1
|
Fei W, Tang SY, Li MB. Luminescent metal nanoclusters and their application in bioimaging. NANOSCALE 2024; 16:19589-19605. [PMID: 39359125 DOI: 10.1039/d4nr03111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Owing to their unique optical properties and atomically precise structures, metal nanoclusters (MNCs) constitute a new generation of optical probe materials. This mini-review provides a brief overview of luminescence mechanisms and modulation methods of luminescent metal nanoclusters in recent years. Based on these photophysical phenomena, the applications of cluster-based optical probes in optical bioimaging and related sensing, disease diagnosis, and treatment are summarized. Some challenges are also listed at the end.
Collapse
Affiliation(s)
- Wenwen Fei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Sheng-Yan Tang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Liu Y, Liang F, Sun J, Sun R, Liu C, Deng C, Seidi F. Synthesis Strategies, Optical Mechanisms, and Applications of Dual-Emissive Carbon Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2869. [PMID: 37947715 PMCID: PMC10650469 DOI: 10.3390/nano13212869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Tuning the optical properties of carbon dots (CDs) and figuring out the mechanisms underneath the emissive phenomena have been one of the most cutting-edge topics in the development of carbon-based nanomaterials. Dual-emissive CDs possess the intrinsic dual-emission character upon single-wavelength excitation, which significantly benefits their multi-purpose applications. Explosive exploitations of dual-emissive CDs have been reported during the past five years. Nevertheless, there is a lack of a systematic summary of the rising star nanomaterial. In this review, we summarize the synthesis strategies and optical mechanisms of the dual-emissive CDs. The applications in the areas of biosensing, bioimaging, as well as photoelectronic devices are also outlined. The last section presents the main challenges and perspectives in further promoting the development of dual-emissive CDs. By covering the most vital publications, we anticipate that the review is of referential significance for researchers in the synthesis, characterization, and application of dual-emissive CDs.
Collapse
Affiliation(s)
- Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (F.L.); (J.S.); (R.S.); (C.L.); (C.D.); (F.S.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Shih CP, Tang X, Kuo CW, Chueh DY, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022; 10:990171. [PMID: 36405322 PMCID: PMC9673126 DOI: 10.3389/fchem.2022.990171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/08/2022] [Indexed: 09/29/2023] Open
Abstract
In the past two decades, we have witnessed rapid developments in nanotechnology, especially in biomedical applications such as drug delivery, biosensing, and bioimaging. The most commonly used nanomaterials in biomedical applications are nanoparticles, which serve as carriers for various therapeutic and contrast reagents. Since nanomaterials are in direct contact with biological samples, biocompatibility is one of the most important issues for the fabrication and synthesis of nanomaterials for biomedical applications. To achieve specific recognition of biomolecules for targeted delivery and biomolecular sensing, it is common practice to engineer the surfaces of nanomaterials with recognition moieties. This mini-review summarizes different approaches for engineering the interfaces of nanomaterials to improve their biocompatibility and specific recognition properties. We also focus on design strategies that mimic biological systems such as cell membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Mao G, Wu G, Chen M, Yan C, Tang J, Ma Y, Zhang XE. Synthesis of Dual-Emitting CdZnSe/Mn:ZnS Quantum Dots for Sensing the pH Change in Live Cells. Anal Chem 2022; 94:6665-6671. [DOI: 10.1021/acs.analchem.1c04811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Minghai Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chuang Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingya Tang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Chinese Academy of Sciences, Shenzhen 518055, China
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Herrera-Ochoa D, Pacheco-Liñán PJ, Bravo I, Garzón-Ruiz A. A Novel Quantum Dot-Based pH Probe for Long-Term Fluorescence Lifetime Imaging Microscopy Experiments in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2578-2586. [PMID: 35001616 PMCID: PMC8778634 DOI: 10.1021/acsami.1c19926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The use of two nanoparticles for quantitative pH measurements in live cells by means of fluorescence lifetime imaging microscopy (FLIM) is investigated here. These nanoparticles are based on CdSe/ZnS quantum dots (QDs), functionalized with N-acetylcysteine (CdSe/ZnS-A) and with a small peptide containing D-penicillamine and histidine (CdSe/ZnS-PH). CdSe/ZnS-A has tendency to aggregate and nonlinear pH sensitivity in a complex medium containing salts and macromolecules. On the contrary, CdSe/ZnS-PH shows chemical stability, low toxicity, efficient uptake in C3H10T1/2 cells, and good performance as an FLIM probe. CdSe/ZnS-PH also has key advantages over a recently reported probe based on a CdSe/ZnS QD functionalized with D-penicillamine (longer lifetimes and higher pH-sensitivity). A pH(±2σ) of 6.97 ± 0.14 was determined for C3H10T1/2 cells by FLIM employing this nanoprobe. In addition, the fluorescence lifetime signal remains nearly constant for C3H10T1/2 cells treated with CdSe/ZnS-PH for 24 h. These results show the promising applications of this nanoprobe to monitor the intracellular pH and cell state employing the FLIM technique.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento
de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María
Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Pedro J. Pacheco-Liñán
- Departamento
de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María
Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Iván Bravo
- Departamento
de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María
Sánchez Ibáñez, s/n, 02071 Albacete, Spain
- Centro
Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/Almansa, 14, 02008 Albacete, Spain
| | - Andrés Garzón-Ruiz
- Departamento
de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María
Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| |
Collapse
|
6
|
Kniec K, Marciniak L. A ratiometric luminescence pH sensor based on YAG:V 3+,V 5+ nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj01595a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new type of ratiometric luminescence-based pH sensor is described.
Collapse
Affiliation(s)
- K. Kniec
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - L. Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
7
|
Haris U, Kagalwala HN, Kim YL, Lippert AR. Seeking Illumination: The Path to Chemiluminescent 1,2-Dioxetanes for Quantitative Measurements and In Vivo Imaging. Acc Chem Res 2021; 54:2844-2857. [PMID: 34110136 DOI: 10.1021/acs.accounts.1c00185] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemiluminescence is a fascinating phenomenon that evolved in nature and has been harnessed by chemists in diverse ways to improve life. This Account tells the story of our research group's efforts to formulate and manifest spiroadamantane 1,2-dioxetanes with triggerable chemiluminescence for imaging and monitoring important reactive analytes in living cells, animals, and human clinical samples. Analytes like reactive sulfur, oxygen and nitrogen species, as well as pH and hypoxia can be indicators of cellular function or dysfunction and are often implicated in the causes and effects of disease. We begin with a foundation in binding-based and activity-based fluorescence imaging that has provided transformative tools for understanding biological systems. The intense light sources required for fluorescence excitation, however, introduce autofluorescence and light scattering that reduces sensitivity and complicates in vivo imaging. Our work and the work of our collaborators were the first to demonstrate that spiroadamantane 1,2-dioxetanes had sufficient brightness and biological compatibility for in vivo imaging of enzyme activity and reactive analytes like hydrogen sulfide (H2S) inside of living mice. This launched an era of renewed interest in 1,2-dioxetanes that has resulted in a plethora of new chemiluminescence imaging agents developed by groups around the world. Our own research group focused its efforts on reactive sulfur, oxygen, and nitrogen species, pH, and hypoxia, resulting in a large family of bright chemiluminescent 1,2-dioxetanes validated for cell monitoring and in vivo imaging. These chemiluminescent probes feature low background and high sensitivity that have been proven quite useful for studying signaling, for example, the generation of peroxynitrite (ONOO-) in cellular models of immune function and phagocytosis. This high sensitivity has also enabled real-time quantitative reporting of oxygen-dependent enzyme activity and hypoxia in living cells and tumor xenograft models. We reported some of the first ratiometric chemiluminescent 1,2-dioxetane systems for imaging pH and have introduced a powerful kinetics-based approach for quantification of reactive species like azanone (nitroxyl, HNO) and enzyme activity in living cells. These tools have been applied to untangle complex signaling pathways of peroxynitrite production in radiation therapy and as substrates in a split esterase system to provide an enzyme/substrate pair to rival luciferase/luciferin. Furthermore, we have pushed chemiluminescence toward commercialization and clinical translation by demonstrating the ability to monitor airway hydrogen peroxide in the exhaled breath of asthma patients using transiently produced chemiluminescent 1,2-dioxetanedione intermediates. This body of work shows the powerful possibilities that can emerge when working at the interface of light and chemistry, and we hope that it will inspire future scientists to seek out ever brighter and more illuminating ideas.
Collapse
Affiliation(s)
- Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Husain N. Kagalwala
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Alexander R. Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
8
|
Du F, Cheng Z, Wang G, Li M, Lu W, Shuang S, Dong C. Carbon Nanodots as a Multifunctional Fluorescent Sensing Platform for Ratiometric Determination of Vitamin B 2 and "Turn-Off" Detection of pH. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2836-2844. [PMID: 33621092 DOI: 10.1021/acs.jafc.0c07019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we synthesized carbon nanodots (CNDs) by a one-pot hydrothermal method to carbonize precursors of dry carnation petals and polyethylenimine. The obtained CNDs possess favorable photostability, good biocompatibility, and excellent water solubility, which can serve as a dual-responsive nanosensor for the determination of vitamin B2 (VB2) and pH. A unique ratiometric fluorescence resonance energy transfer probe was developed through a strong interaction between VB2 and surface moieties of CNDs. CNDs emitted at 470 nm; however, in the presence of VB2, an enhanced emission peak was clearly observed at 532 nm. The value of I532/I470 exhibits a stable response to the VB2 concentration from 0.35 to 35.9 μM with a detection limit of 37.2 nM, which has been used for VB2 detection in food and medicine samples and ratiometric imaging of VB2 in living cells with satisfying performance. In addition, the proposed CNDs also displayed pH-sensitive behavior and can be a turn-off fluorescent sensor to monitor pH. The fluorescent intensity at 470 nm is a good linear response against pH values from 3.6 to 8, affording the capability as a single-emissive nanoprobe for intracellular pH sensing.
Collapse
Affiliation(s)
- Fangfang Du
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhe Cheng
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Guanghui Wang
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Minglu Li
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Wenjing Lu
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Shaomin Shuang
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Chuan Dong
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
9
|
Ryan LS, Gerberich J, Haris U, Nguyen D, Mason RP, Lippert AR. Ratiometric pH Imaging Using a 1,2-Dioxetane Chemiluminescence Resonance Energy Transfer Sensor in Live Animals. ACS Sens 2020; 5:2925-2932. [PMID: 32829636 DOI: 10.1021/acssensors.0c01393] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulation of physiological pH is integral for proper whole body and cellular function, and disruptions in pH homeostasis can be both a cause and effect of disease. In light of this, many methods have been developed to monitor pH in cells and animals. In this study, we report a chemiluminescence resonance energy transfer (CRET) probe Ratio-pHCL-1, composed of an acrylamide 1,2-dioxetane chemiluminescent scaffold with an appended pH-sensitive carbofluorescein fluorophore. The probe provides an accurate measurement of pH between 6.8 and 8.4, making it a viable tool for measuring pH in biological systems. Further, its ratiometric output is independent of confounding variables. Quantification of pH can be accomplished using both common luminescence spectroscopy and advanced optical imaging methods. Using an IVIS Spectrum, pH can be measured through tissue with Ratio-pHCL-1, which is shown in vitro and calibrated in sacrificed mouse models. Intraperitoneal injections of Ratio-pHCL-1 into live mice show high photon outputs and consistent increases in the flux ratio when measured at pH 6, 7, and 8.
Collapse
Affiliation(s)
- Lucas S. Ryan
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Jeni Gerberich
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9058, United States
| | - Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Daphne Nguyen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Ralph P. Mason
- Prognostic Imaging Research Laboratory (PIRL), Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9058, United States
| | - Alexander R. Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
- Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275-0314, United States
- Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
10
|
Zhang RL, Pratiwi FW, Chen BC, Chen P, Wu SH, Mou CY. Simultaneous Single-Particle Tracking and Dynamic pH Sensing Reveal Lysosome-Targetable Mesoporous Silica Nanoparticle Pathways. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42472-42484. [PMID: 32657564 DOI: 10.1021/acsami.0c07917] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticle (NP)-based targeted drug delivery is intended to transport therapeutically active molecules to specific cells and particular intracellular compartments. However, there is limited knowledge regarding the complete route of NPs in this targeting scenario. In this study, simultaneously performing motion and dynamic pH sensing using single-particle tracking (SPT) leads to an alternative method of gaining insights into the mesoporous silica nanoparticle's (MSN) journey in targeting lysosome. Two different pH-sensitive dyes and a reference dye are incorporated into mesoporous silica nanoparticles (MSNs) via co-condensation to broaden the measurable pH range (pH 4-7.5) of the nanoprobe. The phosphonate, amine, and lysosomal sorting peptides (YQRLGC) are conjugated onto the MSN's surface to study intracellular nano-biointeractions of two oppositely charged and lysosome-targetable MSNs. The brightness and stability of these MSNs allow their movement and dynamic pH evolution during their journey to be simultaneously monitored in real time. Importantly, a multidimensional analysis of MSN's movement and local pH has revealed new model intracellular dynamic states and distributions of MSNs, previously inaccessible when using single parameters alone. A key result is that YQRLGC-conjugated MSNs took an alternative route to target lysosomes apart from the traditional one, which sped up to 4 h and enhanced their targeting efficiency (up to 32%). The findings enrich our understanding of the intracellular journey of MSNs. This study offers complementary information on correlating the surface design with the full pathway of nanoparticles to achieve targeted delivery of therapeutic payload.
Collapse
Affiliation(s)
- Rong-Lin Zhang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Feby Wijaya Pratiwi
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Si-Han Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu Xinyi Street, Taipei 11031, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu Xinyi Street, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Song S, Zhao Y, Li Y, Yang X, Wang D, Wen Z, Yang M, Lin Q. pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism. Talanta 2020; 221:121621. [PMID: 33076149 DOI: 10.1016/j.talanta.2020.121621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
Abstract
The profiling of bacterial metabolism is of great significance in practical applications. Therefore, the development of ultrasensitive and highly selective probe for bacterial metabolism detection and imaging is extremely desirable. Herein, a novel dual-emission pH-response bacterial metabolism detection and imaging probe is successfully developed. This probe consists of large-sized and easily separated SiO2 microspheres, copper nanoclusters (Cu NCs) with red emission, and carbon dots (CDs) with blue emission through in-situ self-assembly. In this system, the fluorescence of Cu NCs is sensitive to pH change due to their obvious aggregation-induced emission enhancement (AIEE) property, while the blue fluorescence of CDs remained almost stable. Therefore, red fluorescence and blue fluorescence are compounded with different fluorescence intensity at different pH values, and their fluorescence ratio is also different. By observation of composite fluorescence color, the visual colorimetric pH detection can be realized with the change of pH value of 0.2 units. Utilizing this system, we are able to detect bacterial metabolism with high signal-to-noise ratio, and it can also be used for bacterial metabolic imaging. Therefore, the pH-responsive Cu NCs-based dual-emission ratiometric fluorescent probe we constructed can provide new ideas for bacterial detection, antimicrobial sterilization, and biological imaging.
Collapse
Affiliation(s)
- Shanliang Song
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University Changchun, 130012, PR China; College of Physics and Optoelectronic Engineering, Centre for AIE Research, School of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, PR China
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University Changchun, 130012, PR China
| | - Yang Li
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, Jilin, PR China
| | - Xudong Yang
- School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, PR China.
| | - Dong Wang
- College of Physics and Optoelectronic Engineering, Centre for AIE Research, School of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, PR China.
| | - Zhuoqi Wen
- Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Minghui Yang
- Institute of New Energy Technology, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University Changchun, 130012, PR China.
| |
Collapse
|
12
|
Pacheco-Liñán PJ, Bravo I, Nueda ML, Albaladejo J, Garzón-Ruiz A. Functionalized CdSe/ZnS Quantum Dots for Intracellular pH Measurements by Fluorescence Lifetime Imaging Microscopy. ACS Sens 2020; 5:2106-2117. [PMID: 32551511 DOI: 10.1021/acssensors.0c00719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
pH is an important biomarker for many human diseases and great efforts are being made to develop new pH probes for bioimaging and biomedical applications. Here, the use of three different CdSe/ZnS QDs, functionalized with d-penicillamine and small peptides, as pH probes for fluorescence lifetime imaging microscopy (FLIM) is investigated. The fluorescence pH sensitivity of the nanoparticles is analyzed in different experimental media: aqueous solution, synthetic intracellular medium, and mesenchymal C3H10T1/2 and tumoral SK-MEL-2 cell lines. Different experiments along with theoretical calculations are conducted to unravel the mechanisms causing pH sensitivity of the nanoparticles and the effect of the length and composition of the peripheral branches on their photophysical properties. Absolute intracellular pH values measured in live cells with FLIM using a fluorescent probe based on a QD are reported here for the first time (intracellular pH values of 7.0 and 7.1 for C3H10T1/2 and SK-MEL-2 cells, respectively). These fluorescent nanoprobes can also be used to distinguish between different types of cells in cocultures on the basis of their different fluorescence lifetimes in dissimilar intracellular environments.
Collapse
Affiliation(s)
- Pedro J. Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
- Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, 02008 Albacete, Spain
| | - María L. Nueda
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
- Centro Regional de Investigaciones Biomédicas (CRIB), Unidad Asociada de Biomedicina (UCLM-CSIC), C/ Almansa, 14, 02008 Albacete, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain
| |
Collapse
|
13
|
Copper nanoclusters@Al3+ complexes with strong and stable aggregation-induced emission for application in enzymatic determination of urea. Mikrochim Acta 2020; 187:457. [DOI: 10.1007/s00604-020-04438-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
|
14
|
A ratiometric fluorescent nanoprobe consisting of ssDNA-templated silver nanoclusters for detection of histidine/cysteine, and the construction of combinatorial logic circuits. Mikrochim Acta 2019; 186:648. [DOI: 10.1007/s00604-019-3749-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023]
|
15
|
Pratiwi FW, Kuo CW, Chen BC, Chen P. Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine (Lond) 2019; 14:1759-1769. [DOI: 10.2217/nnm-2019-0105] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapid and recent progress in fluorescence microscopic techniques has allowed for routine discovery and viewing of biological structures and processes in unprecedented spatiotemporal resolution. In these imaging techniques, fluorescent nanoparticles (NPs) play important roles in the improvement of reporting systems. A short overview of recently developed fluorescent NPs used for advanced in vivo imaging will be discussed in this mini-review. The discussion begins with the contribution of fluorescence imaging in exploring the fate of NPs in biological systems. NP applications for in vivo imaging, including cell labeling, multimodal imaging and theranostic agents, are then discussed. Finally, despite all of the advancements in bioimaging, some unsolved challenges will be briefly discussed concerning future research directions.
Collapse
Affiliation(s)
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Shamsipur M, Barati A, Nematifar Z. Fluorescent pH nanosensors: Design strategies and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Dual-emission carbon dots as biocompatible nanocarrier for in vitro/in vivo cell microenvironment ratiometric pH sensing in broad range. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01678-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Peng X, Li C, Zhang Y, Chen S, Long Y. Carbon dots synthesized by the
m
‐trihydroxybenzene as the carbon source and its application on the detection of pH value. LUMINESCENCE 2019; 34:341-346. [DOI: 10.1002/bio.3613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoxiao Peng
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Chenchen Li
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Yubing Zhang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Shu Chen
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| | - Yunfei Long
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine PolymersHunan University of Science and Technology Xiangtan P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Function MoleculeMinistry of Education Xiangtan P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionSchool of Chemistry and Chemical Engineering Xiangtan P. R. China
| |
Collapse
|
19
|
Pramanik S, Roy S, Mondal A, Bhandari S. A two-target responsive reversible ratiometric pH nanoprobe: a white light emitting quantum dot complex. Chem Commun (Camb) 2019; 55:4331-4334. [DOI: 10.1039/c9cc01088b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ratiometric pH sensing in the physiological range of pH 6.5–10.3 by a white light emitting quantum dot complex – following the changes in luminescence intensity ratio, color and chromaticity – is described herein.
Collapse
Affiliation(s)
- Sabyasachi Pramanik
- Centre for Nanotechnology
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Department of Chemistry
| | - Shilaj Roy
- Centre for Nanotechnology
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Department of Chemistry
| | - Arup Mondal
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Satyapriya Bhandari
- Centre for Nanotechnology
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Centre for Nano and Material Sciences
| |
Collapse
|
20
|
Wang Y, Yang M, Ren Y, Fan J. Cu-Mn codoped ZnS quantum dots-based ratiometric fluorescent sensor for folic acid. Anal Chim Acta 2018; 1040:136-142. [DOI: 10.1016/j.aca.2018.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
21
|
Jiao Y, Gong X, Han H, Gao Y, Lu W, Liu Y, Xian M, Shuang S, Dong C. Facile synthesis of orange fluorescence carbon dots with excitation independent emission for pH sensing and cellular imaging. Anal Chim Acta 2018; 1042:125-132. [PMID: 30428979 DOI: 10.1016/j.aca.2018.08.044] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
High-efficient orange fluorescence nitrogen-doped carbon dots (N-CDs) were facilely prepared from P-phenylenediamine as a precursor via hydrothermal method. The as-prepared N-CDs with an average diameter of 3.65 nm displayed excitation-independent emission at 590 nm. The N-CDs demonstrated a remarkable fluorescence enhancement behavior with the increase of pH. A sigmoidal curve was well fitted using BiDoseResp equation with pKa1 3.57 and pKa2 6.01, which can be ascribed to the unique surface properties of N-CDs. Two-segment linear ranges of 2.6-4.6 and 5.0-6.8 broaden the response range to pH of the orange-emission N-CDs to some extent. The confocal fluorescent microscopic images of SMMC7721 cells were performed successfully, which demonstrating that N-CDs possess exceptional cell membrane permeability and can implement as biosensing platform to monitor pH fluctuations in living cells.
Collapse
Affiliation(s)
- Yuan Jiao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Xiaojuan Gong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Hui Han
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yifang Gao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Ming Xian
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China; Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
22
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 463] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
23
|
Wang N, Zheng AQ, Liu X, Chen JJ, Yang T, Chen ML, Wang JH. Deep Eutectic Solvent-Assisted Preparation of Nitrogen/Chloride-Doped Carbon Dots for Intracellular Biological Sensing and Live Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7901-7909. [PMID: 29424521 DOI: 10.1021/acsami.8b00947] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel approach for the preparation of dual-functional carbon dots, i.e., nitrogen- and chloride-doped carbon dots, abbreviated as N/Cl-CDs, is developed with the assistance of a choline chloride-glycerine deep eutectic solvent (DES). The carbon source is provided by urea and the DES serves as a solvent for controlling the preparation of CDs in the absence of water. The dual-element doped carbon dots are oxygen-rich with hydroxyl and amine groups. They exhibit an average particle size of ca. 3.88 nm and give rise to strong and pH-sensitive fluorescent emission at λex/λem = 340/430 nm with a quantum yield of 16.15 ± 1.36%. It is particularly interesting to see that the fluorescence of N/Cl-CDs remains stable in a high-salinity matrix, providing vast potentials for treating real biological sample matrixes with high salinity. The N/Cl-CDs provide an optical probe for intracellular pH sensing and multicolor imaging in HeLa cells. In addition, the N/Cl-CDs show obvious fluorescence response to cytochrome c (cyt- c) with a detection limit of 3.6 mg L-1 (ca. 0.29 μmol L-1) within in a range of 10-500 mg L-1, providing potentials for fluorescence detection of cyt- c as well as facilitating intracellular cyt- c imaging.
Collapse
Affiliation(s)
- Ning Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - An-Qi Zheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - Jun-Jie Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Shenyang 110819 , China
| |
Collapse
|
24
|
Xu H, Li D, Zhao Y, Wang X, Li D, Wang Y. Sodium 4-mercaptophenolate capped CdSe/ZnS quantum dots as a fluorescent probe for pH detection in acidic aqueous media. LUMINESCENCE 2017; 33:410-416. [DOI: 10.1002/bio.3428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/13/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Hu Xu
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai P. R. China
| | - Dong Li
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai P. R. China
| | - Yun Zhao
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai P. R. China
| | - Xiaomei Wang
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai P. R. China
| | - Dan Li
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai P. R. China
| | - Yuhong Wang
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai P. R. China
| |
Collapse
|
25
|
Yu H, Chen C, Cao X, Liu Y, Zhou S, Wang P. Ratiometric fluorescent pH nanoprobes based on in situ assembling of fluorescence resonance energy transfer between fluorescent proteins. Anal Bioanal Chem 2017; 409:5073-5080. [PMID: 28687887 DOI: 10.1007/s00216-017-0453-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 11/25/2022]
Abstract
pH-dependent protein adsorption on mesoporous silica nanoparticle (MSN) was examined as a unique means for pH monitoring. Assuming that the degree of protein adsorption determines the distance separating protein molecules, we examined the feasibility of nanoscale pH probes based on fluorescence resonance energy transfer (FRET) between two fluorescent proteins (mTurquoise2 and mNeonGreen, as donor and acceptor, respectively). Since protein adsorption on MSN is pH-sensitive, both fluorescent proteins were modified to make their isoelectric points (pIs) identical, thus achieving comparable adsorption between the proteins and enhancing FRET signals. The adsorption behaviors of such modified fluorescent proteins were examined along with ratiometric FRET signal generation. Results demonstrated that the pH probes could be manipulated to show feasible sensitivity and selectivity for pH changes in hosting solutions, with a good linearity observed in the pH range of 5.5-8.0. In a demonstration test, the pH probes were successfully applied to monitor progress of enzymatic reactions. Such an "in situ-assembling" pH sensor demonstrates a promising strategy in developing nanoscale fluorescent protein probes. Graphical abstract Working principle of the developed pH sensor TNS; and FRET Ratio (I528/I460) as a function of pH under different protein feed ratios (mNeonGreen to mTurquoise2).
Collapse
Affiliation(s)
- Haijun Yu
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaodan Cao
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yueling Liu
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA.
| |
Collapse
|