously achieved the potentiostatic cathodic preconcentration of Cd by starting the potentiostatic operation before HNO3 addition, which can largely increase the ASV signal. Our protocol was used for immunoanalysis and aptamer-based bioanalysis of several proteins, giving limits of detection of 4.5 fg·mL−1 for human immunoglobulin G, 3.0 fg·mL−1 for human carcinoembryonic antigen (CEA), 4.9 fg·mL−1 for human α-fetoprotein (AFP), and 0.9 fM for thrombin, which are better than many reported results. The simultaneous and sensitive analysis of CEA and AFP at two screen-printed carbon electrodes was also conducted by our protocol.
Collapse
Affiliation(s)
- Xiaoli Qin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Linchun Wang
- Liuzhou Traditional Chinese Medicine Hospital, Liuzhou 545001, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|