1
|
Samantasinghar A, Sunildutt N, Ahmed F, Memon FH, Kang C, Choi KH. Revolutionizing Biomedical Research: Unveiling the Power of Microphysiological Systems with Advanced Assays, Integrated Sensor Technologies, and Real-Time Monitoring. ACS OMEGA 2025; 10:9869-9889. [PMID: 40124012 PMCID: PMC11923667 DOI: 10.1021/acsomega.4c11227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/25/2025]
Abstract
The limitation of animal models to imitate a therapeutic response in humans is a key problem that challenges their use in fundamental research. Organ-on-a-chip (OOC) devices, also called microphysiological systems (MPS), are devices containing a lining of living cells grown under dynamic flow to recapitulate the important features of human physiology and pathophysiology with high precision. Recent advances in microfabrication and tissue engineering techniques have led to the wide adoption of OOC in next-generation experimental platforms. This review presents a comprehensive analysis of the OOC systems, categorizing them by flow types (single-pass and multipass), operational mechanisms (pumpless and pump-driven), and configurations (single-organ and multiorgan systems), along with their respective advantages and limitations. Furthermore, it explores the integration of qualitative and quantitative assay techniques, providing a comparative evaluation of systems with and without sensor integration. This review aims to fill essential knowledge gaps, driving the progress of the development of OOC systems and paving the way for breakthroughs in biomedical research, pharmaceutical innovation, and tissue engineering.
Collapse
Affiliation(s)
- Anupama Samantasinghar
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Naina Sunildutt
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Faheem Ahmed
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Fida Hussain Memon
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
- Department
of Electrical Engineering, Sukkur IBA University, Sindh 65200, Pakistan
| | - Chulung Kang
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Kyung Hyun Choi
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| |
Collapse
|
2
|
Parolo C, Idili A, Heikenfeld J, Plaxco KW. Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices. LAB ON A CHIP 2023; 23:1339-1348. [PMID: 36655710 PMCID: PMC10799767 DOI: 10.1039/d2lc00716a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent years have seen continued expansion of the functionality of lab on a chip (LOC) devices. Indeed LOCs now provide scientists and developers with useful and versatile platforms across a myriad of chemical and biological applications. The field still fails, however, to integrate an often important element of bench-top analytics: real-time molecular measurements that can be used to "guide" a chemical response. Here we describe the analytical techniques that could provide LOCs with such real-time molecular monitoring capabilities. It appears to us that, among the approaches that are general (i.e., that are independent of the reactive or optical properties of their targets), sensing strategies relying on binding-induced conformational change of bioreceptors are most likely to succeed in such applications.
Collapse
Affiliation(s)
- Claudio Parolo
- Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona, 08036, Barcelona, Spain
| | - Andrea Idili
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - Jason Heikenfeld
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA.
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
3
|
Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front Bioeng Biotechnol 2022; 10:805299. [PMID: 35547166 PMCID: PMC9081537 DOI: 10.3389/fbioe.2022.805299] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Reproduction of different tissues using scaffolds and materials is a major element in regenerative medicine. The regeneration of whole organs with decellularized extracellular matrix (dECM) has remained a goal despite the use of these materials for different purposes. Recently, decellularization techniques have been widely used in producing scaffolds that are appropriate for regenerating damaged organs and may be able to overcome the shortage of donor organs. Decellularized ECM offers several advantages over synthetic compounds, including the preserved natural microenvironment features. Different decellularization methods have been developed, each of which is appropriate for removing cells from specific tissues under certain conditions. A variety of methods have been advanced for evaluating the decellularization process in terms of cell removal efficiency, tissue ultrastructure preservation, toxicity, biocompatibility, biodegradability, and mechanical resistance in order to enhance the efficacy of decellularization methods. Modification techniques improve the characteristics of decellularized scaffolds, making them available for the regeneration of damaged tissues. Moreover, modification of scaffolds makes them appropriate options for drug delivery, disease modeling, and improving stem cells growth and proliferation. However, considering different challenges in the way of decellularization methods and application of decellularized scaffolds, this field is constantly developing and progressively moving forward. This review has outlined recent decellularization and sterilization strategies, evaluation tests for efficient decellularization, materials processing, application, and challenges and future outlooks of decellularization in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Afarin Neishabouri
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Daghigh
- Department of Physiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| |
Collapse
|
4
|
Ding M, Koroma KE, Wendt D, Martin I, Martinetti R, Jespersen S, Schrøder HD, Overgaard S. Efficacy of bioreactor-activated bone substitute with bone marrow nuclear cells on fusion rate and fusion mass microarchitecture in sheep. J Biomed Mater Res B Appl Biomater 2022; 110:1862-1875. [PMID: 35233920 DOI: 10.1002/jbm.b.35044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/02/2021] [Accepted: 02/22/2022] [Indexed: 11/07/2022]
Abstract
Bioreactors have been used for bone graft engineering in pre-clinical investigations over the past 15 years. The ability of bioreactor-incubated bone marrow nuclear cells (BMNCs) to enhance bone-forming potential varies significantly, and the three-dimensional (3D) distribution of BMNCs within the scaffold is largely unknown. The aims of this study were (1) to investigate the efficacy of a carbonated hydroxyapatite (CHA) with/without BMNCs on spine fusion rate and fusion mass microarchitecture using a highly challenging two-level posterolateral spine fusion without instrumentation; and (2) to evaluate 3D distribution of BMNCs within scaffolds characterized by immunohistochemistry. Fusion rate and fusion mass were quantified by micro-CT, microarchitectural analysis, and histology. While the homogenous 3D distribution of BMNCs was not observed, BMNCs were found to migrate towards a substitute core. In the autograft group, the healing rate was 83.3%, irrespective of the presence of BMNCs. In the CHA group, also 83.3% was fused in the presence of BMNCs, and 66.7% fused without BMNCs. A significant decrease in the fusion mass porosity (p = .001) of the CHA group suggested the deposition of mineralized bone. The autograft group revealed more bone, thicker trabeculae, and better trabecular orientation but less connection compared to the CHA group. Immunohistochemistry confirmed the ability of bioreactors to incubate a large-sized substitute coated with viable BMNCs with the potential for proliferation and differentiation. These findings suggested that a bioreactor-activated substitute is comparable to autograft on spine fusion and that new functional bone regeneration could be achieved by a combination of BMNCs, biomaterials, and bioreactors.
Collapse
Affiliation(s)
- Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kariatta Esther Koroma
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - David Wendt
- Department of Surgery and of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Surgery and of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | - Stig Jespersen
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henrik Daa Schrøder
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Søren Overgaard
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Orthopaedic Surgery & Traumatology, Copenhagen University Hospital, Bispebjerg, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Mavris SM, Hansen LM. Optimization of Oxygen Delivery Within Hydrogels. J Biomech Eng 2021; 143:101004. [PMID: 33973004 PMCID: PMC8299803 DOI: 10.1115/1.4051119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/05/2021] [Indexed: 12/19/2022]
Abstract
The field of tissue engineering has been continuously evolving since its inception over three decades ago with numerous new advancements in biomaterials and cell sources and widening applications to most tissues in the body. Despite the substantial promise and great opportunities for the advancement of current medical therapies and procedures, the field has yet to capture wide clinical translation due to some remaining challenges, including oxygen availability within constructs, both in vitro and in vivo. While this insufficiency of nutrients, specifically oxygen, is a limitation within the current frameworks of this field, the literature shows promise in new technological advances to efficiently provide adequate delivery of nutrients to cells. This review attempts to capture the most recent advances in the field of oxygen transport in hydrogel-based tissue engineering, including a comparison of current research as it pertains to the modeling, sensing, and optimization of oxygen within hydrogel constructs as well as new technological innovations to overcome traditional diffusion-based limitations. The application of these findings can further the advancement and development of better hydrogel-based tissue engineered constructs for future clinical translation and adoption.
Collapse
Affiliation(s)
- Sophia M. Mavris
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332
| | - Laura M. Hansen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322
| |
Collapse
|
6
|
Clarke GA, Hartse BX, Niaraki Asli AE, Taghavimehr M, Hashemi N, Abbasi Shirsavar M, Montazami R, Alimoradi N, Nasirian V, Ouedraogo LJ, Hashemi NN. Advancement of Sensor Integrated Organ-on-Chip Devices. SENSORS (BASEL, SWITZERLAND) 2021; 21:1367. [PMID: 33671996 PMCID: PMC7922590 DOI: 10.3390/s21041367] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Organ-on-chip devices have provided the pharmaceutical and tissue engineering worlds much hope since they arrived and began to grow in sophistication. However, limitations for their applicability were soon realized as they lacked real-time monitoring and sensing capabilities. The users of these devices relied solely on endpoint analysis for the results of their tests, which created a chasm in the understanding of life between the lab the natural world. However, this gap is being bridged with sensors that are integrated into organ-on-chip devices. This review goes in-depth on different sensing methods, giving examples for various research on mechanical, electrical resistance, and bead-based sensors, and the prospects of each. Furthermore, the review covers works conducted that use specific sensors for oxygen, and various metabolites to characterize cellular behavior and response in real-time. Together, the outline of these works gives a thorough analysis of the design methodology and sophistication of the current sensor integrated organ-on-chips.
Collapse
Affiliation(s)
- Gabriel A. Clarke
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Brenna X. Hartse
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Amir Ehsan Niaraki Asli
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Mehrnoosh Taghavimehr
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Niloofar Hashemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365, Iran;
| | - Mehran Abbasi Shirsavar
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Vahid Nasirian
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Lionel J. Ouedraogo
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Nicole N. Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Effects of Flow Rate on Mesenchymal Stem Cell Oxygen Consumption Rates in 3D Bone-Tissue-Engineered Constructs Cultured in Perfusion Bioreactor Systems. FLUIDS 2020. [DOI: 10.3390/fluids5010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bone grafts represent a multibillion-dollar industry, with over a million grafts occurring each year. Common graft types are associated with issues such as donor site morbidity in autologous grafts and immunological response in allogenic grafts. Bone-tissue-engineered constructs are a logical approach to combat the issues commonly encountered with these bone grafting techniques. When creating bone-tissue-engineered constructs, monitoring systems are required to determine construct characteristics, such as cellularity and cell type. This study aims to expand on the current predictive metrics for these characteristics, specifically analyzing the effects of media flow rate on oxygen uptake rates (OURs) of mesenchymal stem cells seeded on poly(L-lactic acid) (PLLA) scaffolds cultured in a flow perfusion bioreactor. To do this, oxygen consumption rates were measured for cell/scaffold constructs at varying flow rates ranging from 150 to 750 microliters per minute. Residence time analyses were performed for this bioreactor at these flow rates. Average observed oxygen uptake rates of stem cells in perfusion bioreactors were shown to increase with increased oxygen availability at higher flow rates. The residence time analysis helped identify potential pitfalls in current bioreactor designs, such as the presence of channeling. Furthermore, this analysis shows that oxygen uptake rates have a strong linear correlation with residence times of media in the bioreactor setup, where cells were seen to exhibit a maximum oxygen uptake rate of 3 picomoles O2/hr/cell.
Collapse
|
8
|
García-Gareta E, Abduldaiem Y, Sawadkar P, Kyriakidis C, Lali F, Greco KV. Decellularised scaffolds: just a framework? Current knowledge and future directions. J Tissue Eng 2020; 11:2041731420942903. [PMID: 32742632 PMCID: PMC7376382 DOI: 10.1177/2041731420942903] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
The use of decellularised matrices as scaffolds offers the advantage of great similarity with the tissue to be replaced. Moreover, decellularised tissues and organs can be repopulated with the patient's own cells to produce bespoke therapies. Great progress has been made in research and development of decellularised scaffolds, and more recently, these materials are being used in exciting new areas like hydrogels and bioinks. However, much effort is still needed towards preserving the original extracellular matrix composition, especially its minor components, assessing its functionality and scaling up for large tissues and organs. Emphasis should also be placed on developing new decellularisation methods and establishing minimal criteria for assessing the success of the decellularisation process. The aim of this review is to critically review the existing literature on decellularised scaffolds, especially on the preparation of these matrices, and point out areas for improvement, finishing with alternative uses of decellularised scaffolds other than tissue and organ reconstruction. Such uses include three-dimensional ex vivo platforms for idiopathic diseases and cancer modelling.
Collapse
Affiliation(s)
- Elena García-Gareta
- The Griffin Institute, Northwick Park
and Saint Mark’s Hospital, London, UK
- Regenerative Biomaterials Group, The
RAFT Institute and The Griffin Institute, Northwick Park and Saint Mark’s Hospital,
London, UK
- Division of Biomaterials and Tissue
Engineering, Eastman Dental Institute, University College London, London, UK
| | - Yousef Abduldaiem
- The Griffin Institute, Northwick Park
and Saint Mark’s Hospital, London, UK
| | - Prasad Sawadkar
- Regenerative Biomaterials Group, The
RAFT Institute and The Griffin Institute, Northwick Park and Saint Mark’s Hospital,
London, UK
| | - Christos Kyriakidis
- The Griffin Institute, Northwick Park
and Saint Mark’s Hospital, London, UK
- Regenerative Biomaterials Group, The
RAFT Institute and The Griffin Institute, Northwick Park and Saint Mark’s Hospital,
London, UK
| | - Ferdinand Lali
- The Griffin Institute, Northwick Park
and Saint Mark’s Hospital, London, UK
| | | |
Collapse
|
9
|
Dantism S, Röhlen D, Wagner T, Wagner P, Schöning MJ. A LAPS-Based Differential Sensor for Parallelized Metabolism Monitoring of Various Bacteria. SENSORS 2019; 19:s19214692. [PMID: 31671716 PMCID: PMC6864667 DOI: 10.3390/s19214692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022]
Abstract
Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.
Collapse
Affiliation(s)
- Shahriar Dantism
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Désirée Röhlen
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Wilhelm-Johnen-Straße 1, 52425 Jülich, Germany.
| | - Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany.
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Wilhelm-Johnen-Straße 1, 52425 Jülich, Germany.
| |
Collapse
|
10
|
Young AT, Rivera KR, Erb PD, Daniele MA. Monitoring of Microphysiological Systems: Integrating Sensors and Real-Time Data Analysis toward Autonomous Decision-Making. ACS Sens 2019; 4:1454-1464. [PMID: 30964652 DOI: 10.1021/acssensors.8b01549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microphysiological systems replicate human organ function and are promising technologies for discovery of translatable biomarkers, pharmaceuticals, and regenerative therapies. Because microphysiological systems require complex microscale anatomical structures and heterogeneous cell populations, a major challenge remains to manufacture and operate these products with reproducible and standardized function. In this Perspective, three stages of microphysiological system monitoring, including process, development, and function, are assessed. The unique features and remaining technical challenges for the required sensors are discussed. Monitoring of microphysiological systems requires nondestructive, continuous biosensors and imaging techniques. With such tools, the extent of cellular and tissue development, as well as function, can be autonomously determined and optimized by correlating physical and chemical sensor outputs with markers of physiological performance. Ultimately, data fusion and analyses across process, development, and function monitors can be implemented to adopt microphysiological systems for broad research and commercial applications.
Collapse
Affiliation(s)
- Ashlyn T. Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Kristina R. Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Patrick D. Erb
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
Scaffolds with a High Surface Area-to-Volume Ratio and Cultured Under Fast Flow Perfusion Result in Optimal O2 Delivery to the Cells in Artificial Bone Tissues. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue engineering has the potential for repairing large bone defects, which impose a heavy financial burden on the public health. However, difficulties with O2 delivery to the cells residing in the interior of tissue engineering scaffolds make it challenging to grow artificial tissues of clinically-relevant sizes. This study uses image-based simulation in order to provide insight into how to better optimize the scaffold manufacturing parameters, and the culturing conditions, in order to resolve the O2 bottleneck. To do this, high resolution 3D X-ray images of two common scaffold types (salt leached foam and non-woven fiber mesh) are fed into Lattice Boltzmann Method fluid dynamics and reactive Lagrangian Scalar Tracking mass transfer solvers. The obtained findings indicate that the scaffolds should have maximal surface area-to-solid volume ratios for higher chances of the molecular collisions with the cells. Furthermore, the cell culture media should be flown through the scaffold pores as fast as practically possible (without detaching or killing the cells). Finally, we have provided a parametric sweep that maps how the molecular transport within the scaffolds is affected by variations in rates of O2 consumption by the cells. Ultimately, the results of this study are expected to benefit the computer-assisted design of tissue engineering scaffolds and culturing experiments.
Collapse
|
12
|
Greuel S, Freyer N, Hanci G, Böhme M, Miki T, Werner J, Schubert F, Sittinger M, Zeilinger K, Mandenius CF. Online measurement of oxygen enables continuous noninvasive evaluation of human-induced pluripotent stem cell (hiPSC) culture in a perfused 3D hollow-fiber bioreactor. J Tissue Eng Regen Med 2019; 13:1203-1216. [PMID: 31034735 DOI: 10.1002/term.2871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
For clinical and/or pharmaceutical use of human-induced pluripotent stem cells (hiPSCs), large cell quantities of high quality are demanded. Therefore, we combined the expansion of hiPSCs in closed, perfusion-based 3D bioreactors with noninvasive online monitoring of oxygen as culture control mechanism. Bioreactors with a cell compartment volume of 3 or 17 ml were inoculated with either 10 × 106 or 50 × 106 cells, and cells were expanded over 15 days with online oxygen and offline glucose and lactate measurements being performed. The CellTiter-Blue® Assay was performed at the end of the bioreactor experiments for indirect cell quantification. Model simulations enabled an estimation of cell numbers based on kinetic equations and experimental data during the 15-day bioreactor cultures. Calculated oxygen uptake rates (OUR), glucose consumption rates (GCR), and lactate production rates (LPR) revealed a highly significant correlation (p < 0.0001). Oxygen consumption, which was measured at the beginning and the end of the experiment, showed a strong culture growth in line with the OUR and GCR data. Furthermore, the yield coefficient of lactate from glucose and the OUR to GCR ratio revealed a shift from nonoxidative to oxidative metabolism. The presented results indicate that oxygen is equally as applicable as parameter for hiPSC expansion as glucose while providing an accurate real-time impression of hiPSC culture development. Additionally, oxygen measurements inform about the metabolic state of the cells. Thus, the use of oxygen online monitoring for culture control facilitates the translation of hiPSC use to the clinical setting.
Collapse
Affiliation(s)
- Selina Greuel
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nora Freyer
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Güngör Hanci
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mike Böhme
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Michael Sittinger
- Tissue Engineering, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
13
|
Dantism S, Röhlen D, Selmer T, Wagner T, Wagner P, Schöning MJ. Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system. Biosens Bioelectron 2019; 139:111332. [PMID: 31132723 DOI: 10.1016/j.bios.2019.111332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
Abstract
Applying biosensors for evaluation of the extracellular acidification of microorganisms in various biotechnological fermentation processes is on demand. An early stage detection of disturbances in the production line would avoid costly interventions related to metabolically inactive microorganisms. Furthermore, the determination of the number of living cells through cell plating procedure after cultivations is known as time- and material-consuming. In this work, a differential light-addressable potentiometric sensor (LAPS) system was developed to monitor the metabolic activity of Corynebacterium glutamicum (C. glutamicum ATCC13032) as typical microorganism in fermentation processes. In this context, the number of living cells in suspensions was directly determined utilizing the read-out principle of the LAPS system. The planar sensor surface of the LAPS design allows to fixate 3D-printed multi-chamber structures, which enables differential measurements. In this way, undesirable external influences such as pH variations of the medium and sensor signal drift can be compensated.
Collapse
Affiliation(s)
- Shahriar Dantism
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium
| | - Désirée Röhlen
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, 52425, Jülich, Germany
| | - Patrick Wagner
- Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Jülich, 52428, Jülich, Germany; Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
14
|
Greuel S, Hanci G, Böhme M, Miki T, Schubert F, Sittinger M, Mandenius CF, Zeilinger K, Freyer N. Effect of inoculum density on human-induced pluripotent stem cell expansion in 3D bioreactors. Cell Prolif 2019; 52:e12604. [PMID: 31069891 PMCID: PMC6668975 DOI: 10.1111/cpr.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Objective For optimized expansion of human‐induced pluripotent stem cells (hiPSCs) with regards to clinical applications, we investigated the influence of the inoculum density on the expansion procedure in 3D hollow‐fibre bioreactors. Materials and Methods Analytical‐scale bioreactors with a cell compartment volume of 3 mL or a large‐scale bioreactor with a cell compartment volume of 17 mL were used and inoculated with either 10 × 106 or 50 × 106 hiPSCs. Cells were cultured in bioreactors over 15 days; daily measurements of biochemical parameters were performed. At the end of the experiment, the CellTiter‐Blue® Assay was used for culture activity evaluation and cell quantification. Also, cell compartment sections were removed for gene expression and immunohistochemistry analysis. Results The results revealed significantly higher values for cell metabolism, cell activity and cell yields when using the higher inoculation number, but also a more distinct differentiation. As large inoculation numbers require cost and time‐extensive pre‐expansion, low inoculation numbers may be used preferably for long‐term expansion of hiPSCs. Expansion of hiPSCs in the large‐scale bioreactor led to a successful production of 5.4 × 109 hiPSCs, thereby achieving sufficient cell amounts for clinical applications. Conclusions In conclusion, the results show a significant effect of the inoculum density on cell expansion, differentiation and production of hiPSCs, emphasizing the importance of the inoculum density for downstream applications of hiPSCs. Furthermore, the bioreactor technology was successfully applied for controlled and scalable production of hiPSCs for clinical use.
Collapse
Affiliation(s)
- Selina Greuel
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Güngör Hanci
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mike Böhme
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Michael Sittinger
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carl-Fredrik Mandenius
- Division of Biotechnology, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nora Freyer
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Dynamic in vitro models for tumor tissue engineering. Cancer Lett 2019; 449:178-185. [PMID: 30763717 DOI: 10.1016/j.canlet.2019.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 01/04/2023]
Abstract
Cancer research uses in vitro studies for controllable analysis of tumor behavior and preclinical testing of therapeutics. Shortcomings of basic cell culture systems in recreating in vivo interactions have driven the development of more efficient and biomimetic in vitro environments for cancer research. Assimilation of certain developments in tissue engineering will accelerate and improve the design of these environments. With the continual improvement of the tumor engineering field, the next step is towards macroscopic systems such as scaffold-supported, flow-perfused macroscale tumor bioreactors. Surface modifications of synthetic scaffolds allow for targeted cell adhesion and improved ECM development. Flow perfusion has emerged as means to expose cancerous tissues to critical biomechanical forces for tumor progression while simultaneously improving nutrient and waste transport. Macroscale perfusable systems allow for non-destructive real-time monitoring using biosensors capable of improving understanding of in vitro tumor development at reduced cost and waste. The combination of macroscale perfusable systems, surface-modified synthetic scaffolds, and non-destructive real-time monitoring will provide advanced platforms for in vitro modeling of tumor development, with broad applications in basic tumor research and preclinical drug development.
Collapse
|
16
|
Kadri OE, Williams C, Sikavitsas V, Voronov RS. Numerical accuracy comparison of two boundary conditions commonly used to approximate shear stress distributions in tissue engineering scaffolds cultured under flow perfusion. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3132. [PMID: 30047248 DOI: 10.1002/cnm.3132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Flow-induced shear stresses have been found to be a stimulatory factor in pre-osteoblastic cells seeded in 3D porous scaffolds and cultured under continuous flow perfusion. However, due to the complex internal structure of the scaffolds, whole scaffold calculations of the local shear forces are computationally intensive. Instead, representative volume elements (RVEs), which are obtained by extracting smaller portions of the scaffold, are commonly used in literature without a numerical accuracy standard. OBJECTIVE Hence, the goal of this study is to examine how closely the whole scaffold simulations are approximated by the two types of boundary conditions used to enable the RVEs: "wall boundary condition" (WBC) and "periodic boundary condition" (PBC). METHOD To that end, lattice Boltzmann method fluid dynamics simulations were used to model the surface shear stresses in 3D scaffold reconstructions, obtained from high-resolution microcomputed tomography images. RESULTS It was found that despite the RVEs being sufficiently larger than 6 times the scaffold pore size (which is the only accuracy guideline found in literature), the stresses were still significantly under-predicted by both types of boundary conditions: between 20% and 80% average error, depending on the scaffold's porosity. Moreover, it was found that the error grew with higher porosity. This is likely due to the small pores dominating the flow field, and thereby negating the effects of the unrealistic boundary conditions, when the scaffold porosity is small. Finally, it was found that the PBC was always more accurate and computationally efficient than the WBC. Therefore, it is the recommended type of RVE.
Collapse
Affiliation(s)
- Olufemi E Kadri
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Cortes Williams
- Stephenson School of Biomedical Engineering, The University of Oklahoma Norman, OK, 73019, USA
| | - Vassilios Sikavitsas
- Stephenson School of Biomedical Engineering, The University of Oklahoma Norman, OK, 73019, USA
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
17
|
Yi T, Huang S, Liu G, Li T, Kang Y, Luo Y, Wu J. Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS APPLIED BIO MATERIALS 2018; 1:193-209. [DOI: 10.1021/acsabm.8b00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tianqi Yi
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoxiong Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Tiancheng Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuxi Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Polymer Composites and Functional Materials of Ministry of Education, , Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Simmons AD, Sikavitsas VI. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells. Ann Biomed Eng 2017; 46:37-47. [DOI: 10.1007/s10439-017-1937-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/22/2017] [Indexed: 12/24/2022]
|