1
|
D'Agata R, Bellassai N, Spoto G. Exploiting the design of surface plasmon resonance interfaces for better diagnostics: A perspective review. Talanta 2024; 266:125033. [PMID: 37562226 DOI: 10.1016/j.talanta.2023.125033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Surface Plasmon Resonance based-sensors are promising tools for precision diagnostics as they can provide tests useful for early and, whenever possible, non-invasive disease detection and monitoring. The design of novel, robust and effective interfaces enabling the sensing of a variety of molecular interactions in a highly selective and sensitive manner is a necessary step to obtain both accurate and reliable detection by SPR. This review covers the recent research efforts in this area, specifically emphasizing well-designed interfaces and applications in real-life samples. In particular, after a short introduction which identifies some of the critical challenges, the emerging strategies for the integration of the linker, the metal substrate and the recognition element on the sensing interface will be explored and discussed in three sections, as well as the opportunities for building SPR biosensors, easy to use, and with excellent sensitivities. Finally, a summary of some of the more promising and latest diagnostic applications will be provided, presenting a new window into the near-future perspectives.
Collapse
Affiliation(s)
- Roberta D'Agata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy.
| | - Noemi Bellassai
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy
| | - Giuseppe Spoto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy
| |
Collapse
|
2
|
Sotnikov DV, Byzova NA, Zherdev AV, Dzantiev BB. Ability of Antibodies Immobilized on Gold Nanoparticles to Bind Small Antigen Fluorescein. Int J Mol Sci 2023; 24:16967. [PMID: 38069289 PMCID: PMC10707089 DOI: 10.3390/ijms242316967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The analytical applications of antibodies are often associated with their immobilization on different carriers, which is accompanied by a loss of antigen-binding activity for a sufficient proportion of the bound antibodies. In contrast to data on plain carriers, minimal data are available on the properties of antibodies on the surfaces of nanoparticles. Protein antigens have been predominantly investigated, for which space restrictions do not allow them to occupy all active sites of immobilized antibodies. This study considered a low-molecular-weight compound, fluorescein, as an antigen. Spherical gold nanoparticles with five different sizes, two differently charged forms of fluorescein, and three different levels of surface coverage by immobilized antibodies were tested. For gold nanoparticles with diameters from 14 to 35.5 nm with monolayers of immobilized antibodies, the percentage of molecules capable of binding carboxyfluorescein varied from 6% to 17%. The binding of aminofluorescein was more efficient; for gold nanoparticles with an average diameter of 21 nm, the percentage of active binding sites for the immobilized antibodies reached 27% compared with 13% for the carboxyfluorescein case. A fourfold reduction in the coverage of the nanoparticles' surface compared with that of the monolayer did not lead to reliable changes in the percentage of active binding sites. The obtained data demonstrate that an antigen's binding to immobilized antibodies is limited even for small antigens and depends on the size of the nanoparticles and the electrostatic repulsion near their surface.
Collapse
Affiliation(s)
- Dmitriy V. Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (A.V.Z.); (B.B.D.)
| | | | | | | |
Collapse
|
3
|
Lee JH, Chapman DV, Saltzman WM. Nanoparticle Targeting with Antibodies in the Central Nervous System. BME FRONTIERS 2023; 4:0012. [PMID: 37849659 PMCID: PMC10085254 DOI: 10.34133/bmef.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/19/2023] [Indexed: 10/19/2023] Open
Abstract
Treatments for disease in the central nervous system (CNS) are limited because of difficulties in agent penetration through the blood-brain barrier, achieving optimal dosing, and mitigating off-target effects. The prospect of precision medicine in CNS treatment suggests an opportunity for therapeutic nanotechnology, which offers tunability and adaptability to address specific diseases as well as targetability when combined with antibodies (Abs). Here, we review the strategies to attach Abs to nanoparticles (NPs), including conventional approaches of chemisorption and physisorption as well as attempts to combine irreversible Ab immobilization with controlled orientation. We also summarize trends that have been observed through studies of systemically delivered Ab-NP conjugates in animals. Finally, we discuss the future outlook for Ab-NPs to deliver therapeutics into the CNS.
Collapse
Affiliation(s)
| | | | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Albert C, Bracaglia L, Koide A, DiRito J, Lysyy T, Harkins L, Edwards C, Richfield O, Grundler J, Zhou K, Denbaum E, Ketavarapu G, Hattori T, Perincheri S, Langford J, Feizi A, Haakinson D, Hosgood SA, Nicholson ML, Pober JS, Saltzman WM, Koide S, Tietjen GT. Monobody adapter for functional antibody display on nanoparticles for adaptable targeted delivery applications. Nat Commun 2022; 13:5998. [PMID: 36220817 PMCID: PMC9553936 DOI: 10.1038/s41467-022-33490-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Vascular endothelial cells (ECs) play a central role in the pathophysiology of many diseases. The use of targeted nanoparticles (NPs) to deliver therapeutics to ECs could dramatically improve efficacy by providing elevated and sustained intracellular drug levels. However, achieving sufficient levels of NP targeting in human settings remains elusive. Here, we overcome this barrier by engineering a monobody adapter that presents antibodies on the NP surface in a manner that fully preserves their antigen-binding function. This system improves targeting efficacy in cultured ECs under flow by >1000-fold over conventional antibody immobilization using amine coupling and enables robust delivery of NPs to the ECs of human kidneys undergoing ex vivo perfusion, a clinical setting used for organ transplant. Our monobody adapter also enables a simple plug-and-play capacity that facilitates the evaluation of a diverse array of targeted NPs. This technology has the potential to simplify and possibly accelerate both the development and clinical translation of EC-targeted nanomedicines.
Collapse
Affiliation(s)
- C Albert
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - L Bracaglia
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - A Koide
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - J DiRito
- Department of Surgery, Yale University, New Haven, CT, USA
| | - T Lysyy
- Department of Surgery, Yale University, New Haven, CT, USA
| | - L Harkins
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - C Edwards
- Department of Surgery, Yale University, New Haven, CT, USA
| | - O Richfield
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University, New Haven, CT, USA
| | - J Grundler
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - K Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - E Denbaum
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - G Ketavarapu
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - T Hattori
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - S Perincheri
- Department of Pathology, Yale University, New Haven, CT, USA
| | - J Langford
- Department of Surgery, Yale University, New Haven, CT, USA
| | - A Feizi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - D Haakinson
- Department of Surgery, Yale University, New Haven, CT, USA
| | - S A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - M L Nicholson
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - J S Pober
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - W M Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - S Koide
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| | - G T Tietjen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Surgery, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Zhang Y, Zhu H, Ying Z, Gao X, Chen W, Zhan Y, Feng L, Liu CC, Dai Y. Design and Application of Metal Organic Framework ZIF-90-ZnO-MoS 2 Nanohybrid for an Integrated Electrochemical Liquid Biopsy. NANO LETTERS 2022; 22:6833-6840. [PMID: 35819288 DOI: 10.1021/acs.nanolett.2c01613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Limited healthcare capacity highlights the needs of integrated sensing systems for personalized health-monitoring. However, only limited sensors can be employed for point-of-care applications, emphasizing the lack of a generalizable sensing platform. Here, we report a metal organic framework (MOF) ZIF-90-ZnO-MoS2 nanohybrid-based integrated electrochemical liquid biopsy (ELB) platform capable of direct profiling cancer exosomes from blood. Using a bottom-up approach for sensor design, a series of critical sensing functions is considered and encoded into the MOF material interface by programming the material with different chemical and structural features. The MOF-based ELB platform is able to achieve one-step sensor fabrication, target isolation, nonfouling and high-sensitivity sensing, direct signal transduction, and multiplexed detection. We demonstrated the capability of the designed sensing system on differentiating cancerous groups from healthy controls by analyzing clinical samples from lung cancer patients, providing a generalizable sensing platform.
Collapse
Affiliation(s)
- Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Hao Zhu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zi Ying
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Wei Chen
- Department of Emergency, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yueping Zhan
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Zherdev AV, Dzantiev BB. Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Iijima M, Yamada Y, Nakano H, Nakayama T, Kuroda S. Bio-nanocapsules for oriented immobilization of DNA aptamers on aptasensors. Analyst 2022; 147:489-495. [PMID: 35023508 DOI: 10.1039/d1an02278d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The oriented immobilization of sensing molecules (e.g., IgGs, receptors, lectins, and DNA aptamers) on sensor chips is particularly important for maximizing the potential of the sensing molecules, thereby enhancing the sensitivity and target-binding capacity of biosensors. We previously developed ∼30 nm bio-nanocapsules (ZZ-BNCs) consisting of the hepatitis B virus envelope L protein fused with the tandem form of protein A-derived IgG Fc-binding Z domain (ZZ-L protein). ZZ-BNC acts successfully as a scaffold, enhancing both the sensitivity and binding capacity of IgG, a Fc-fused receptor, and Fc-fused lectin to antigens, cytokines, and sugar chains through an oriented immobilization on a biosensor surface. To expand the versatility of ZZ-BNC, we modified ZZ-BNC by replacing the ZZ domain with a DNA-binding single-chain lambda Cro (scCro) domain, thereby developing scCro-BNC. The scCro-BNC was synthesized in yeast cells and homogeneously purified as ∼30 nm sized nanoparticles. In a quartz crystal microbalance, an scCro-BNC-coated sensor chip immobilized with thrombin-binding DNA aptamers showed an ∼5.5-fold higher thrombin-binding capacity and ∼6000-fold higher detection sensitivity than a sensor chip directly coated with DNA aptamers. In addition, the number of bound thrombin molecules per molecule of DNA aptamer increased by ∼7.8-fold with an scCro-BNC coating, consistent with the theoretical thrombin-binding capacity. Collectively, scCro-BNC was shown to perform as an ideal scaffold for maximizing the potential of the DNA aptamer by immobilizing it in an oriented manner. Facilitating a highly sensitive detection of various target molecules, these BNC-based scaffolds are expected to improve a wide range of biosensors while minimizing the number of sensing molecules required.
Collapse
Affiliation(s)
- Masumi Iijima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.,Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Yuki Yamada
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Nakano
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Tsutomu Nakayama
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Shun'ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Lou D, Fan L, Jiang T, Zhang Y. Advances in nanoparticle‐based lateral flow immunoassay for point‐of‐care testing. VIEW 2022. [DOI: 10.1002/viw.20200125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Doudou Lou
- Jiangsu Institute for Food and Drug Control 17 Kangwen Road Nanjing P. R. China
| | - Lin Fan
- School of Geographic and Biologic Information Nanjing University of Posts and Telecommunications Nanjing P. R. China
| | - Tao Jiang
- Army of Reserve Infantry Division in Heilongjiang Province Harbin Heilongjiang Province P. R. China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Southeast University Nanjing P. R. China
| |
Collapse
|
9
|
Sotnikov DV, Byzova NA, Zherdev AV, Dzantiev BB. Retention of Activity by Antibodies Immobilized on Gold Nanoparticles of Different Sizes: Fluorometric Method of Determination and Comparative Evaluation. NANOMATERIALS 2021; 11:nano11113117. [PMID: 34835881 PMCID: PMC8625478 DOI: 10.3390/nano11113117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Antibody–nanoparticle conjugates are widely used analytical reagents. An informative parameter reflecting the conjugates’ properties is the number of antibodies per nanoparticle that retain their antigen-binding ability. Estimation of this parameter is characterized by a lack of simple, reproducible methods. The proposed method is based on the registration of fluorescence of tryptophan residues contained in proteins and combines sequential measurements of first the immobilized antibody number and then the bound protein antigen number. Requirements for the measurement procedure have been determined to ensure reliable and accurate results. Using the developed technique, preparations of spherical gold nanoparticles obtained by the most common method of citrate reduction of gold salts (the Turkevich–Frens method) and varying in average diameter from 15 to 55 nm have been characterized. It was shown that the number of antibodies (immunoglobulins G) bound by one nanoparticle ranged from 30 to 194 during adsorptive unoriented monolayer immobilization. C-reactive protein was considered as the model antigen. The percentage of antibody valences that retained their antigen-binding properties in the conjugate increased from 17 to 34% with an increase in the diameter of gold nanoparticles. The proposed method and the results of the study provide tools to assess the capabilities of the preparations of gold nanoparticles and their conjugates as well as the expediency of seeking the best techniques for various practical purposes.
Collapse
|
10
|
Gao S, Rojas-Vega F, Rocha-Martin J, Guisán JM. Oriented immobilization of antibodies through different surface regions containing amino groups: Selective immobilization through the bottom of the Fc region. Int J Biol Macromol 2021; 177:19-28. [PMID: 33607135 DOI: 10.1016/j.ijbiomac.2021.02.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
Amino groups on the antibody surface (amino terminus and Lys) are very interesting conjugation targets due to their substantial quantities and selectivity toward various reactive groups. Oriented immobilization of antibodies via amino moieties on the Fc region instead of the antigen-binding fragment (Fab) is highly appreciated to conserve antigen-binding capacity. In this paper, targeting amino moieties on distinct regions, three antibody immobilization strategies were compared with the recognition ability of corresponding adsorbents. Our results demonstrate that oriented immobilization of antibodies onto heterofunctional chelate-epoxy support selectively involving Lys residues placed at the bottom of the Fc region, thus preserved the highest antigen recognition capacity (over 75% functionality). For homofunctional aldehyde support, immobilization at pH 10 demonstrates 50% remaining functionality due to the random orientation of tethered antibodies; while only 10% functionality remained when N-terminus were specifically conjugated at pH 8.5. With the rationalization of moieties density onto heterofunctional support, 2-fold recognition capacity was exhibited over randomly immobilization for antigens with higher size (β-galactosidase, 425 kDa vs. horseradish peroxidase, 40 kDa). Meanwhile, at least 97% of antigens with a varied concentration in diluted human serum were efficiently captured by the optimized chelate-epoxy support. Therefore, our antibody immobilization protocol proved the potential to be utilized as a promising candidate to capture voluminous antigens (large proteins and cells) in real samples.
Collapse
Affiliation(s)
- Shipeng Gao
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Francisco Rojas-Vega
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - José M Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Development of an impedimetric immunosensor to determine microcystin-LR. New approaches in the use of the electrochemical impedance spectroscopy was used in determining to determine kinetic parameters of immunoreactions. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
A Novel Hybrid Drug Delivery System for Treatment of Aortic Aneurysms. Int J Mol Sci 2020; 21:ijms21155538. [PMID: 32748844 PMCID: PMC7432022 DOI: 10.3390/ijms21155538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ongoing aortic wall degeneration and subsequent aneurysm exclusion failure are major concerns after an endovascular aneurysm repair with a stent-graft. An ideal solution would be a drug therapy that targets the aortic wall and inhibits wall degeneration. Here, we described a novel drug delivery system, which allowed repetitively charging a graft with therapeutic drugs and releasing them to the aortic wall in vivo. The system was composed of a targeted graft, which was labeled with a small target molecule, and the target-recognizing nanocarrier, which contained suitable drugs. We developed the targeted graft by decorating a biotinylated polyester graft with neutravidin. We created the target-recognizing nanocarrier by conjugating drug-containing liposomes with biotinylated bio-nanocapsules. We successfully demonstrated that the target-recognizing nanocarriers could bind to the targeted graft, both in vitro and in blood vessels of live mice. Moreover, the drug released from our drug delivery system reduced the expression of matrix metalloproteinase-9 in mouse aortas. Thus, this hybrid system represents a first step toward an adjuvant therapy that might improve the long-term outcome of endovascular aneurysm repair.
Collapse
|
13
|
Iijima M, Yamada Y, Nakayama T, Kuroda S. Enhanced sugar chain detection by oriented immobilization of Fc-fused lectins. Biosci Biotechnol Biochem 2020; 84:1775-1779. [PMID: 32475227 DOI: 10.1080/09168451.2020.1773757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We report a novel scaffold for clustering and oriented immobilization of human IgG1 Fc-fused lectins on biosensors without chemical modifications. This approach uses a bio-nanocapsule (BNC) displaying a tandem form of IgG Fc-binding Z domains derived from Staphylococcus aureus protein A (ZZ-BNC). Incorporating ZZ-BNC effectively increased both the sensitivity and sugar chain-binding capacity compared with the condition without ZZ-BNC.
Collapse
Affiliation(s)
- Masumi Iijima
- The Institute of Scientific and Industrial Research, Osaka University , Ibaraki, Osaka, Japan.,Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Setagaya, Tokyo, Japan
| | - Yuki Yamada
- The Institute of Scientific and Industrial Research, Osaka University , Ibaraki, Osaka, Japan
| | - Tsutomu Nakayama
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Setagaya, Tokyo, Japan
| | - Shun'ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University , Ibaraki, Osaka, Japan
| |
Collapse
|
14
|
Della Ventura B, Banchelli M, Funari R, Illiano A, De Angelis M, Taroni P, Amoresano A, Matteini P, Velotta R. Biosensor surface functionalization by a simple photochemical immobilization of antibodies: experimental characterization by mass spectrometry and surface enhanced Raman spectroscopy. Analyst 2020; 144:6871-6880. [PMID: 31686068 DOI: 10.1039/c9an00443b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Surface functionalization is a key step in biosensing since it is the basis of an effective analyte recognition. Among all the bioreceptors, antibodies (Abs) play a key role thanks to their superior specificity, although the available immobilization strategies suffer from several drawbacks. When gold is the interacting surface, the recently introduced Photochemical Immobilization Technique (PIT) has been shown to be a quick, easy-to-use and very effective method to tether Abs oriented upright by means of thiols produced via tryptophan mediated disulphide bridge reduction. Although the molecular mechanism of this process is quite well identified, the detailed morphology of the immobilized antibodies is still elusive due to inherent difficulties related to the microscopy imaging of Abs. The combination of Mass Spectrometry, Surface-Enhanced Raman Spectroscopy and Ellman's assay demonstrates that Abs irradiated under the conditions in which PIT is realized show only two effective disulphide bridges available for binding. They are located in the constant region of the immunoglobulin light chain so that the most likely position Ab assumes is side-on, i.e. with one Fab (i.e. the antigen binding portion of the antibody) exposed to the solution. This is not a limitation of the recognition efficiency in view of the intrinsic flexibility of the Ab structure, which makes the free Fab able to sway in the solution, a feature of great importance in many biosensing applications.
Collapse
Affiliation(s)
- Bartolomeo Della Ventura
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 - Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sung KJ, Jabbour Al Maalouf Y, Johns QR, Miller EA, Sikes HD. Functional comparison of paper-based immunoassays based on antibodies and engineered binding proteins. Analyst 2020; 145:2515-2519. [PMID: 32163071 DOI: 10.1039/d0an00299b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Binding protein scaffolds, such as rcSso7d, have been investigated for use in diagnostic tests; however, the functional performance of rcSso7d has not yet been studied in comparison to antibodies. Here, we assessed the analyte-binding capabilities of rcSso7d and antibodies on cellulose with samples in buffer and 100% human serum.
Collapse
Affiliation(s)
- Ki-Joo Sung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
16
|
Iijima M, Nakayama T, Kuroda S. Two-dimensional membrane scaffold for the oriented immobilization of biosensing molecules. Biosens Bioelectron 2020; 150:111860. [PMID: 31735623 DOI: 10.1016/j.bios.2019.111860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 11/28/2022]
Abstract
The orientation and density of biosensing molecules on sensor chip should be precisely controlled to improve sensitivity and ligand-binding capacity. We previously developed a ~30-nm bio-nanocapsule (ZZ-BNC), consisting of the hepatitis B virus envelope L protein fused with the tandem form of protein A-derived IgG Fc-binding Z domain (ZZ-L protein). This is used as a robust nanoparticle scaffold to enhance the sensitivity and ligand-binding capacity of IgGs and Fc-fused sensing molecules (Fc-fused receptors). However, due to their rigid particle structure, the surface density of ZZ-L proteins could not be optimized for biosensor functions, and useless ZZ-L proteins become stuck between ZZ-BNC and the sensor chip. Here, we have developed a planar lipid membrane embedded with ZZ-L micelles (ZZ-L membrane), which could modify the surface of any biosensor chip with a controlled density of ZZ-L proteins. Compared with ZZ-BNC, the sensitivity and ligand-binding capacity of IgGs were enhanced about 10-fold with the ZZ-L membrane. Furthermore, the immobilized IgGs could capture their respective antigens almost stoichiometrically, indicating that ZZ-L membrane is the most ideal scaffold for Fc-fused sensing molecules in terms of both clustering and oriented immobilization.
Collapse
Affiliation(s)
- Masumi Iijima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan; Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Tsutomu Nakayama
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Shun'ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
17
|
Miyao H, Uemura U, Sueda S. Stepwise Preparation of a Polymer Comprising Protein Building Blocks on a Solid Support for Immunosensing Platform. ANAL SCI 2020; 36:213-217. [PMID: 31548440 DOI: 10.2116/analsci.19p318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In immunosensing, immobilization of the antibody on the sensing platform significantly influences the performance of the sensor. Herein, we propose a novel antibody-immobilization method based on a protein-polymer chain containing multiple copies of an antibody-binding protein, the Z-domain. In our approach, the Z-domain-containing polymer is prepared on the surface of the sensing platform with a biotinylation reaction from the archaeon Sulfolobus tokodaii. Biotinylation from S. tokodaii has a unique property by which biotin protein ligase (BPL) forms an extremely stable complex with its biotinylated substrate protein (BCCP). Here, we employed two types of engineered proteins: one was the fusion protein of BCCP with the Z-domain (BZB), in which BCCP was genetically attached to the N- and C-termini of the Z-domain; the other was a BPL dimer prepared by connecting two BPL molecules with a cross-linking reagent. We applied these two engineered proteins alternately onto the BPL-modified solid support of the surface plasmon resonance sensor chip, and succeeded in growing polymer chains comprising multiple units of BZB and the BPL dimer. The antibody-binding capability of the Z-domain-containing polymer thus prepared is adjustable by controlling the number of cycles of protein addition and the surface density of the polymer on the solid support.
Collapse
Affiliation(s)
- Hiroki Miyao
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
| | - Utaro Uemura
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
| | - Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology
| |
Collapse
|
18
|
Lin CH, Lin MJ, Huang JD, Chuang YS, Kuo YF, Chen JC, Wu CC. Label-Free Impedimetric Immunosensors Modulated by Protein A/Bovine Serum Albumin Layer for Ultrasensitive Detection of Salbutamol. SENSORS 2020; 20:s20030771. [PMID: 32023863 PMCID: PMC7038488 DOI: 10.3390/s20030771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
The sensing properties of immunosensors are determined not only by the amount of immobilized antibodies but also by the number of effective antigen-binding sites of the immobilized antibody. Protein A (PA) exhibits a high degree of affinity with the Fc part of IgG antibody to feasibly produce oriented antibody immobilization. This work proposes a simple method to control the PA surface density on gold nanostructure (AuNS)-deposited screen-printed carbon electrodes (SPCEs) by mixing concentration-varied PA and bovine serum albumin (BSA), and to explore the effect of PA density on the affinity attachment of anti-salbutamol (SAL) antibodies by electrochemical impedance spectroscopy. A concentration of 100 μg/mL PA and 100 μg/mL BSA can obtain a saturated coverage on the 3-mercaptoproponic acid (MPA)/AuNS/SPCEs and exhibit a 50% PA density to adsorb the amount of anti-SAL, more than other concentration-varied PA/BSA-modified electrodes. Compared with the randomly immobilized anti-SAL/MPA/AuNS/SPCEs and the anti-SAL/PA(100 μg/mL):BSA(0 μg/mL)/MPA/AuNS/SPCE, the anti-SAL/PA(100 μg/mL): BSA(100 μg/mL)/MPA/AuNS/SPCE-based immunosensors have better sensing properties for SAL detection, with an extremely low detection limit of 0.2 fg/mL and high reproducibility (<2.5% relative standard deviation). The mixture of PA(100 μg/mL):BSA(100 μg/mL) for the modification of AuNS/SPCEs has great promise for forming an optimal protein layer for the oriented adsorption of IgG antibodies to construct ultrasensitive SAL immunosensors.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Ming-Jie Lin
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Jie-De Huang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Yu-Sheng Chuang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Yu-Fen Kuo
- Metal Industries Research & Development Centre, Kaohsiung 811, Taiwan;
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Correspondence: (J.-C.C.); (C.-C.W.); Tel.: +886-3-5712-121 (ext. 54047) (J.-C.C.); +886-4-2285-1268 (C.-C.W.)
| | - Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
- Correspondence: (J.-C.C.); (C.-C.W.); Tel.: +886-3-5712-121 (ext. 54047) (J.-C.C.); +886-4-2285-1268 (C.-C.W.)
| |
Collapse
|
19
|
McKeating KS, Hinman SS, Rais NA, Zhou Z, Cheng Q. Antifouling Lipid Membranes over Protein A for Orientation-Controlled Immunosensing in Undiluted Serum and Plasma. ACS Sens 2019; 4:1774-1782. [PMID: 31262175 DOI: 10.1021/acssensors.9b00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An important advance in biosensor research is the extension and application of laboratory-developed methodologies toward clinical diagnostics, though the propensity toward nonspecific binding of materials in clinically relevant matrices, such as human blood serum and plasma, frequently leads to compromised assays. Several surface chemistries have been developed to minimize nonspecific interactions of proteins and other biological components found within blood and serum samples, though these often exhibit substantially variable outcomes. Herein we report a surface chemistry consisting of a charged-matched supported lipid membrane that has been tailored to form over a gold surface functionalized with protein A. Fine tuning of the interfacial charge of this membrane, along with rational selection of a backfilling self-assembled monolayer, allows for high surface coverage with retention of orientation-controlled capture antibody attachment. We demonstrate using surface-plasmon resonance (SPR) that this highly charged lipid membrane is antifouling, allowing for complete removal of nonspecific human serum and plasma components using only a mild buffer rinse, which we attribute to unique steric interactions with the underlying surface. Furthermore, this surface chemistry is successfully applied for specific detection of IgG and cholera toxin in undiluted human biofluids with negligible sacrifice of SPR signal compared to buffered analysis. This novel lipid membrane interface over protein A may open new avenues for direct biosensing of disease markers within clinical samples.
Collapse
Affiliation(s)
| | | | | | - Zhiguo Zhou
- Luna Innovations Inc., Danville, Virginia 24541, United States
| | | |
Collapse
|
20
|
Jin J, Ma J, Song L, Jiang W, Ederth T. Fabrication of a polypropylene immunoassay platform by photografting reaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:492-501. [PMID: 31147020 DOI: 10.1016/j.msec.2019.04.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/23/2019] [Accepted: 04/24/2019] [Indexed: 10/27/2022]
Abstract
The technology of an immunoassay detection platform is critical to clinical disease diagnoses, especially for developing a medical diagnostic system. A polymer-based immunoassay platform was fabricated on nonwoven fabric polypropylene (PP) using a photografting reaction to graft 2-hydroxyethyl methacrylate (HEMA) and sulfobetaine (SBMA). The antifouling properties of PP-g-P(HEMA-co-SBMA) were investigated by fibrinogen adsorption and platelet adhesion. Carbonyldiimidazole was employed to activate the pendant hydroxyl groups in HEMA moieties and covalently coupled antibody molecules. The detection of the limit of the immunoassay platform was as low as 10 pg/mL. Antibody amount and bioactivity affected the availability of antibody and the sensitivity of immunoassay. The immune efficiency was dependent on the strategies of antibody immobilization. The immune efficiency of Au-g-P(SBMA-co-HEMA) and Au-SH surfaces measured by QCM-D was 165% and 35.7%, respectively. The covalently binding antibody via hydrophilic polymer chains as spacers could retain fragment antigen-binding up orientation, maintain the bioactivity of antibody, and mainly improve the accessibility of antibody molecules via adjusting the conformations of polymer chains when the antibodies recognized the antigens. Therefore, grafting hydrophilic polymers, such as zwitterionic PSBMA and reactive PHEMA onto nonwoven fabric PP, and binding antibody by covalent strategy had the potential to be developed as a commercial immunoassay platform.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Division of Molecular Physics, IFM, Linköping University, 58183 Linköping, Sweden
| | - Jiao Ma
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials and Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Thomas Ederth
- Division of Molecular Physics, IFM, Linköping University, 58183 Linköping, Sweden.
| |
Collapse
|
21
|
Abstract
Modern analysis of food and feed is mostly focused on development of fast and reliable portable devices intended for field applications. In this review, electrochemical biosensors based on immunological reactions and aptamers are considered in the determination of mycotoxins as one of most common contaminants able to negatively affect human health. The characteristics of biosensors are considered from the point of view of general principles of bioreceptor implementation and signal transduction providing sub-nanomolar detection limits of mycotoxins. Moreover, the modern trends of bioreceptor selection and modification are discussed as well as future trends of biosensor development for mycotoxin determination are considered.
Collapse
|
22
|
Iijima M, Araki K, Liu Q, Somiya M, Kuroda S. Oriented immobilization to nanoparticles enhanced the therapeutic efficacy of antibody drugs. Acta Biomater 2019; 86:373-380. [PMID: 30641288 DOI: 10.1016/j.actbio.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/26/2022]
Abstract
Antibody drugs have been important therapeutic agents for treating various diseases, such as cancer, rheumatism, and hypercholesterolemia, for the last three decades. Despite showing excellent therapeutic efficacy with good safety in vivo, they require high doses. We have developed a ∼30-nm bio-nanocapsule (ZZ-BNC) consisting of hepatitis B virus envelope L protein fused with the tandem form of protein A-derived IgG Fc-binding Z domain (ZZ-L protein), for tethering antibodies in an oriented immobilization manner. In this study, antibody drugs were spontaneously conjugated to ZZ-BNC, which displayed the IgG Fv regions outwardly. The anti-human epidermal growth factor receptor IgG conjugated to ZZ-BNC (α-hEGFR-ZZ-BNC) was endocytosed by the human epidermoid carcinoma A431 cells, with increases in cellular uptake by ∼1.5 fold, compared that of α-hEGFR IgG alone. The amount of α-hEGFR IgG in the late endosomes and lysosomes was increased from 4% to 33% by the conjugation to ZZ-BNC. The in vitro cytotoxicity of α-hEGFR-ZZ-BNC was higher by ∼10-fold than that of α-hEGFR IgG alone. Furthermore, in vivo tumor growth was significantly reduced by α-hEGFR-ZZ-BNC than by α-hEGFR IgG alone. Taken together, since endosomal EGFR, not cell surface EGFR, played a pivotal role in the EGFR-mediated signaling cascade, ZZ-BNC increased α-hEGFR IgG avidity by efficiently repressing the activation of hEGFR not only on the cell surface, but presumably also in the endosomes. These results strongly suggested that ZZ-BNC is a promising nano-scaffold for enhancing the therapeutic efficacy and reducing the dose of antibody drugs. STATEMENT OF SIGNIFICANCE: Antibody drugs are widely used for treating severe diseases, such as cancer, rheumatism, and hypercholesterolemia. These drugs are composed of naturally occurring biomaterials with low immunogenicity and toxicity, as well as long in vivo serum half-life. To achieve sufficient therapeutic efficacy, the dose of antibody drugs are unavoidably higher than those of conventional drugs. The present study shows an innovative way to reduce the dose of antibody drugs by using a nanocarrier-conjugated antibody. Oriented immobilization of the antibody enhanced its avidity, endocytosis efficiency, and therapeutic efficacy.
Collapse
Affiliation(s)
- Masumi Iijima
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan; Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kyoko Araki
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Quishi Liu
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Masaharu Somiya
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan.
| |
Collapse
|
23
|
Choi H, Jung Y. Applying Multivalent Biomolecular Interactions for Biosensors. Chemistry 2018; 24:19103-19109. [DOI: 10.1002/chem.201801408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Hyeongjoo Choi
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 Korea
| | - Yongwon Jung
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 Korea
| |
Collapse
|
24
|
Application of elastin-based nanoparticles displaying antibody binding domains for a homogeneous immunoassay. Anal Biochem 2018; 544:72-79. [DOI: 10.1016/j.ab.2017.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023]
|
25
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|