1
|
Hansen L, Nagdeve SN, Suganthan B, Ramasamy RP. An Electrochemical Nucleic Acid Biosensor for Triple-Negative Breast Cancer Biomarker Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5747. [PMID: 39275659 PMCID: PMC11397751 DOI: 10.3390/s24175747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, affecting younger women and women of minorities. The nomenclature "triple negative" is derived from the absence of the three most common breast cancer biomarkers: progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). It derives its name from testing negative for these three most common breast cancer biomarkers. Currently, TNBC is diagnosed at advanced stages, necessitating the need for a diagnostic tool or method to identify this malignancy at an early stage prior to metastasis. In this study, a novel electrochemical biosensor was developed, optimized, and evaluated for the detection of microRNA-10b (miRNA-10b), marking the first use of this biomarker for the early diagnosis of TNBC. The biosensor demonstrated the ability to detect concentrations as low as 10 pM. Furthermore, the biosensor was specific toward the target biomarker, distinguishing non-target miRNAs of similar size. The efficacy of the biosensor for TNBC early diagnosis was further validated using human serum samples.
Collapse
Affiliation(s)
- Lexi Hansen
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Sanket Naresh Nagdeve
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Baviththira Suganthan
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
3
|
Ye Q, Zhang Z, Liu J, Wang X. Screen-printed electrode-based biosensors modified with functional nucleic acid probes and their applications in this pandemic age: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2961-2975. [PMID: 35913361 DOI: 10.1039/d2ay00666a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical methodology has probably been the most used sensing platform in the past few years as they provide superior advantages. In particular, screen-printed electrode (SPE)-based sensing applications stand out as they provide extraordinary miniaturized but robust and user-friendly detection system. In this context, we are focusing on the modification of SPE with functional nucleic acid probes and nanostructures to improve the electrochemical detection performance in versatile sensing applications, particularly in the fight against the COVID-19 pandemic. Aptamers are immobilized on the electrode surface to detect non-nucleic acid targets and complementary probes to recognize and capture nucleic acid targets. In a step further, SPE-based biosensors with the modification of self-assembled DNA nanostructures are emphasized as they offer great potential for the interface engineering of the electrode surface and promote the excellent performance of various interface reactions. By equipping with a portable potentiostat and a smartphone monitoring device, the realization of this SPE-based miniaturized diagnostic system for the further requirement of fast and POC detection is revealed. Finally, more novel and excellent works are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Qingqing Ye
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
4
|
Chip-Based and Wearable Tools for Isothermal Amplification and Electrochemical Analysis of Nucleic Acids. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The determination of nucleic acids has become an analytical diagnostic method with many applications in fields such as biomedical sciences, environmental monitoring, forensic identification, and food safety. Among the different methods for nucleic acid analysis, those based on the polymerase chain reaction (PCR) are nowadays considered the gold standards. Isothermal amplification methods are an interesting alternative, especially in the design of chip-based architectures. Biosensing platforms hold great promise for the simple and rapid detection of nucleic acids since they can be embedded in lab-on-a-chip tools to perform nucleic acid extraction, amplification, and detection steps. Electrochemical transduction schemes are particularly interesting in the design of small and portable devices due to miniaturization, low-energy consumption, and multianalyte detection capability. The aim of this review is to summarize the different applications of isothermal amplification methods combined with electrochemical biosensing techniques in the development of lab-on-a-chip tools and wearable sensors. Different isothermal amplification methods are revised, and examples of different applications are discussed. Finally, a discussion on patented devices is also included.
Collapse
|
5
|
Target amplification-free detection of urinary microRNA for diabetic nephropathy diagnosis with electrocatalytic reaction. Anal Bioanal Chem 2022; 414:5695-5707. [PMID: 35476120 DOI: 10.1007/s00216-022-04072-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/12/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) is a serious diabetic complication, usually developed from type II diabetes mellitus (T2DM) and known as type II DN (T2DN). New emerging biomarkers for T2DN are microRNAs (miRNAs) which have been studied for the noninvasive early-stage detection of the disease. In this work, a nucleic acid amplification-free miRNA-124 sensor based on target-induced strand displacement on magnetic beads, and by using methylene blue-loaded silica particles as a label was developed. Measurement methods can be either visual observation, spectrophotometry, or electrochemistry. After incubation and separation of the magnetic particles, a blue-violet solution (564 nm) appeared, depending on the concentration of miRNA displaced. For electrochemical detection, methylene blue on the silica served as a redox mediator for the coupled reaction with ferricyanide in the solution phase. At the electrode surface, ferricyanide was re-reduced to ferrocyanide, and was thus available for further reaction with methylene blue, forming an amplification cycle. After optimization, the total assay time was 60 min, and limits of detection were 1 pM, 6 fM, and 0.65 fM, by the naked eye, spectrophotometry and electrochemistry, respectively. The miRNAs in 42 suspected urine samples from patients suffering from either diabetic nephropathy, diabetes mellitus, or chronic kidney disease were validated by comparing with the droplet digital polymerase chain reaction (ddPCR).
Collapse
|
6
|
Pusta A, Tertis M, Graur F, Cristea C, Al Hajjar N. Aptamers and New Bioreceptors for the Electrochemical Detection of Biomarkers Expressed in Hepatocellular Carcinoma. Curr Med Chem 2022; 29:4363-4390. [PMID: 35196969 DOI: 10.2174/0929867329666220222113707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma is a malignancy associated with high mortality and increasing incidence. Early detection of this disease could help increase survival and overall patient benefit. Non-invasive strategies for the diagnosis of this medical condition are of utmost importance. In this scope, the detection of hepatocellular carcinoma biomarkers could provide a useful diagnostic tool. Aptamers represent as short, single-stranded DNAs or RNAs that can specifically bind selected analytes, and also as pseudo-biorecognition elements that can be employed for electrode functionalization. Also, other types of DNA sequences can be used for the construction of DNA-based biosensors applied for the quantification of hepatocellular carcinoma biomarkers. Herein, we will be analyzing recent examples of aptasensors and DNA biosensors for the detection of hepatocellular carcinoma biomarkers like micro-RNAs, long non-coding RNAs, exosomes, circulating tumor cells and proteins. The literature data is discussed comparatively in a critical manner highlighting the advantages of using electrochemical biosensors in diagnosis, as well as the use of nanomaterials and biocomponents in the functionalization of electrodes for improved sensitivity and selectivity.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Devices, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca,Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Graur
- Department of Surgery, Iuliu Hațieganu University of Medicine and Pharmacy Romania
| | - Cecilia Cristea
- Department of Medical Devices, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca,Romania
| | - Nadim Al Hajjar
- Department of Surgery, Iuliu Hațieganu University of Medicine and Pharmacy Romania
| |
Collapse
|
7
|
Bettazzi F, Orlandini S, Zhang L, Laschi S, Nilsen MM, Krolicka A, Baussant T, Palchetti I. A simple and selective electrochemical magneto-assay for sea lice eDNA detection developed with a Quality by Design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148111. [PMID: 34119793 DOI: 10.1016/j.scitotenv.2021.148111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Environmental DNA (eDNA) is a novel, non-invasive sampling procedure that allows the obtaining of genetic material directly from environmental samples without any evidence of biological sources. The eDNA methodology can greatly benefit from coupling it to reliable, portable and cost-effective tools able to perform decentralized measurements directly at the site of need and in resource-limited settings. Herein, we report a simple method for the selective analysis of eDNA using a magneto-assay with electrochemical detection. The proposed method involves the polymerase chain-reaction (PCR) amplification of mitochondrial eDNA of parasitic Salmon lice (Lepeophtheirus salmonis), extracted from seawater samples. The eDNA sequence was targeted via sandwich hybridization onto magnetic beads and enzymatic labeling was performed to obtain an electroactive product measured by differential pulse voltammetry. Quality by Design (QbD), a recent concept of science- and risk-oriented quality paradigm, was used for the optimization of the different parameters of the assay. Response surface methodology and Monte Carlo simulations were performed to define the method operable design region. The optimized electrochemical magneto-assay attained a limit of detection of 2.9 amol μL-1 of the short synthetic sea louse DNA analogue (43 bp). In addition, robustness testing using a further experimental design approach was performed for monitoring eDNA amplicons. Seawater samples spiked with individuals of free-swimming L. salmonis copepodite stages and seawater collected from tanks with sea lice-infested fish were analyzed.
Collapse
Affiliation(s)
- Francesca Bettazzi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Fi, Italy
| | - Serena Orlandini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Fi, Italy
| | - Luna Zhang
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Fi, Italy
| | - Serena Laschi
- "Nanobiosens" Join Lab, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Mari Mæland Nilsen
- NORCE Norwegian Research Centre AS, Mekjarvik 12, 4072 Randaberg, Norway; Department of Chemistry, Bioscience and Environmental engineering, University of Stavanger, Kristine Bonnevies vei 22, 4021 Stavanger, Norway
| | - Adriana Krolicka
- NORCE Norwegian Research Centre AS, Mekjarvik 12, 4072 Randaberg, Norway
| | - Thierry Baussant
- NORCE Norwegian Research Centre AS, Mekjarvik 12, 4072 Randaberg, Norway
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Fi, Italy; "Nanobiosens" Join Lab, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
8
|
Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080232] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling antimicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diagnosis of resistant microorganisms and could provide crucial information on the choice of antibiotic (or other antimicrobial medicines) to be administered. This review provides an overview on novel biosensing strategies for the phenotypic and genotypic determination of antimicrobial resistance and a perspective on the use of these tools in modern health-care and environmental surveillance.
Collapse
|
9
|
Topkaya SN, Turunc E, Cetin AE. Multi‐walled Carbon Nanotubes and Gold Nanorod Decorated Biosensor for Detection of microRNA‐126. ELECTROANAL 2021. [DOI: 10.1002/elan.202100198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy Izmir Katip Celebi University Cigli 35620 Izmir Turkey
| | - Ezgi Turunc
- Department of Biochemistry, Faculty of Pharmacy Izmir Katip Celebi University Cigli 35620 Izmir Turkey
| | - Arif E. Cetin
- Izmir Biomedicine and Genome Center Balcova 35340 Izmir Turkey
| |
Collapse
|
10
|
Pillozzi S, Bernini A, Palchetti I, Crociani O, Antonuzzo L, Campanacci D, Scoccianti G. Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level. Cancers (Basel) 2021; 13:cancers13123044. [PMID: 34207243 PMCID: PMC8233868 DOI: 10.3390/cancers13123044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Soft tissue sarcoma is a rare mesenchymal malignancy. Despite the advancements in the fields of radiology, pathology and surgery, these tumors often recur locally and/or with metastatic disease. STS is considered to be a diagnostic challenge due to the large variety of histological subtypes with clinical and histopathological characteristics which are not always distinct. One of the important clinical problems is a lack of useful biomarkers. Therefore, the discovery of biomarkers that can be used to detect tumors or predict tumor response to chemotherapy or radiotherapy could help clinicians provide more effective clinical management. Abstract Soft tissue sarcomas (STSs) are a heterogeneous group of rare tumors. Although constituting only 1% of all human malignancies, STSs represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. Over 100 histologic subtypes have been characterized to date (occurring predominantly in the trunk, extremity, and retroperitoneum), and many more are being discovered due to molecular profiling. STS mortality remains high, despite adjuvant chemotherapy. New prognostic stratification markers are needed to help identify patients at risk of recurrence and possibly apply more intensive or novel treatments. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the most relevant cellular, molecular and metabolic biomarkers for STS, and highlight advances in STS-related biomarker research.
Collapse
Affiliation(s)
- Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Correspondence:
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Palchetti
- Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Domenico Campanacci
- Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Guido Scoccianti
- Department of Orthopaedic Oncology and Reconstructive Surgery, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| |
Collapse
|
11
|
Ultrasensitive electrochemical detection of microRNA based on in-situ catalytic hairpin assembly actuated DNA tetrahedral interfacial probes. Talanta 2021; 233:122600. [PMID: 34215088 DOI: 10.1016/j.talanta.2021.122600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/24/2022]
Abstract
Selective and sensitive detection of microRNA is crucial for early diagnosis and pathogenesis of disease. Here, we established a novel electrochemical biosensor for simple and accurate analysis of the tumor biomarker microRNA-141, which was based on in-situ catalytic hairpin assembly (CHA) actuated DNA tetrahedral (DTN) interfacial probes. Two hairpin structures used for CHA reaction were placed on the DTN, in which the hairpin H1 on the one vertex of DTN and hairpin H2 embedded in adjacent edge, respective. The target microRNA-141 could open the hairpin H1 and activated the in-situ CHA reaction between H1 and H2 to alter the conformational of DTN, increasing the chances of the direct interaction between methylene blue (MB) and the electrode surface, leading to an increase in the electrochemical signal. Meanwhile, the released miRNA-141 could unfold another H1, enabling the enzyme-free recycling of the target to obtain amplified electrochemical signals. Moreover, the in-situ catalytic hairpin assembly reaction on DTN could shorten the reaction time and enhance the sensitivity. The established biosensor exhibited a wide linear dynamic range of miRNA-141 from 1 fM to 100 pM with a detection limit of 0.32 fM. Besides, the approach can discriminate the target miRNA from mismatched ones with excellent selectivity and can be successfully applied in diluted serum samples, holding great potential for sensitive detection of various biomarkers clinically.
Collapse
|
12
|
Sfragano PS, Pillozzi S, Palchetti I. Electrochemical and PEC platforms for miRNA and other epigenetic markers of cancer diseases: Recent updates. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106929] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
13
|
El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H. Electrochemical Biosensors for Detection of MicroRNA as a Cancer Biomarker: Pros and Cons. BIOSENSORS 2020; 10:E186. [PMID: 33233700 PMCID: PMC7699780 DOI: 10.3390/bios10110186] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
Cancer is the second most fatal disease in the world and an early diagnosis is important for a successful treatment. Thus, it is necessary to develop fast, sensitive, simple, and inexpensive analytical tools for cancer biomarker detection. MicroRNA (miRNA) is an RNA cancer biomarker where the expression level in body fluid is strongly correlated to cancer. Various biosensors involving the detection of miRNA for cancer diagnosis were developed. The present review offers a comprehensive overview of the recent developments in electrochemical biosensor for miRNA cancer marker detection from 2015 to 2020. The review focuses on the approaches to direct miRNA detection based on the electrochemical signal. It includes a RedOx-labeled probe with different designs, RedOx DNA-intercalating agents, various kinds of RedOx catalysts used to produce a signal response, and finally a free RedOx indicator. Furthermore, the advantages and drawbacks of these approaches are highlighted.
Collapse
Affiliation(s)
- Maliana El Aamri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Ghita Yammouri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Equipe de Chimie Biorganique et Bioinorganique (ECBB), Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France;
| |
Collapse
|
14
|
Sfragano PS, Laschi S, Palchetti I. Sustainable Printed Electrochemical Platforms for Greener Analytics. Front Chem 2020; 8:644. [PMID: 32850659 PMCID: PMC7406795 DOI: 10.3389/fchem.2020.00644] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/22/2020] [Indexed: 01/20/2023] Open
Abstract
The development of miniaturized electrochemical platforms holds considerable importance for the in situ analytical monitoring of clinical, environmental, food, and forensic samples. However, it is crucial to pay attention to the sustainability of materials chosen to fabricate these devices, in order to decrease the amount and the impact of waste coming from their production and use. In the framework of a circular economy and an environmental footprint reduction, the electrochemical sensor production technology must discover the potentiality of innovative approaches based on techniques and materials that can satisfy the needs of environmental-friendly and greener analytics. The aim of this review is to describe some of the printing technologies most used for sensor production, including screen-printing, inkjet-printing, and 3D-printing, and the low-impact materials that are recently proposed for these techniques, such as polylactic acid, cellulose, silk proteins, biochar.
Collapse
Affiliation(s)
| | | | - Ilaria Palchetti
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Svitkova V, Palchetti I. Functional polymers in photoelectrochemical biosensing. Bioelectrochemistry 2020; 136:107590. [PMID: 32674004 DOI: 10.1016/j.bioelechem.2020.107590] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023]
Abstract
Photoelectrochemical (PEC) analysis is a detection technique that has gained a wide attention in sensing applications. PEC presents the advantages of high sensitivity, low background signal, simple equipment and easy miniaturization. In PEC detection, light is used as an excitation source while current or voltage is measured as the output detection signal. The ability to couple the PEC process with specific bioreceptors gives PEC biosensing a unique advantage of being both selective and sensitive. The growing interest in PEC bioanalysis has resulted in essential progress in its analytical performance and biodetection applications. Functional polymers have different applications in the development of novel PEC biosensing platforms. Recently, the interest in polymer-based photoactive materials has emerged as they are efficient and less toxic alternatives to certain kinds of inorganic semiconductors and sensitizers. Moreover, molecularly imprinted polymers are a class of synthetic bioreceptors that are increasingly used in PEC bioanalytics. In this review, we will provide an overview on functional polymer-based PEC biosensing approaches. Novel classes of polymers as photoactive materials are reviewed and selected applications are described. Furthermore, molecularly imprinted polymers in the development of smart and sensitive PEC bioanalytical strategies are discussed.
Collapse
Affiliation(s)
- Veronika Svitkova
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Ilaria Palchetti
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
| |
Collapse
|
16
|
Zouari M, Campuzano S, Pingarrón JM, Raouafi N. Femtomolar direct voltammetric determination of circulating miRNAs in sera of cancer patients using an enzymeless biosensor. Anal Chim Acta 2020; 1104:188-198. [DOI: 10.1016/j.aca.2020.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 01/27/2023]
|
17
|
Tadini-Buoninsegni F, Palchetti I. Label-Free Bioelectrochemical Methods for Evaluation of Anticancer Drug Effects at a Molecular Level. SENSORS 2020; 20:s20071812. [PMID: 32218227 PMCID: PMC7181070 DOI: 10.3390/s20071812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
Cancer is a multifactorial family of diseases that is still a leading cause of death worldwide. More than 100 different types of cancer affecting over 60 human organs are known. Chemotherapy plays a central role for treating cancer. The development of new anticancer drugs or new uses for existing drugs is an exciting and increasing research area. This is particularly important since drug resistance and side effects can limit the efficacy of the chemotherapy. Thus, there is a need for multiplexed, cost-effective, rapid, and novel screening methods that can help to elucidate the mechanism of the action of anticancer drugs and the identification of novel drug candidates. This review focuses on different label-free bioelectrochemical approaches, in particular, impedance-based methods, the solid supported membranes technique, and the DNA-based electrochemical sensor, that can be used to evaluate the effects of anticancer drugs on nucleic acids, membrane transporters, and living cells. Some relevant examples of anticancer drug interactions are presented which demonstrate the usefulness of such methods for the characterization of the mechanism of action of anticancer drugs that are targeted against various biomolecules.
Collapse
Affiliation(s)
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Miranda-Castro R, Palchetti I, de-los-Santos-Álvarez N. The Translational Potential of Electrochemical DNA-Based Liquid Biopsy. Front Chem 2020; 8:143. [PMID: 32266206 PMCID: PMC7099045 DOI: 10.3389/fchem.2020.00143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Latest technological advancement has tremendously expanded the knowledge on the composition of body fluids and the cancer-associated changes, which has fueled the replacement of invasive biopsies with liquid biopsies by using appropriate specific receptors. DNA emerges as a versatile analytical reagent in electrochemical devices for hybridization-based or aptamer-based recognition of all kind of biomarkers. In this mini review, we briefly introduce the current affordable targets (tumor-derived nucleic acids, circulating tumor cells and exosomes) in body fluids, and then we provide an overview of selected electrochemical methods already applied in clinical samples by dividing them into three large categories according to sample type: red (blood), yellow (urine), and white (saliva and sweat) diagnostics. This review focuses on the hurdles of the complex matrices rather than a comprehensive and detailed revision of the format schemes of DNA-based electrochemical sensing. This diverse perspective compiles some challenges that are often forgotten and critically underlines real sample analysis or clinical validation assays. Finally, the needs and trends to reach the market are briefly outlined.
Collapse
Affiliation(s)
- Rebeca Miranda-Castro
- Departamento Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ilaria Palchetti
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Florence, Italy
| | - Noemí de-los-Santos-Álvarez
- Departamento Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
19
|
Campuzano S, Barderas R, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Electrochemical biosensing to move forward in cancer epigenetics and metastasis: A review. Anal Chim Acta 2020; 1109:169-190. [PMID: 32252900 DOI: 10.1016/j.aca.2020.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Early detection and effective treatment are crucial to reduce the physical, emotional, and financial pressure exerted by growing cancer burden on individuals, families, communities, and health systems. Currently, it is clear that the accurate analysis of emerging cancer epigenetic and metastatic-related biomarkers at different molecular levels is envisaged as an exceptional solution for early and reliable diagnosis and the improvement of therapy efficiency through personalized treatments. Within this field, electrochemical biosensing has demonstrated to be competitive over other emerging and currently used methodologies for the determination of these biomarkers accomplishing the premises of user-friendly, multiplexing ability, simplicity, reduced costs and decentralized analysis, demanded by clinical oncology, thus priming electrochemical biosensors to spark a diagnostic revolution for cancer prediction and eradication. This review article critically discusses the main characteristics, opportunities and versatility exhibited by electrochemical biosensing, through highlighting representative examples published during the last two years, for the reliable determination of these emerging biomarkers, with great diagnostic, predictive and prognostic potential. Special attention is paid on electrochemical affinity biosensors developed for the single or multiplexed determination of methylation events, non-coding RNAs, ctDNA features and metastasis-related protein biomarkers both in liquid and solid biopsies of cancer patients. The main challenges to which further work must be addressed and the impact of these advances should have in the clinical acceptance of these emerging biomarkers are also discussed which decisively will contribute to understand the molecular basis involved in the epigenetics and metastasis of cancer and to apply more efficient personalized therapies.
Collapse
Affiliation(s)
- S Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - R Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - M Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - P Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - J M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
20
|
Ge J, Qi Z, Zhang L, Shen X, Shen Y, Wang W, Li Z. Label-free and enzyme-free detection of microRNA based on a hybridization chain reaction with hemin/G-quadruplex enzymatic catalysis-induced MoS 2 quantum dots via the inner filter effect. NANOSCALE 2020; 12:808-814. [PMID: 31830179 DOI: 10.1039/c9nr08154b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new simple, sensitive and specific strategy for microRNA analysis has been described based on a hybridization chain reaction with hemin/G-quadruplex enzymatic catalysis-induced MoS2 quantum dots via the inner filter effect. The target microRNA triggers the hybridization chain reaction between two DNA probes to generate long dsDNA with many hemin/G-quadruplex DNAzymes in the presence of hemin. With the assistance of H2O2, the produced hemin/G-quadruplex DNAzyme could oxidize o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP) directly, resulting in the fluorescence quenching of MoS2 quantum dots via the inner filter effect. As an example, the fluorescence response of MoS2 quantum dots is linearly related with the logarithm of the microRNA let-7a concentration with a detection limit of 42 fM. The proposed label-free assay has promising potential to be applied in practical diagnosis.
Collapse
Affiliation(s)
- Jia Ge
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zheng H, Yan Z, Wang M, Chen J, Zhang X. Biosensor based on polyaniline-polyacrylonitrile-graphene hybrid assemblies for the determination of phenolic compounds in water samples. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120714. [PMID: 31203123 DOI: 10.1016/j.jhazmat.2019.05.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 05/23/2023]
Abstract
Phenolic compounds are major environmental pollutants due to their toxic and hazardous nature on human health. A fast, sensitive and stable sensor for determination of phenolic compounds in the environmental water remains challenging. Herein, a biosensor platform with stable response current was fabricated by entrapment of polyphenol oxidase (PPO) into hybrid assemblies of the conducting polyaniline (PAni)-porous polyacrylonitrile (Pan)-nanostructured graphene (GRA) and phase inversion process. The porous structure of Pan provided a favorable microenvironment for easily binding to PAni and GRA to obtain hybrid assemblies for effective immobilization of enzyme and increased synergistic effect. The morphologies and the electrochemical behaviors of the as-prepared biosensor were investigated using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. The proposed biosensor showed excellent sensitivity (6.46 μA μM-1 cm-2) and fast response time (˜5 s) with low detection limit (2.65×10-7 M) under the optimal pH value and applied potential. The biosensor was highly selective towards p-cresol that almost no signal was detected from common interferents. The biosensor was used for determination of phenolic compounds in water samples with satisfactory results compared with that of UPLC, demonstrating its great potential as a biosensor for the rapid determination of phenolic pollutants.
Collapse
Affiliation(s)
- Hao Zheng
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China.
| | - Zupeng Yan
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| | - Minghui Wang
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| | - Jianfang Chen
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China; Key Laboratory of Marine Ecosystems and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, PR China
| | - Xinzheng Zhang
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| |
Collapse
|
22
|
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Bettazzi F, Palchetti I. Nanotoxicity assessment: A challenging application for cutting edge electroanalytical tools. Anal Chim Acta 2019; 1072:61-74. [DOI: 10.1016/j.aca.2019.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
|
24
|
Campuzano S, Pedrero M, Yánez‐Sedeño P, Pingarrón JM. Advances in Electrochemical (Bio)Sensing Targeting Epigenetic Modifications of Nucleic Acids. ELECTROANAL 2019. [DOI: 10.1002/elan.201900180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica Facultad de CC. QuímicasUniversidad Complutense de Madrid E-28040 Madrid Spain
| | - María Pedrero
- Departamento de Química Analítica Facultad de CC. QuímicasUniversidad Complutense de Madrid E-28040 Madrid Spain
| | - Paloma Yánez‐Sedeño
- Departamento de Química Analítica Facultad de CC. QuímicasUniversidad Complutense de Madrid E-28040 Madrid Spain
| | - José M. Pingarrón
- Departamento de Química Analítica Facultad de CC. QuímicasUniversidad Complutense de Madrid E-28040 Madrid Spain
| |
Collapse
|
25
|
Polydopamine: surface coating, molecular imprinting, and electrochemistry—successful applications and future perspectives in (bio)analysis. Anal Bioanal Chem 2019; 411:4327-4338. [DOI: 10.1007/s00216-019-01665-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 01/01/2023]
|
26
|
Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem 2019; 411:4425-4444. [PMID: 30710205 DOI: 10.1007/s00216-019-01621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection. With a critical perspective of the field, we identify the main challenges to be overcome in microRNA sensing, and describe the areas where several innovative approaches are likely to come for managing those issues that put limits on improvement to the performances of the current methods. Then, in the following sections, we critically discuss the contribution of the most promising approaches based on the peculiar properties of nanomaterials or nanostructures and other hybrid strategies which are envisaged to support the adoption of these new methods useful for the detection of miRNA as biomarkers of practical clinical utility. Graphical abstract ᅟ.
Collapse
|
27
|
Ingrosso C, Corricelli M, Bettazzi F, Konstantinidou E, Bianco GV, Depalo N, Striccoli M, Agostiano A, Curri ML, Palchetti I. Au nanoparticle in situ decorated RGO nanocomposites for highly sensitive electrochemical genosensors. J Mater Chem B 2019; 7:768-777. [DOI: 10.1039/c8tb02514b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel hybrid nanocomposite formed by RGO flakes, surface functionalized by 1-pyrene carboxylic acid (PCA), densely and uniformly in situ decorated by Au NPs, is reported, for miRNA detection.
Collapse
Affiliation(s)
- Chiara Ingrosso
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - Michela Corricelli
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - Francesca Bettazzi
- Dep. of Chemistry Ugo Schiff
- Università degli Studi di Firenze
- Firenze
- Italy
| | | | | | - Nicoletta Depalo
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | | | - Angela Agostiano
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - M. Lucia Curri
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - Ilaria Palchetti
- Dep. of Chemistry Ugo Schiff
- Università degli Studi di Firenze
- Firenze
- Italy
| |
Collapse
|
28
|
Abstract
High-throughput profiling/sensing of nucleic acids has recently emerged as a highly promising strategy for the early diagnosis and improved prognosis of a broad range of pathologies, most notably cancer. Among the potential biomarker candidates, microRNAs (miRNAs), a class of non-coding RNAs of 19-25 nucleotides in length, are of particular interest due to their role in the post-transcriptional regulation of gene expression. Developing miRNA sensing technologies that are quantitative, ultrasensitive and highly specific has proven very challenging because of their small size, low natural abundance and the high degree of sequence similarity among family members. When compared to optical based methods, electrochemical sensors offer many advantages in terms of sensitivity and scalability. This non-comprehensive review aims to break-down and highlight some of the most promising strategies for electrochemical sensing of microRNA biomarkers.
Collapse
Affiliation(s)
- Philip Gillespie
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| |
Collapse
|
29
|
Ebrahimi A, Nikokar I, Zokaei M, Bozorgzadeh E. Design, development and evaluation of microRNA-199a-5p detecting electrochemical nanobiosensor with diagnostic application in Triple Negative Breast Cancer. Talanta 2018; 189:592-598. [DOI: 10.1016/j.talanta.2018.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/09/2023]
|
30
|
Bartold K, Pietrzyk-Le A, Golebiewska K, Lisowski W, Cauteruccio S, Licandro E, D'Souza F, Kutner W. Oligonucleotide Determination via Peptide Nucleic Acid Macromolecular Imprinting in an Electropolymerized CG-Rich Artificial Oligomer Analogue. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27562-27569. [PMID: 30071156 DOI: 10.1021/acsami.8b09296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We devised and fabricated a chemosensor for determination of the genetically relevant 5'-GCGGCGGC-3' (G = guanine; C = cytosine) oligonucleotide. For that, we simultaneously electrosynthesized and electrode-immobilized a sequence-defined octakis(2,2'-bithien-5-yl) DNA hybridizing probe using both a "macromolecular imprinting in polymer strategy" and a sequence-programmable peptide nucleic acid (PNA) template. With electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) transductions under stagnant-solution and flow injection analysis (FIA) conditions, respectively, we determined the above oligonucleotide with 200-pM EIS limit of detection. With its EIS-determined apparent imprinting factor of ∼4.0, the chemosensor was discriminative to both mismatched oligonucleotides and Dulbecco's modified Eagle's medium sample interferences.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Agnieszka Pietrzyk-Le
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Karolina Golebiewska
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Silvia Cauteruccio
- Department of Chemistry , University of Milan , Via Golgi 19 , I-20133 Milan , Italy
| | - Emanuela Licandro
- Department of Chemistry , University of Milan , Via Golgi 19 , I-20133 Milan , Italy
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle , No. 305070, Denton , Texas 76203-5017 , United States
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences , Cardinal Stefan Wyszynski University in Warsaw , Wóycickiego 1/3 , 01-938 Warsaw , Poland
| |
Collapse
|
31
|
Li B, Chai Z, Yan X, Liu C, Situ B, Zhang Y, Pan W, Luo S, Liu J, Zheng L. An enzyme-free homogenous electrochemical assay for sensitive detection of the plasmid-mediated colistin resistance gene mcr-1. Anal Bioanal Chem 2018; 410:4885-4893. [DOI: 10.1007/s00216-018-1130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/29/2018] [Accepted: 05/04/2018] [Indexed: 01/17/2023]
|
32
|
Mousavisani SZ, Raoof JB, Ojani R, Bagheryan Z. An impedimetric biosensor for DNA damage detection and study of the protective effect of deferoxamine against DNA damage. Bioelectrochemistry 2018; 122:142-148. [PMID: 29627666 DOI: 10.1016/j.bioelechem.2018.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/17/2023]
Abstract
The detection and inhibition of DNA damage are of great importance in the prevention and treatment of diseases. Developing a simple and sensitive tool for this purpose would be a chance to monitor the DNA damage and could be helpful in introducing some drugs which can prevent this phenomenon. Here, we report a novel and sensitive electrochemical biosensor based on DNA/Au nanoparticles (AuNPs) modified screen printed gold electrode (DNA/AuNPs/SPGE) to investigate the DNA damage process and also to study the protective behavior of deferoxamine (DFO). The proposed biosensor was fabricated by electrodeposition of AuNPs onto SPGE, followed by chemical immobilisation of thiol-terminated DNA. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) have been used to characterise this biosensor. Hydroxyl radical (OH), which is generated during the Fenton reaction, is responsible for the induced damage to DNA. EIS technique was applied to monitor the DNA damage, and the increase in charge transfer resistance (Rct) following the DNA damage, was considered as an indicator. Furthermore, the ability of the electrochemical screening system was proved by the investigation of the antioxidant effect of DFO in prohibiting the DNA damage.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mousavisani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Reza Ojani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Zahra Bagheryan
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
33
|
Yuan YH, Chi BZ, Wen SH, Liang RP, Li ZM, Qiu JD. Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction. Biosens Bioelectron 2017; 102:211-216. [PMID: 29145074 DOI: 10.1016/j.bios.2017.11.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023]
Abstract
We propose a ratiometric electrochemical assay for detecting microRNA (miRNA) on the basis of dual-amplification mechanism by using distinguishable electrochemical signals from thionine (Thi) and ferrocene (Fc). The thiol-modified and ferrocene-labeled hairpin capture probes (CP) are first immobilized on an Au electrode via Au-S reaction. The target miRNA hybridizes with CP and unfolding the hairpin structure of CP to form miRNA-DNA duplexes. Then, kamchatka crab duplex specific nuclease (DSN) specifically cleaves the DNA in miRNA-DNA duplexes, leading to the release of miRNA and another cleaves cycle, meanwhile, numerous Fc leaves away from the electrode surface and leads to the signal-off of Fc. The residual fragment on electrode surface acts as a HCR primer to form dsDNA polymers through in situ HCR with the presence of the primer and two probes (HDNA and HDNA'), resulting in the capture of numerous DNA/Au NPs/Thi and the signal-on of Thi. The dual-amplification mechanism significantly amplifies the decrease of Fc signal and the increase of Thi signal for ratiometric readout (IThi/IFc), thus providing a sensitive method for the selective detection of miR-141 with a detection limit down to 11aM. The dual-signal ratiometric outputs have an intrinsic self-calibration to the effects from system, which is promising to be applied in biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Yan-Hong Yuan
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Bao-Zhu Chi
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Shao-Hua Wen
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China.
| | - Zhi-Mei Li
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
34
|
Kalogianni DP, Kalligosfyri PM, Kyriakou IK, Christopoulos TK. Advances in microRNA analysis. Anal Bioanal Chem 2017; 410:695-713. [DOI: 10.1007/s00216-017-0632-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
|
35
|
Hasanzadeh M, Shadjou N, de la Guardia M. Early stage screening of breast cancer using electrochemical biomarker detection. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Romanelli S, Bettazzi F, Martellini T, Shelver WL, Cincinelli A, Galarini R, Palchetti I. Evaluation of a QuEChERS-like extraction approach for the determination of PBDEs in mussels by immuno-assay-based screening methods. Talanta 2017; 170:540-545. [PMID: 28501208 DOI: 10.1016/j.talanta.2017.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
A sample preparation method was evaluated for the determination of polybrominated diphenyl ethers (PBDEs) in mussel samples, by using colorimetric and electrochemical immunoassay-based screening methods. Herein, a rapid procedure based on QuEChERS-like extraction approach followed by solid phase purification was optimized for PBDE extraction from mussel samples. The detection limits for colorimetric and electrochemical immunoassays, calculated as BDE-47 equivalent concentration, were 0.6ngg-1 and 1.1ngg-1, respectively. Real mussel samples, including a Certified Reference Material (CRM), were analyzed. The samples were measured by colorimetric and electrochemical immunoassays as well as by GC-MS. In comparison to GC-MS results, 106% and 102% relative accuracy were obtained for the colorimetric and electrochemical immunoassays, respectively. The proposed method could be useful for massive environmental campaigns, being able to rapidly detect possible polluted seafood samples.
Collapse
Affiliation(s)
- Sara Romanelli
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Italy; Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via G. Salvemini 1, 06126 Perugia, Italy
| | - Francesca Bettazzi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Italy
| | - Tania Martellini
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Italy
| | - Weilin L Shelver
- USDA-ARS, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58102, USA
| | - Alessandra Cincinelli
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via G. Salvemini 1, 06126 Perugia, Italy
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Italy.
| |
Collapse
|
37
|
Bettazzi F, Marrazza G, Minunni M, Palchetti I, Scarano S. Biosensors and Related Bioanalytical Tools. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|