1
|
Cheng HP, Yang TH, Wang JC, Chuang HS. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2904. [PMID: 38733011 PMCID: PMC11086254 DOI: 10.3390/s24092904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.
Collapse
Affiliation(s)
- Hui-Pin Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
| | - Tai-Hua Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhih-Cheng Wang
- Department of Urology, Chimei Medical Center, Tainan 710, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Roy S, Kang S, Choi KY, Lee KH, Shin KS, Kang JY. Implementation of an ultra-sensitive microwell-based electrochemical sensor for the detection of Alzheimer's disease. Biosens Bioelectron 2024; 247:115898. [PMID: 38104391 DOI: 10.1016/j.bios.2023.115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Alzheimer's Disease (AD) is one of the most common neurodegenerative disorders in elderly people. It is diagnosed by detecting amyloid beta (Aβ) protein in cerebrospinal fluid (CSF) obtained by lumbar puncture or through expensive positron emission tomography (PET) imaging. Although blood-based diagnosis of AD offers a less invasive and cost-effective alternative, the quantification of Aβ is technically challenging due to its low abundance in peripheral blood. To address this, we developed a compact yet highly sensitive microwell-based electrochemical sensor with a densely packed microelectrode array (20 by 20) for enhancing sensitivity. Employing microwells on the working and counter electrodes minimized the leakage current from the metallic conductors into the assay medium, refining the signal fidelity. We achieved a detection limit <10 fg/mL for Aβ by elevating the signal-to-noise ratio, thus capable of AD biomarker quantification. Moreover, the microwell structure maintained the performance irrespective of variations in bead number, indicative of the sensor's robustness. The sensor's efficacy was validated through the analysis of Aβ concentrations in plasma samples from 96 subjects, revealing a significant distinction between AD patients and healthy controls with an area under the receiver operating characteristic curve (AUC) of 0.85. Consequently, our novel microwell-based electrochemical biosensor represents a highly sensitive platform for detecting scant blood-based biomarkers, including Aβ, offering substantial potential for advancing AD diagnostics.
Collapse
Affiliation(s)
- Soumi Roy
- Brain Science Institute, Biomedical Engineering, Korea Institute of Science and Technology, KIST School, Seoul, 02792, Republic of Korea; Department of Biomedical Engineering, University of Science and Technology, Daejeon, Republic of Korea
| | - Sarang Kang
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Republic of Korea; BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Republic of Korea; Kolab Inc., Gwangju, 61436, Republic of Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Republic of Korea; Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea; Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | | | - Ji Yoon Kang
- Brain Science Institute, Biomedical Engineering, Korea Institute of Science and Technology, KIST School, Seoul, 02792, Republic of Korea; Department of Biomedical Engineering, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Chen YS, Huang CH, Pai PC, Seo J, Lei KF. A Review on Microfluidics-Based Impedance Biosensors. BIOSENSORS 2023; 13:bios13010083. [PMID: 36671918 PMCID: PMC9855525 DOI: 10.3390/bios13010083] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 05/30/2023]
Abstract
Electrical impedance biosensors are powerful and continuously being developed for various biological sensing applications. In this line, the sensitivity of impedance biosensors embedded with microfluidic technologies, such as sheath flow focusing, dielectrophoretic focusing, and interdigitated electrode arrays, can still be greatly improved. In particular, reagent consumption reduction and analysis time-shortening features can highly increase the analytical capabilities of such biosensors. Moreover, the reliability and efficiency of analyses are benefited by microfluidics-enabled automation. Through the use of mature microfluidic technology, complicated biological processes can be shrunk and integrated into a single microfluidic system (e.g., lab-on-a-chip or micro-total analysis systems). By incorporating electrical impedance biosensors, hand-held and bench-top microfluidic systems can be easily developed and operated by personnel without professional training. Furthermore, the impedance spectrum provides broad information regarding cell size, membrane capacitance, cytoplasmic conductivity, and cytoplasmic permittivity without the need for fluorescent labeling, magnetic modifications, or other cellular treatments. In this review article, a comprehensive summary of microfluidics-based impedance biosensors is presented. The structure of this article is based on the different substrate material categorizations. Moreover, the development trend of microfluidics-based impedance biosensors is discussed, along with difficulties and challenges that may be encountered in the future.
Collapse
Affiliation(s)
- Yu-Shih Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hao Huang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jungmok Seo
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
4
|
Khodayari Bavil A, Sticker D, Rothbauer M, Ertl P, Kim J. A microfluidic microparticle-labeled impedance sensor array for enhancing immunoassay sensitivity. Analyst 2021; 146:3289-3298. [PMID: 33999058 DOI: 10.1039/d0an02081h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An impedimetric biosensor is used to measure electrical impedance changes in the presence of biomolecules from sinusoidal input voltages. In this paper, we present a new portable impedance-based biosensor platform to improve the sensitivity of immunoassays with microparticles as a label. Using a 2 × 4 interdigitated electrode array with a 10/10 μm electrode/gap and a miniaturized impedance analyzer, we performed immunoassays with microparticles by integrating a microfluidic channel to evaluate signal enhancement. First, to understand the material dependency of microparticles on the sensor array, magnetic, silica, and polystyrene microparticles were tested. Among these microparticles, magnetic microparticles presented a high signal enhancement with relevant stability from the sensor array. With the magnetic microparticles, we demonstrate a series of immunoassays to detect human tumor necrosis factor (TNF-α) and compare the level of signal enhancement by measuring the limit of detection (LOD). With the microparticles, we achieved over ten times improvement of LOD from sandwich immunoassays. By incorporating with sample preparation and flow manipulation systems, this impedance sensor array can be utilized for digital diagnostics for a real sample-in answer-out system.
Collapse
Affiliation(s)
- Ali Khodayari Bavil
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|
5
|
Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021; 516:111-135. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity. Electrochemical biosensors overcome these limitations because they are rapid, cost-effective, simple to use and ultrasensitive. This article reviews electrochemical PSA biosensors using electroconductive nanomaterials such as carbon-, metal-, metal oxide- and peptide-based nanostructures, as well as polymers to significantly improve conductivity and enhance sensitivity. Challenges associated with the development of these devices are discussed thus providing additional insight into their analytic strength as well as their potential use in early PCa detection.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Yeates School of Graduate Studies, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 2020; 214:120716. [PMID: 32278406 DOI: 10.1016/j.talanta.2020.120716] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Carcinoembryonic antigen (CEA), as one of the common tumor markers, is a human glycoprotein involved in cell adhesion and is expressed during human fetal development. Since the birth of human, CEA expression is largely inhibited, with only low levels in the plasma of healthy adults. Generally, CEA will overexpressed in many cancers, including gastric, breast, ovarian, lung, and pancreatic cancers, especially colorectal cancer. As one of the important tumor markers, the detection of CEA has great significance in differential diagnosis, condition monitoring and therapeutic evaluation of diseases. Conventional CEA testing typically uses immunoassay methods. However, immunoassay methods require complex and expensive instruments and professional personnel to operate. Moreover, radioactive element may cause certain damage to the human body, which limits their wide application. In the past few years, biosensors, especially aptamer-based biosensors, have attracted extensive attention due to their high sensitivity, good selectivity, high accuracy, fast response and low cost. This review briefly classifies and describes the advance in optical and electrochemical aptamer biosensors for CEA detection, also explains and compares their advantages and disadvantages.
Collapse
Affiliation(s)
- Wenwen Xiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qiuxiang Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haixia Shi
- P. E. Department of Jiangsu University, Zhenjiang, 212013, PR China
| | - Bing Xie
- Department of Obstetrics and Gynecology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212000, PR China
| | - Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
7
|
Pastucha M, Farka Z, Lacina K, Mikušová Z, Skládal P. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Mikrochim Acta 2019; 186:312. [PMID: 31037494 DOI: 10.1007/s00604-019-3410-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
This review (with 129 refs) summarizes the progress in electrochemical immunoassays combined with magnetic particles that was made in the past 5 years. The specifity of antibodies linked to electrochemical transduction (by amperometry, voltammetry, impedimetry or electrochemiluminescence) gains further attractive features by introducing magnetic nanoparticles (MNPs). This enables fairly easy preconcentration of analytes, minimizes matrix effects, and introduces an appropriate label. Following an introduction into the fundamentals of electrochemical immunoassays and on nanomaterials for respective uses, a large chapter addresses method for magnetic capture and preconcentration of analytes. A next chapter discusses commonly used labels such as dots, enzymes, metal and metal oxide nanoparticles and combined clusters. The large field of hybrid nanomaterials for use in such immunoassays is discussed next, with a focus on MNPs composites with various kinds of graphene variants, polydopamine, noble metal nanoparticles or nanotubes. Typical applications address clinical markers (mainly blood and urine parameters), diagnosis of cancer (markers and cells), detection of pathogens (with subsections on viruses and bacteria), and environmental and food contaminants as toxic agents and pesticides. A concluding section summarizes the present status, current challenges, and highlights future trends. Graphical abstract Magnetic nanoparticles (MNP) with antibodies (Ab) capture and preconcentrate analyte from sample (a) and afterwards become magnetically (b) or immunospecifically (c) bound at an electrode. Signal either increases due to the presence of alabel (b) or decreases as the redox probe is blocked (c).
Collapse
Affiliation(s)
- Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Karel Lacina
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zuzana Mikušová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Cossettini A, Selmi L, Cossettini A, Selmi L, Selmi L, Cossettini A. On the Response of Nanoelectrode Impedance Spectroscopy Measures to Plant, Animal, and Human Viruses. IEEE Trans Nanobioscience 2019; 17:102-109. [PMID: 29870333 DOI: 10.1109/tnb.2018.2826919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A simplified lumped geometrical and electrical model for the high-frequency impedance spectroscopy (HFIS) response of nanoelectrodes to capsids and full viruses is developed starting from atomistic descriptions, in order to test the theoretical response of a realistic HFIS CMOS biosensor platform to different viruses. Capacitance spectra are computed for plant (cowpea chlorotic mottle virus), animal (rabbit haemorrhagic disease virus), and human (hepatitis A virus) viruses. A few common features of the spectra are highlighted, and the role of virus charge, pH, and ionic strength on the expected signal is discussed. They suggest that the frequency of highest sensitivity at nearly physiological concentrations (100 mM) is within reach of existing HFIS platform designs.
Collapse
|
9
|
Yazdani Z, Yadegari H, Heli H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal Biochem 2019; 566:116-125. [DOI: 10.1016/j.ab.2018.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022]
|
10
|
Phadke GS, Satterwhite-Warden JE, Choudhary D, Taylor JA, Rusling JF. A novel and accurate microfluidic assay of CD62L in bladder cancer serum samples. Analyst 2018; 143:5505-5511. [PMID: 30295303 PMCID: PMC6231417 DOI: 10.1039/c8an01463a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a low-cost, sensitive, bead-based electrochemical immunoarray for soluble L-selectin (or CD62L protein), a potential biomarker for staging bladder cancer. We used a semi-automated modular microfluidic array with online antigen capture on superparamagnetic beads, which were subsequently delivered to a detection chamber housing multiple sensors. The assay was designed to accurately detect CD62L in diluted serum with a limit of detection (LOD) of 0.25 ng mL-1 and a dynamic range of 0.25-100 ng mL-1. The microfluidic array gave significantly better accuracy and higher sensitivity than a standard ELISA kit, which was shown to be subject to significant systematic error at high and low concentration ranges. 31 serum samples from patients with varying grades of bladder cancer and cancer-free controls were analyzed by the immunoarray and ELISA, and the CD62L levels correlated. This work establishes a new accurate assay for determining CD62L levels and highlights the potential of this protein as a biomarker for detecting locoregional progression of bladder cancer.
Collapse
Affiliation(s)
- Gayatri S Phadke
- Department of Chemistry (U-3060), University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | | | | | | | | |
Collapse
|
11
|
An Aptamer-Based Capacitive Sensing Platform for Specific Detection of Lung Carcinoma Cells in the Microfluidic Chip. BIOSENSORS-BASEL 2018; 8:bios8040098. [PMID: 30347814 PMCID: PMC6316635 DOI: 10.3390/bios8040098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022]
Abstract
Improvement of methods for reliable and early diagnosis of the cellular diseases is necessary. A biological selectivity probe, such as an aptamer, is one of the candidate recognition layers that can be used to detect important biomolecules. Lung cancer is currently a typical cause of cancer-related deaths. In this work, an electrical sensing platform is built based on amine-terminated aptamer modified-gold electrodes for the specific, label-free detection of a human lung carcinoma cell line (A549). The microdevice, that includes a coplanar electrodes configuration and a simple microfluidic channel on a glass substrate, is fabricated using standard photolithography and cast molding techniques. A procedure of self-assembly onto the gold surface is proposed. Optical microscope observations and electrical impedance spectroscopy measurements confirm that the fabricated microchip can specifically and effectively identify A549 cells. In the experiments, the capacitance element that is dominant in the change of the impedance is calculated at the appropriate frequency for evaluation of the sensitivity of the biosensor. Therefore, a simple, inexpensive, biocompatible, and selective biosensor that has the potential to detect early-stage lung cancer would be developed.
Collapse
|
12
|
Clayton A, Buschmann D, Byrd JB, Carter DRF, Cheng L, Compton C, Daaboul G, Devitt A, Falcon-Perez JM, Gardiner C, Gustafson D, Harrison P, Helmbrecht C, Hendrix A, Hill A, Hoffman A, Jones JC, Kalluri R, Kang JY, Kirchner B, Lässer C, Lawson C, Lenassi M, Levin C, Llorente A, Martens-Uzunova ES, Möller A, Musante L, Ochiya T, Pink RC, Tahara H, Wauben MHM, Webber JP, Welsh JA, Witwer KW, Yin H, Nieuwland R. Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. J Extracell Vesicles 2018; 7:1473707. [PMID: 31162490 PMCID: PMC5965025 DOI: 10.1080/20013078.2018.1473707] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/28/2018] [Indexed: 01/06/2023] Open
Abstract
This report summarises the presentations and activities of the ISEV Workshop on extracellular vesicle biomarkers held in Birmingham, UK during December 2017. Among the key messages was broad agreement about the importance of biospecimen science. Much greater attention needs to be paid towards the provenance of collected samples. The workshop also highlighted clear gaps in our knowledge about pre-analytical factors that alter extracellular vesicles (EVs). The future utility of certified standards for credentialing of instruments and software, to analyse EV and for tracking the influence of isolation steps on the structure and content of EVs were also discussed. Several example studies were presented, demonstrating the potential utility for EVs in disease diagnosis, prognosis, longitudinal serial testing and stratification of patients. The conclusion of the workshop was that more effort focused on pre-analytical issues and benchmarking of isolation methods is needed to strengthen collaborations and advance more effective biomarkers.
Collapse
Affiliation(s)
- Aled Clayton
- Tissue Microenvironment Group, School of Medicine, Cardiff University, Cardiff, UK
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, Technical University of Munich and Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - J Brian Byrd
- Department of Internal Medicine, University of Michigan, 5570C MSRB II, Ann Arbor, USA
| | - David R F Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Carolyn Compton
- SkySong Center for Innovation, Arizona State University, Scottsdale, AZ, USA
| | | | - Andrew Devitt
- School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Juan Manuel Falcon-Perez
- Exosomes Laboratory & Metabolomics Platform, CIC bioGUNE, CIBEREHD, IKERBASQUE Research Foundation, Derio, Spain
| | - Chris Gardiner
- Research Department of Haematology, Haemostasis Research, University College London, London, UK
| | - Dakota Gustafson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Paul Harrison
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and experimental Cancer Research, Ghent University, Ghent, Belgium; and Cancer Research Institute Ghent, Ghent, Belgium
| | - Andrew Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Andrew Hoffman
- Regenerative Medicine Laboratory, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jennifer C Jones
- Department of Vaccine Branch, National Cancer Institute, Bethesda, MD, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ji Yoon Kang
- Korea Institute of Science and Technology, Center for Bio-microsystems, Seoul, S. Korea
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Cecilia Lässer
- Institute of Medicine at Sahlgrenska Academy Krefting Research Centre University of Gothenburg, Gothenburg, Sweden
| | - Charlotte Lawson
- Department of Comparative Biomedical Sciences, Royal Veterinary College Royal College Street, London, UK
| | - Metka Lenassi
- Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Carina Levin
- Afula and The Bruce Rappaport Faculty of Medicine, Emek Medical Center, Technion, Haifa, Israel
| | - Alicia Llorente
- Department of Molecular Cell Biology, Oslo University Hospital, Oslo, Norway
| | | | - Andreas Möller
- Tumour Microenvironment Laboratory, Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Luca Musante
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryan C Pink
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Institute and Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima City, Japan
| | - Marca H M Wauben
- Faculty of Veterinary Medicine, Dept. Biochemistry & Cell Biology, Utrecht University, Utrecht, The Netherlands
| | - Jason P Webber
- Tissue Microenvironment Group, School of Medicine, Cardiff University, Cardiff, UK
| | - Joshua A Welsh
- Department of Vaccine Branch, National Cancer Institute, Bethesda, MD, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Institute for NanoBio Technology, Johns Hopkins University, Baltimore, USA
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Rienk Nieuwland
- Department Laboratory Experimental Clinical Chemistry, Academic Medical Center, University of Amsterdam, DE, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Yang T, Hou P, Zheng LL, Zhan L, Gao PF, Li YF, Huang CZ. Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. NANOSCALE 2017; 9:17020-17028. [PMID: 29082397 DOI: 10.1039/c7nr04817c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A membrane-based fluorescent sensing platform is a facile, point-of-care and promising technique in chemo/bio-analytical fields. However, the existing fluorescence sensing films for cancer biomarkers have several problems, with dissatisfactory sensitivity and selectivity, low utilization of probes encapsulated in films as well as the tedious design of membrane structures. In this work, a novel fluorescence sensing platform is fabricated by bio-grafting quantum dots (QDs) onto the surface of electrospun nanofibers (NFs). The aptamer integrated into the QDs/NFs can result in high specificity for recognizing and capturing biomarkers. Partially complementary DNA-attached gold nanoparticles (AuNPs) are employed to efficiently hybridize with the remaining aptamer to quench the fluorescence of QDs by nanometal surface energy transfer (NSET) between them both, which are constructed for prostate specific antigen (PSA) assay. Taking advantage of the networked nanostructure of aptamer-QDs/NFs, the fluorescent film can detect PSA with high sensitivity and a detection limit of 0.46 pg mL-1, which was further applied in real clinical serum samples. Coupling the surface grafted techniques to the advanced network nanostructure of electrospun NFs, the proposed aptasensing platform can be easily extended to achieve sensitive and selective assays for other biomarkers.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochim Acta 2017; 184:3049-3067. [PMID: 29109592 PMCID: PMC5669453 DOI: 10.1007/s00604-017-2410-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Screening serum for the presence of prostate specific antigen (PSA) belongs to the most common approach for the detection of prostate cancer. This review (with 156 refs.) addresses recent developments in PSA detection based on the use of various kinds of nanomaterials. It starts with an introduction into the field, the significance of testing for PSA, and on current limitations. A first main section treats electrochemical biosensors for PSA, with subsections on methods based on the use of gold electrodes, graphene or graphene-oxide, carbon nanotubes, hybrid nanoparticles, and other types of nanoparticles. It also covers electrochemical methods based on the enzyme-like activity of PSA, on DNA-, aptamer- and biofuel cell-based methods, and on the detection of PSA via its glycan part. The next main section covers optical biosensors, with subsections on methods making use of surface plasmon resonance (SPR), localized SPR and plasmonic ELISA-like schemes. This is followed by subsections on methods based on the use of fiber optics, fluorescence, chemiluminescence, Raman scattering and SERS, electrochemiluminescence and cantilever-based methods. The most sensitive biosensors are the electrochemical ones, with lowest limits of detection (down to attomolar concentrations), followed by mass cantilever sensing and electrochemilumenescent strategies. Optical biosensors show lower performance, but are still more sensitive compared to standard ELISA. The most commonly applied nanomaterials are metal and carbon-based ones and their hybrid composites used for different amplification strategies. The most attractive sensing schemes are summarized in a Table. The review ends with a section on conclusions and perspectives.
Collapse
Affiliation(s)
- Dominika Damborska
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Erika Dosekova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Alena Holazova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| |
Collapse
|
15
|
Zhou B, Zhu M, Qiu Y, Yang P. Novel Electrochemiluminescence-Sensing Platform for the Precise Analysis of Multiple Latent Tuberculosis Infection Markers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18493-18500. [PMID: 28497690 DOI: 10.1021/acsami.7b03211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Latent tuberculosis infection (LTBI) is one of the major contributing factors for the high incidence of tuberculosis, and the low contents of LTBI markers in human serum present a great challenge for the diagnosis of LTBI. Here, we reported a novel electrochemiluminescence (ECL)-sensing platform for the precise analysis of multiple LTBI markers, interferon-gamma (IFN-γ) and interleukin (IL)-2. In this approach, self-prepared carbon quantum dots (CQDs) and luminol were integrated onto gold nanoparticles (AuNPs), which were further enriched on the surface of magnetic bead (MB) to create two solid-phase ECL nanoprobes (MB@Au@CQDs and MB@Au@luminol) for improving the detection sensitivity efficiently. Graphene oxide (GO) and AuNPs were electrodeposited onto a patterned indium tin oxide (ITO) electrode with two spatially resolved areas in sequence to form two sensitive and stable sensing areas. IFN-γ-antibody (Ab)1 and IL-2-Ab1 were separately immobilized on the two sensing areas to capture the corresponding LTBI markers, which were further recognized by IFN-γ-Ab2 and IL-2-Ab2 labeled as MB@Au@CQDs and MB@Au@luminol. The ECL intensity depended linearly on the content of IFN-γ and IL-2 in the range of 0.01-1000 pg mL-1, with a low detection limit of 10 fg mL-1. The proposed ECL-sensing platform is simple, sensitive, accurate, reliable, and specific to the detection of rare IFN-γ and IL-2 in human serum and provides a valuable protocol for facilitating fast and precise diagnosis of LTBI.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Chemistry, Jinan University , Guangzhou 510632, P. R. China
| | - Mingyao Zhu
- Department of Chemistry, Jinan University , Guangzhou 510632, P. R. China
| | - Youyi Qiu
- Department of Chemistry, Jinan University , Guangzhou 510632, P. R. China
| | - Peihui Yang
- Department of Chemistry, Jinan University , Guangzhou 510632, P. R. China
| |
Collapse
|
16
|
Hao T, Wu X, Xu L, Liu L, Ma W, Kuang H, Xu C. Ultrasensitive Detection of Prostate-Specific Antigen and Thrombin Based on Gold-Upconversion Nanoparticle Assembled Pyramids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603944. [PMID: 28371262 DOI: 10.1002/smll.201603944] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/19/2017] [Indexed: 06/07/2023]
Abstract
Self-assembled nanostructures have been used for the detection of numerous cancer biomarkers. In this study, a gold-upconversion-nanoparticle (Au-UCNP) pyramid based on aptamers is fabricated to simultaneously detect thrombin and prostate-specific antigen (PSA) using surface-enhanced Raman scattering (SERS) and fluorescence, respectively. The higher the concentration of thrombin, the lower the intensity of SERS. PSA connected with the PSA aptamer leads to an increase in fluorescence intensity. The limit of detection of thrombin and PSA reaches 57 × 10-18 and 0.032 × 10-18 m, respectively. In addition, the pyramid also exhibits great target specificity. The results of human serum target detection demonstrate that the Au-UCNP pyramid is an excellent choice for the quantitative determination of cancer biomarkers, and is feasible for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Tiantian Hao
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Wei Ma
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
17
|
Najeeb MA, Ahmad Z, Shakoor RA, Mohamed AMA, Kahraman R. A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements. Talanta 2017; 168:52-61. [PMID: 28391865 DOI: 10.1016/j.talanta.2017.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 01/14/2023]
Abstract
During the last few decades, there has been a tremendous rise in the number of research studies dedicated towards the development of diagnostic tools based on bio-sensing technology for the early detection of various diseases like cardiovascular diseases (CVD), many types of cancer, diabetes mellitus (DM) and many infectious diseases. Many breakthroughs have been developed in the areas of improving specificity, selectivity and repeatability of the biosensor devices. Innovations in the interdisciplinary areas like biotechnology, genetics, organic electronics and nanotechnology also had a great positive impact on the growth of bio-sensing technology. As a product of these improvements, fast and consistent sensing policies have been productively created for precise and ultrasensitive biomarker-based disease diagnostics. Prostate-specific antigen (PSA) is widely considered as an important biomarker used for diagnosing prostate cancer. There have been many publications based on various biosensors used for PSA detection, but a limited review was available for the classification of these biosensors used for the detection of PSA. This review highlights the various biosensors used for PSA detection and proposes a novel classification for PSA biosensors based on the transducer type used. We also highlight the advantages, disadvantages and limitations of each technique used for PSA biosensing which will make this article a complete reference tool for the future researches in PSA biosensing.
Collapse
Affiliation(s)
- Mansoor Ani Najeeb
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar.
| | - Zubair Ahmad
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
| | - R A Shakoor
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar.
| | - A M A Mohamed
- Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, 43721 Suez, Egypt
| | - Ramazan Kahraman
- Department of Chemical Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
18
|
Bagheri H, Afkhami A, Khoshsafar H, Hajian A, Shahriyari A. Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor. Biosens Bioelectron 2017; 89:829-836. [DOI: 10.1016/j.bios.2016.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
|