1
|
Kocak M, Can Osmanogullari S, Soyler D, Arın Ozturmen B, Bekircan O, Biyiklioglu Z, Soylemez S. Synthesis and comparison of the performance of two different water-soluble phthalocyanine based electrochemical biosensor. Bioelectrochemistry 2024; 160:108788. [PMID: 39106731 DOI: 10.1016/j.bioelechem.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Herein, a comparative study between novel water-soluble phthalocyanine-based biosensors was performed for the application of glucose sensing. For this purpose, two different copper (II) and manganese (III) phthalocyanines and their water-soluble derivatives were synthesized, and then their role as a supporting material for enzyme immobilization was evaluated by comparing their sensor performances. Two different phthalocyanine (AP-OH2-MnQ (MnPc) and AP-OH2-CuQ (CuPc)) were tested using electrochemical biosensor with immobilized glucose oxidase (GOx). To the best of our knowledge, the related water-soluble phthalocyanine-based glucose biosensors were attempted for the first time, and the developed approach resulted in improved biosensor characteristics. The constructed biosensors GE/MnPc/GOx and GE/CuPc/GOx showed good linearity between 0.003-1.0 mM and 0.05-0.4 mM, respectively. The limit of detection was estimated at 0.0026 mM for the GE/MnPc/GOx and 0.019 mM for the GE/CuPc/GOx. KMapp and sensitivity values were also calculated as 0.026 mM and 175.043 µAmM-1 cm-2 for the GE/MnPc/GOx biosensor and 0.178 mM and 117.478 µAmM-1 cm-2 for the GE/CuPc/GOx biosensor. Moreover, the fabricated biosensors were successfully tested to detect glucose levels in beverages with high recovery results. The present study shows that the proposed water-soluble phthalocyanines could be a good alternative for quick and cheap glucose sensing with improved analytical characteristics.
Collapse
Affiliation(s)
- Merve Kocak
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey
| | - Sila Can Osmanogullari
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Dilek Soyler
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey
| | - Berivan Arın Ozturmen
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Zekeriya Biyiklioglu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Saniye Soylemez
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey.
| |
Collapse
|
2
|
Diaz-Gonzalez J, Arriaga LG, Casanova-Moreno JR. Probing the influence of crosslinkers on the properties, response, and degradation of enzymatic hydrogels for electrochemical glucose biosensing through fluorescence analysis. RSC Adv 2024; 14:9514-9528. [PMID: 38516160 PMCID: PMC10953846 DOI: 10.1039/d4ra00265b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Drop-cast crosslinked hydrogels are a common platform for enzymatic electrochemical biosensors. Despite the widespread use of these complex systems, there are still several questions about how their physicochemical properties affect their performance, stability, and reproducibility. In this work, first-generation faradaic biosensors composed of glucose oxidase and branched polyethyleneimine (BPEI) are prepared using either glutaraldehyde (GA) or ethylene glycol diglycidyl ether (EGDGE) as crosslinkers. While EGDGE gels present an increasing electrochemical response with increasing crosslinker concentration, the current of GA gels decreases at high crosslinker concentration probably due to the hampered diffusion on tightly networked gels. We compared different strategies to use fluorescence microscopy to gain insight into the gel structure either by labeling the gel components with fluorophores or taking advantage of the intrinsic fluorescence of the imines formed upon crosslinking with GA. By monitoring the fluorescence of the crosslinking bonds and the electrochemical response, we demonstrate that hydrolysis, a common hydrogel degradation mechanism, is not responsible for the loss of electrical current over time in gels prepared with glutaraldehyde. Most hydrogel-based electrochemical biosensor studies do not perform specific experiments to determine the cause of the degradation and instead just infer it from the dependence of the current on the preparation conditions (most commonly concentrations). We show that, by taking advantage of several analytical techniques, it is possible to gain more knowledge about the degradation mechanisms and design better enzymatic biosensors.
Collapse
Affiliation(s)
- Jancarlo Diaz-Gonzalez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Pedro Escobedo Querétaro 76703 Mexico
| | - L G Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Pedro Escobedo Querétaro 76703 Mexico
| | - Jannu R Casanova-Moreno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica Pedro Escobedo Querétaro 76703 Mexico
| |
Collapse
|
3
|
Cong C, Subramanian S, Bodkhe GA, Wang G, Li Z, Wang R, Li X, Kim M, Kim SH. 3D Carbon-Based Conductive Network Printed for Glucose Sensors on Curved and Flexible Substrates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7543-7553. [PMID: 38297812 DOI: 10.1021/acsami.3c14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The rising prevalence of diabetes has led to an increased focus on real-time glucose monitoring. Wearable glucose sensor patches allow noninvasive, real-time monitoring, reducing patient discomfort compared to invasive sensors. However, most existing glucose sensor patches rely on complex and contaminating metal vapor deposition technologies, which pose limitations in practical production. In this study, we propose a novel approach for preparing graphite/multiwall carbon nanotubes (MWCNT)/reduced graphene oxide (rGO) using a high-viscosity ink, which can be easily obtained through simple mechanical stirring. To create intricate patterns and enable printing on curved substrates, we employed a 3D printer equipped with an infrared laser ranging system. The ink served as a working electrode, and we developed a three-electrode system patch with a concentric circle structure. Subsequently, the working electrode underwent enzymatic modification with glucose dehydrogenase with flavin adenine dinucleotide (GDH-FAD) using a polymer embedding method. The resulting wearable glucose sensor exhibited a sensitivity of 2.42 μA mM-1 and a linear detection range of 1-12 mM. In addition, the glucose sensor has excellent anti-interference capability and demonstrates good repeatability in simulated real human wear scenarios, which meets the requirements for accurate human detection. These findings provide valuable insights into the development of human health monitoring technologies.
Collapse
Affiliation(s)
- Chenhao Cong
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Siva Subramanian
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gajanan A Bodkhe
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Guangwei Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Zhijun Li
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rixuan Wang
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Manikanta P, Reddy KRV, Selvaraj M, Vidyasagar CC, Nagaraja BM. Novel decorated aluminium(iii) phthalocyanine complex with the application of MWCNTs on electrodes: electrochemical non-enzymatic oxidation and reduction of glucose and hydrogen peroxide. RSC Adv 2023; 13:20723-20736. [PMID: 37441052 PMCID: PMC10334413 DOI: 10.1039/d3ra02617e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we performed the physicochemical and electrochemical characterization of a decorated macrocyclic aluminium(iii) phthalocyanine complex (AlTMQNCAPc). Subsequently, the AlTMQNCAPc@MWCNT/GC electrode was used for the electrochemical detection of glucose and hydrogen peroxide (H2O2) by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA). Moreover, the limit of detection, linear range, and sensitivity for glucose and H2O2 were investigated (CV: 2.5 nM L-1 and 25 nM L-1, 50-500 μM, 0.052 and 0.072 μA μmol cm-2; DPV: 3.1 nM L-1 and 18 nM L-1, 50-500 μM, 0.062 and 0.066 μA μmol cm-2 and CA: 10 nM L-1 and 20 nM L-1, 50-500 μM, 0.098 and 0.07 μA μmol cm-2, respectively). In addition, the AlTMQNCAPc@MWCNT/GC electrode showed good selectivity for the detection of glucose and H2O2 in the presence of common interfering substances, such as AA, DA, UA, glycine, l-cysteine, nitrite, Pb(ii), Cd(ii), Cu(ii), Co(ii), Hg(ii), Zn(ii), and glucose. For the detection of glucose and H2O2, the kinetic parameters, including the electron transfer coefficient and catalytic reaction rate constant, were also established. Finally, for usage in practical applications, the modified electrode was employed to achieve the quantitative detection of glucose and H2O2 in human urine and commercial samples of 3% H2O2, respectively.
Collapse
Affiliation(s)
- P Manikanta
- Centre for Nano and Material Science (CNMS), Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India
| | - K R Venugopala Reddy
- Department of Studies and Research in Chemistry Vijayanagara Sri Krishnadevaraya University Ballari - 583105 Karnataka India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University PO Box 9004 Abha 61413 Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University PO Box 9004 Abha 61413 Saudi Arabia
| | - C C Vidyasagar
- Department of Studies and Research in Chemistry, Rani Channamma University Belagavi - 591156 Karnataka India
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Science (CNMS), Jain (Deemed-to-be University) Jain Global Campus, Kanakapura Bangalore Karnataka 562112 India
| |
Collapse
|
5
|
Paneru S, Kumar D. A Novel Electrochemical Biosensor Based on Polyaniline-Embedded Copper Oxide Nanoparticles for High-Sensitive Paraoxon-Ethyl (PE) Detection. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04350-y. [PMID: 36701097 DOI: 10.1007/s12010-023-04350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
This paper proposes a fabrication of a hyper-sensitive amperometric biosensor for paraoxon-ethyl (PE) detection. In this developed biosensor, polyaniline (PANI) and copper oxide (CuO)-based nanocomposite is used as a sensing platform. The homogeneous distribution of CuO onto the PANI matrix enhances the surface area and conductivity of the nanocomposite. Additionally, the PANI produces a compatible environment for enzyme immobilization, which further enhances the rate of electron transfer. For biosensor fabrication, the nanocomposite is deposited electrophoretically onto the ITO glass substrate and immobilization of acetylcholinesterase (AChE) enzyme is conducted onto the fabricated electrode surface. The results validate good reproducibility, good stability, and high selectivity of the fabricated biosensor (AChE/PANI@CuO/ITO). The inhibition rate of paraoxon-ethyl (PE) is recorded in the concentration range of 1-200 nM with a low limit of detection of 0.096 nM or 96 pM. The sensitivity of the developed biosensor is found to be 49.86 µA(nM)-1. The developed biosensor is further successfully accomplished for the detection of PE in real samples like rice and pulse.
Collapse
Affiliation(s)
- Saroj Paneru
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042, India
| | - Devendra Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
6
|
Ali F, Zafar A, Nisar A, Liu Y, Karim S, Faiz F, Zafar Z, Sun H, Hussain S, Faiz Y, Ali T, Javed S, Yu Y, Ahmad M. Development of MoS 2-ZnO heterostructures: an efficient bifunctional catalyst for the detection of glucose and degradation of toxic organic dyes. NEW J CHEM 2023. [DOI: 10.1039/d2nj04758f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heterostructure catalyst MoS2-ZnO possesses binary properties and provides a novel platform for the remediation of environmental as well as health issues.
Collapse
Affiliation(s)
- Farhan Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
- School of Chemical and Materials Engineering National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Amina Zafar
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
- Central Analytical Facility Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Amjad Nisar
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Yanguo Liu
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Shafqat Karim
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Faisal Faiz
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Zainab Zafar
- Experimental Physics Division, National Centre for Physics, Islamabad, 44000, Pakistan
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Shafqat Hussain
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Yasir Faiz
- Chemistry Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Tahir Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Sofia Javed
- School of Chemical and Materials Engineering National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yanlong Yu
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Mashkoor Ahmad
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| |
Collapse
|
7
|
Shafique H, de Vries J, Strauss J, Khorrami Jahromi A, Siavash Moakhar R, Mahshid S. Advances in the Translation of Electrochemical Hydrogel-Based Sensors. Adv Healthc Mater 2023; 12:e2201501. [PMID: 36300601 DOI: 10.1002/adhm.202201501] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Novel biomaterials for bio- and chemical sensing applications have gained considerable traction in the diagnostic community with rising trends of using biocompatible and lowly cytotoxic material. Hydrogel-based electrochemical sensors have become a promising candidate for their swellable, nano-/microporous, and aqueous 3D structures capable of immobilizing catalytic enzymes, electroactive species, whole cells, and complex tissue models, while maintaining tunable mechanical properties in wearable and implantable applications. With advances in highly controllable fabrication and processability of these novel biomaterials, the possibility of bio-nanocomposite hydrogel-based electrochemical sensing presents a paradigm shift in the development of biocompatible, "smart," and sensitive health monitoring point-of-care devices. Here, recent advances in electrochemical hydrogels for the detection of biomarkers in vitro, in situ, and in vivo are briefly reviewed to demonstrate their applicability in ideal conditions, in complex cellular environments, and in live animal models, respectively, to provide a comprehensive assessment of whether these biomaterials are ready for point-of-care translation and biointegration. Sensors based on conductive and nonconductive polymers are presented, with highlights of nano-/microstructured electrodes that provide enhanced sensitivity and selectivity in biocompatible matrices. An outlook on current challenges that shall be addressed for the realization of truly continuous real-time sensing platforms is also presented.
Collapse
Affiliation(s)
- Houda Shafique
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Justin de Vries
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Julia Strauss
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | | | | | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| |
Collapse
|
8
|
Electrochemical determination of glucose and H2O2 using Co(II), Ni(II), Cu(II) complexes of novel 2-(1,3-benzothiazol-2-ylamino)–N-(5-chloro-2-hydroxyphenyl)acetamide: Synthesis, structural characterization, antimicrobial, anticancer activity and docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Timur S. Ionic liquids enhancement of hydrogels and impact on biosensing applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Adv Colloid Interface Sci 2022; 305:102705. [PMID: 35640315 DOI: 10.1016/j.cis.2022.102705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/28/2022]
Abstract
In today's world, the progress of wearable tools has gained increasing momentum. Notably, the demand for stretchable strain sensors has considerably increased owing to various potential and emerging applications like human motion monitoring, soft robotics, prosthetics, and electronic skin. Hydrogels possess excellent biocompatibility, flexibility, and stretchability that render them ideal candidates for flexible/wearable substrates. Among them, enormous efforts were focused on the progress of polyvinyl alcohol (PVA) hydrogels to realize multifunctional wearable sensing through using additives/nanofillers/functional groups to modify the hydrogel network. Herein, this review offers an up-to-date and comprehensive summary of the research progress of PVA hydrogel-based wearable sensors in view of their properties, strain sensory efficiency, and potential applications, followed by specifically highlighting their probes using metallic/non-metallic, liquid metal (LM), 2D materials, bio-nanomaterials, and polymer nanofillers. Indeed, flexible electrodes and strain/pressure sensing performance of designed PVA hydrogels for their effective sensing are described. The representative cases are carefully selected and discussed regarding the construction, merits and demerits, respectively. Finally, the necessity and requirements for future advances of conductive and stretchable hydrogels engaged in the wearable strain sensors are also presented, followed by opportunities and challenges.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
11
|
Moulahoum H, Ghorbanizamani F, Guler Celik E, Timur S. Nano-Scaled Materials and Polymer Integration in Biosensing Tools. BIOSENSORS 2022; 12:301. [PMID: 35624602 PMCID: PMC9139048 DOI: 10.3390/bios12050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
12
|
Luo S, Wang R, Wang L, Qu H, Zheng L. Breath alcohol sensor based on hydrogel-gated graphene field-effect transistor. Biosens Bioelectron 2022; 210:114319. [PMID: 35512582 DOI: 10.1016/j.bios.2022.114319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/23/2023]
Abstract
The inspection of drunk driving has become an effective measure to reduce the occurrence of traffic accidents. In this work, we constructed a breath alcohol biosensor based on a hydrogel-gated graphene field-effect transistor (HGGT) with chlorella derived layered carbon nanosheets (CNs) and alcohol oxidase (AOx) embedded in the hydrogel. The sensing mechanism of the AOx/CNs functionalized sensor lies in the oxidation reaction of alcohol by AOx and the electrocatalytic oxidation reaction of the generated H2O2. The HGGT based alcohol sensor exhibited an excellent sensitivity with a very low detection limit down to 1 μM (i.e. 0.046 ppm), and has been successfully applied to breath alcohol test after drinking. Compared with normal solution-gated graphene transistors, employment of hydrogel as a source of electrolytes greatly enhances the portability of the sensor, and facilitates functionalization with enzymes and nanomaterials. Due to the advantages of real-time, high portability and accuracy of the functionalized HGGT sensor, it demonstrates a promising platform for constructing biosensors for many other analytes.
Collapse
Affiliation(s)
- Songjia Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rongrong Wang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, 236041, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
13
|
Kareem H, Langrock A, Auletta J, Mahoney L, Hallinan D, Kim H, Leff AC, Tran DT, Mackie D. Dual driven mechanism (
hygro‐redox
)
semi‐
interpenetrating polymer network composite film (
polyaniline‐polyacrylic
acid/sulfonated poly (ether ether ketone)) for artificial muscles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haval Kareem
- Sensors and Electron Devices Directorate DEVCOM Army Research Laboratory Adelphi Maryland USA
| | - Alex Langrock
- Sensors and Electron Devices Directorate DEVCOM Army Research Laboratory Adelphi Maryland USA
| | - Jeffrey Auletta
- Sensors and Electron Devices Directorate DEVCOM Army Research Laboratory Adelphi Maryland USA
| | - Luther Mahoney
- Sensors and Electron Devices Directorate DEVCOM Army Research Laboratory Adelphi Maryland USA
- Fibertek Inc. Herndon Virginia USA
| | - Daniel Hallinan
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering Tallahassee Florida USA
| | - Hyun Kim
- Sensors and Electron Devices Directorate DEVCOM Army Research Laboratory Adelphi Maryland USA
- Advanced Materials Division Korea Research Institute of Chemical Technology Daejeon South Korea
| | - Asher C. Leff
- Sensors and Electron Devices Directorate DEVCOM Army Research Laboratory Adelphi Maryland USA
- General Technical Services, LLC Wall Township New Jersey USA
| | - Dat T. Tran
- Sensors and Electron Devices Directorate DEVCOM Army Research Laboratory Adelphi Maryland USA
| | - David Mackie
- Sensors and Electron Devices Directorate DEVCOM Army Research Laboratory Adelphi Maryland USA
| |
Collapse
|
14
|
Osuna V, Vega-Rios A, Zaragoza-Contreras EA, Estrada-Moreno IA, Dominguez RB. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. BIOSENSORS 2022; 12:137. [PMID: 35323407 PMCID: PMC8946794 DOI: 10.3390/bios12030137] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/21/2023]
Abstract
Glucose measurement is a fundamental tool in the daily care of Diabetes Mellitus (DM) patients and healthcare professionals. While there is an established market for glucose sensors, the rising number of DM cases has promoted intensive research to provide accurate systems for glucose monitoring. Polyaniline (PAni) is a conductive polymer with a linear conjugated backbone with sequences of single C-C and double C=C bonds. This unique structure produces attractive features for the design of sensing systems such as conductivity, biocompatibility, environmental stability, tunable electrochemical properties, and antibacterial activity. PAni-based glucose sensors (PBGS) were actively developed in past years, using either enzymatic or non-enzymatic principles. In these devices, PAni played roles as a conductive material for electron transfer, biocompatible matrix for enzymatic immobilization, or sensitive layer for detection. In this review, we covered the development of PBGS from 2015 to the present, and it is not even exhaustive; it provides an overview of advances and achievements for enzymatic and non-enzymatic PBGB PBGS for self-monitoring and continuous blood glucose monitoring. Additionally, the limitations of PBGB PBGS to advance into robust and stable technology and the challenges associated with their implementation are presented and discussed.
Collapse
Affiliation(s)
- Velia Osuna
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| | - Alejandro Vega-Rios
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | | | - Rocio B. Dominguez
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| |
Collapse
|
15
|
Zhan T, Feng XZ, An QQ, Li S, Xue M, Chen Z, Han GC, Kraatz HB. Enzyme-free glucose sensors with efficient synergistic electro-catalysis based on a ferrocene derivative and two metal nanoparticles. RSC Adv 2022; 12:5072-5079. [PMID: 35425584 PMCID: PMC8981370 DOI: 10.1039/d1ra09213h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
Gold electrodes (GE) were modified by the deposition of copper nanoparticles (CuNPs) and cobalt nanoparticles (CoNPs), followed by drop-casting of the ferrocene derivative FcCO-Glu-Cys-Gly-OH (Fc-ECG), resulting in two enzyme-free electrochemical sensors Fc-ECG/CuNPs/GE and Fc-ECG/CuNPs/GE. The ferrocene-peptide conjugate acts as an effective redox mediator for glucose oxidation, while metal nanoparticles acted as non-biological sites for glucose oxidation. Field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out for characterization, while differential pulse voltammetry (DPV) was used for glucose quantification. Under optimized conditions, DPV shows a linear relationship between glucose concentration and the peak current. Both sensors showed a surprisingly high sensitivity of 217.27 and 378.70 μA mM-1 cm-2, respectively. A comparison to other glucose sensors shows a sensitivity that is 25 times higher. The sensors exhibit good reproducibility, stability, and repeatability. In injection experiments, recovery rates were 87.39-107.65% and 100.00-106.88%, respectively.
Collapse
Affiliation(s)
- Tao Zhan
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 P. R. China
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Qi-Qi An
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Shiyong Li
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Mingyue Xue
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Zhencheng Chen
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology Guilin 541004 P. R. China
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough Toronto Ontario M1C 1A4 Canada
| |
Collapse
|
16
|
Wei D, Zhu J, Luo L, Huang H, Li L, Yu X. Ultra‐stretchable, fast self‐healing, conductive hydrogels for writing circuits and magnetic sensors. POLYM INT 2022. [DOI: 10.1002/pi.6354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Duanli Wei
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
- College of Post and Telecommunication of Wuhan Institute of Technology Wuhan China
| | - Jiaqing Zhu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
| | - Licheng Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
| | - Huabo Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
| | - Liang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education Jianghan University Wuhan China
| | - Xianghua Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
| |
Collapse
|
17
|
Leote RJ, Matei E, Apostol NG, Enculescu M, Enculescu I, Diculescu VC. Monodispersed nanoplatelets of samarium oxides for biosensing applications in biological fluids. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Mihai D, Stefan D, Stegaru D, Bernea G, Vacaroiu I, Papacocea T, Lupușoru M, Nica A, Stiru O, Dragos D, Olaru O. Continuous glucose monitoring devices: A brief presentation (Review). Exp Ther Med 2021; 23:174. [PMID: 35069855 PMCID: PMC8764584 DOI: 10.3892/etm.2021.11097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
As diabetes prevalence is continuously increasing, better management is needed to achieve blood glucose control, in order to prevent complications and lessen the burden of this disease. Since the first measurement of glycosuria at the beginning of the 1900s', huge advances were made in monitoring glycemia. Continuous glucose monitoring systems revolutionized diabetes management, especially for patients with type 1 diabetes. Avoiding glycemic variability and maintaining optimal glycemic control is crucial for the evolution of patients with type 1 diabetes. The usefulness of glycemic monitoring devices can be extended to patients with type 2 diabetes. It is also important to note that in those patients at risk of developing high glycemic variability (e.g. patients with advanced chronic kidney disease), continuous glycemic monitoring may improve their prognosis. These monitoring systems can be classified according to the analytical method, the degree of invasiveness, the data availability and the mode of usage. The technology is constantly improving in bioanalytical performance, biocompatibility, length of wearing time, safety and clinical features. The aim of this review was to briefly present the main characteristics of glucose biosensors, glucose monitoring systems and their clinically utility.
Collapse
Affiliation(s)
- Doina Mihai
- Discipline of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, ‘N. C. Paulescu’ Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 020021, Romania
| | - Diana Stefan
- Discipline of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, ‘N. C. Paulescu’ Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 020021, Romania
| | - Daniela Stegaru
- Discipline of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, ‘N. C. Paulescu’ Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 020021, Romania
| | - Georgiana Bernea
- ‘N. C. Paulescu’ Institute of Diabetes, Nutrition and Metabolic Diseases, Diabetes Department II, Bucharest 020474, Romania
| | - Ileana Vacaroiu
- Department of Nephrology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Toma Papacocea
- Department of Neurosurgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Mircea Lupușoru
- Discipline of Physiology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Adriana Nica
- Department of Orthopedics, Anesthesia Intensive Care Unit, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Ovidiu Stiru
- Department of Cardiovascular Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Dorin Dragos
- Department of Medical Semiology, Discipline of Internal Medicine I and Nephrology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Octavian Olaru
- Department of Obstetrics and Gynecology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| |
Collapse
|
19
|
Koczorowski T, Cerbin-Koczorowska M, Rębiś T. Azaporphyrins Embedded on Carbon-Based Nanomaterials for Potential Use in Electrochemical Sensing-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2861. [PMID: 34835626 PMCID: PMC8620011 DOI: 10.3390/nano11112861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
Phthalocyanines and porphyrazines as macrocyclic aza-analogues of well-known porphyrins were deposited on diverse carbon-based nanomaterials and investigated as sensing devices. The extended π-conjugated electron system of these macrocycles influences their ability to create stable hybrid systems with graphene or carbon nanotubes commonly based on π-π stacking interactions. During a 15-year period, the electrodes modified by deposition of these systems have been applied for the determination of diverse analytes, such as food pollutants, heavy metals, catecholamines, thiols, glucose, peroxides, some active pharmaceutical ingredients, and poisonous gases. These procedures have also taken place, on occasion, in the presence of various polymers, ionic liquids, and other moieties. In the review, studies are presented that were performed for sensing purposes, involving azaporphyrins embedded on graphene, graphene oxide or carbon nanotubes (both single and multi-walled ones). Moreover, possible methods of electrode fabrication, limits of detection of each analyte, as well as examples of macrocyclic compounds applied as sensing materials, are critically discussed.
Collapse
Affiliation(s)
- Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Magdalena Cerbin-Koczorowska
- Department of Medical Education, Poznan University of Medical Sciences, 7 Rokietnicka Str., 60-806 Poznan, Poland;
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
20
|
Conductive Hydrogel-Based Electrochemical Sensor: A Soft Platform for Capturing Analyte. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100282] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrode modifications for electrochemical sensors attract a lot of attention every year. Among them, hydrogels are a relatively special class of electrode modifier. Since hydrogels often contain polymers, even though they are conductive polymers, they are not ideal electrode modifiers because of their poor conductivity. However, the micro-aqueous environment and the three-dimensional structure of hydrogels are an excellent platform for immobilizing bioactive molecules and maintaining their activity. This gives the hydrogel-modified electrochemical sensor the potential to perform specific recognition. At the same time, the rapid development of nanomaterials also makes the composite hydrogel have good electrical conductivity. This has led many scientists to become interested in hydrogel-based electrochemical sensors. In this review, we summarize the development process of hydrogel-based electrochemical sensors, starting from 2000. Hydrogel-based electrochemical sensors were initially used only as a carrier for biomolecules, mostly for loading enzymes and for specific recognition. With the widespread use of noble metal nanoparticles and carbon materials, hydrogels can now be used to prepare enzyme-free sensors. Although there are some sporadic studies on the use of hydrogels for practical applications, the vast majority of reports are still limited to the detection of common model molecules, such as glucose and H2O2. In the review, we classify hydrogels according to their different conducting strategies, and present the current status of the application of different hydrogels in electrochemical sensors. We also summarize the advantages and shortcomings of hydrogel-based electrochemical sensors. In addition, future prospects regarding hydrogel for electrochemical sensor use have been provided at the end.
Collapse
|
21
|
Manafi-Yeldaghermani R, Shahrokhian S, Hafezi Kahnamouei M. Facile preparation of a highly sensitive non-enzymatic glucose sensor based on the composite of Cu(OH)2 nanotubes arrays and conductive polypyrrole. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Shi H, Dai Z, Sheng X, Xia D, Shao P, Yang L, Luo X. Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147430. [PMID: 33964778 DOI: 10.1016/j.scitotenv.2021.147430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Environmentally friendly polymeric materials and derivative technologies play increasingly important roles in the sustainable development of our modern society. Conducting polymer hydrogels (CPHs) synergizing the advantageous characteristics of conventional hydrogels and conducting polymers are promising to satisfy the requirements of environmental sustainability. Beyond their use in energy and biomedical applications that require exceptional mechanical and electrical properties, CPHs are emerging as promising contaminant adsorbents owing to their porous network structure and regulable functional groups. Here, we review the currently available strategies for synthesizing CPHs, focusing primarily on multifunctional applications in energy storage/conversion, biomedical engineering and environmental remediation, and discuss future perspectives and challenges for CPHs in terms of their synthesis and applications. It is envisioned to stimulate new thinking and innovation in the development of next-generation sustainable materials.
Collapse
Affiliation(s)
- Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhenxi Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xin Sheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Xia
- School of Space and Environment, Beihang University, Beijing 100083, PR China.
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
23
|
Miao K, Yan L, Bi R, Ma X. Enzymatic Biosensor Based on One‐step Electrodeposition of Graphene‐gold Nanohybrid Materials and its Sensing Performance for Glucose. ELECTROANAL 2021. [DOI: 10.1002/elan.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kunpeng Miao
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| | - Long Yan
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| | - Ran Bi
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| | - Xiaoyan Ma
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| |
Collapse
|
24
|
Li W, Luo W, Li M, Chen L, Chen L, Guan H, Yu M. The Impact of Recent Developments in Electrochemical POC Sensor for Blood Sugar Care. Front Chem 2021; 9:723186. [PMID: 34395386 PMCID: PMC8360348 DOI: 10.3389/fchem.2021.723186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Rapid glucose testing is very important in the care of diabetes. Monitoring of blood glucose is the most critical indicator of disease control in diabetic patients. The invention and popularity of electrochemical sensors have made glucose detection fast and inexpensive. The first generation of glucose sensors had limitations in terms of sensitivity and selectivity. In order to overcome these problems, scientists have used a range of new materials to produce new glucose electrochemical sensors with higher sensitivity, selectivity and lower cost. A variety of different electrochemical sensors including enzymatic electrochemical sensors and enzyme-free electrochemical sensors have been extensively investigated. We discussed the development process of electrochemical glucose sensors in this review. We focused on describing the benefits of carbon materials in nanomaterials, specially graphene for sensors. In addition, we discussed the limitations of the sensors and challenges in future research.
Collapse
Affiliation(s)
- Wei Li
- ICU of Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Weixiang Luo
- Nursing Department of Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Mengyuan Li
- Hepatological Surgery Department of Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Liyu Chen
- Endocrinology Department of Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Liyan Chen
- Nursing Department of Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Hua Guan
- Respiratory Department of Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Mengjiao Yu
- Gastroenterology Department of Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
25
|
Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4672. [PMID: 34300412 PMCID: PMC8309655 DOI: 10.3390/s21144672] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Bruce Grieve
- Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| |
Collapse
|
26
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
LI YY, YANG YX, HONG SS, LIU Y, YANG Z, ZHAO BY, SU JP, WANG L. An Electrochemical Sensor Based on Redox-Active Schiff Base Polymers for Simultaneous Sensing of Glucose and pH. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60107-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Jeon WY, Kim HH, Choi YB. Development of a Glucose Sensor Based on Glucose Dehydrogenase Using Polydopamine-Functionalized Nanotubes. MEMBRANES 2021; 11:384. [PMID: 34073998 PMCID: PMC8225004 DOI: 10.3390/membranes11060384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
The electrochemical-based detection of glucose is widely used for diagnostic purposes and is mediated by enzyme-mediated signal transduction mechanisms. For such applications, recent attention has focused on utilizing the oxygen-insensitive glucose dehydrogenase (GDH) enzyme in place of the glucose oxidase (GOx) enzyme, which is sensitive to oxygen levels. Currently used Ru-based redox mediators mainly work with GOx, while Ru(dmo-bpy)2Cl2 has been proposed as a promising mediator that works with GDH. However, there remains an outstanding need to improve Ru(dmo-bpy)2Cl2 attachment to electrode surfaces. Herein, we report the use of polydopamine-functionalized multi-walled carbon nanotubes (PDA-MWCNTs) to effectively attach Ru(dmo-bpy)2Cl2 and GDH onto screen-printed carbon electrodes (SPCEs) without requiring a cross-linker. PDA-MWCNTs were characterized by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and thermal gravimetric analysis (TGA), while the fabrication and optimization of Ru(dmo-bpy)2Cl2/PDA-MWCNT/SPCEs were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The experimental results demonstrate a wide linear range of glucose-concentration-dependent responses and the multi-potential step (MPS) technique facilitated the selective detection of glucose in the presence of physiologically relevant interfering species, as well as in biological fluids (e.g., serum). The ease of device fabrication and high detection performance demonstrate a viable pathway to develop glucose sensors based on the GDH enzyme and Ru(dmo-bpy)2Cl2 redox mediator and the sensing strategy is potentially extendable to other bioanalytes as well.
Collapse
Affiliation(s)
- Won-Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Hyug-Han Kim
- Department of Chemistry, College of Science & Technology, Dankook University, Dandae-ro, Cheonan-si 31116, Chungnam, Korea;
| | - Young-Bong Choi
- Department of Chemistry, College of Science & Technology, Dankook University, Dandae-ro, Cheonan-si 31116, Chungnam, Korea;
| |
Collapse
|
29
|
Recent Applications of Point-of-Care Devices for Glucose Detection on the Basis of Stimuli-Responsive Volume Phase Transition of Hydrogel. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Önal E, Tüncel Ö, Albakour M, Çelik GG, Gürek AG, Özçelik S. Synthesizing and evaluating the photodynamic efficacy of asymmetric heteroleptic A 7B type novel lanthanide bis-phthalocyanine complexes. RSC Adv 2021; 11:6188-6200. [PMID: 35423167 PMCID: PMC8694812 DOI: 10.1039/d1ra00197c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 11/22/2022] Open
Abstract
In this study heteroleptic A7B type novel Lu(iii) and Eu(iii) lanthanide phthalocyanines (LnPc(Pox)[Pc′(AB3SH)]) with high extinction coefficients have been synthesized as candidate photosensitizers with reaction yields higher than 33%. The singlet oxygen quantum yields of LuPc(Pox)[Pc′(AB3SH)] and EuPc(Pox)[Pc′(AB3SH)], respectively, were measured 17% and 1.4% by the direct method in THF. The singlet oxygen quantum yield of LuPc(Pox)[Pc′(AB3SH)] in THF is the highest among lutetium(iii) bis-phthalocyanine complexes to date. The photodynamic efficacy of the heteroleptic lanthanide phthalocyanines was evaluated by measuring cell viabilities of A549 and BEAS-2B lung cells, selected to representing in vitro models for testing cancer and normal cells against potential drugs. The cell viabilities demonstrated concentration dependent behavior and were varied by the type of phthalocyanines complexes. Irradiation of the cells for 30 minutes with LED array at 660 nm producing flux of 0.036 J cm−2 s−1 increased cell death for LuPcPox-OAc, LuPc(Pox)[Pc′(AB3SH)] and ZnPc. The IC50 concentrations of LuPc(Pox)[Pc′(AB3SH)] and ZnPc were determined to be below 10 nM for both cell lines, agreeing very well with the singlet oxygen quantum yield measurements. These findings suggest that LuPc(Pox)[Pc′(AB3SH)] and particularly LuPcPox-OAc are promising drug candidates enabling lowered dose and shorter irradiation time for photodynamic therapy. Novel bis-lanthanide Lu(iii) and Eu(iii) phthalocyanine complexes have been designed/synthesized and tested their photodynamic efficacy for A549 and BEAS-2B cells in vitro conditions as candidate photosensitizers in PDT.![]()
Collapse
Affiliation(s)
- Emel Önal
- Department of Chemistry, Gebze Technical University Gebze 41400 Kocaeli Turkey .,Faculty of Engineering, Doğuş University Ümraniye 34775 Istanbul Turkey
| | - Özge Tüncel
- Department of Chemistry, Izmir Institute of Technology Urla 35430 Izmir Turkey
| | - Mohamad Albakour
- Department of Chemistry, Gebze Technical University Gebze 41400 Kocaeli Turkey
| | | | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University Gebze 41400 Kocaeli Turkey
| | - Serdar Özçelik
- Department of Chemistry, Izmir Institute of Technology Urla 35430 Izmir Turkey
| |
Collapse
|
31
|
Cai Y, Yang D, Yin R, Gao Y, Zhang H, Zhang W. An enzyme-free capacitive glucose sensor based on dual-network glucose-responsive hydrogel and coplanar electrode. Analyst 2021; 146:213-221. [PMID: 33099585 DOI: 10.1039/d0an01672a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glucose sensors are vital devices for blood glucose detection in the diabetes care. Different from traditional electrochemical devices based on glucose oxidase, the glucose sensor based on the glucose-responsive hydrogel is more robust owing to its enzyme-free principle. However, integrating the high sensitivity, fast response, wide measuring range and low-cost fabrication into a hydrogel sensor is still challenging. In this study, we present a physical capacitive sensor, which consists of interdigital carbon electrodes (ICEs) fabricated by a direct laser writing technology and glucose-responsive hydrogel (DexG-Con A hydrogel) built by UV curing in situ. The dielectric property of DexG-Con A hydrogel changes accordingly with the change in environmental glucose concentration. Experimental results demonstrate that in a glucose concentration range of 0-30 mM, the proposed hydrogel sensor is capable of measuring the glucose level in a repeatable and reversible manner, showing a short responsive time of less than 2 min and a high sensitivity of 8.81 pF mM-1 at a glucose range of 0-6 mM. Owing to its simple fabrication process, low-cost and high performance, the proposed glucose sensor shows great potential on batch production for continuous glucose monitoring application.
Collapse
Affiliation(s)
- Yingjie Cai
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
32
|
Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Anal Bioanal Chem 2021; 413:1441-1452. [PMID: 33388843 DOI: 10.1007/s00216-020-03108-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
A cost-effective, point of care (POC) device based on highly oriented CNT arrays was developed as an electrochemical assay for real-time and sensitive detection of glucose in complex samples. A low-cost, microcontroller-based potentiostat consisting of Arduino Due and LMP9100-EVM was developed to perform electrochemical measurements such as cyclic voltammetry (CV) and amperometry. A syringe pump based on open-source electronics was designed to direct the flow through a microfluidic chip. Vertically aligned carbon nanotube (VACNT) sensor arrays, in combination with the miniature potentiostat and the syringe pumps, were utilized as a POC device for the rapid and accurate detection of glucose. The structure and morphology of samples were characterized by field emission scanning electron microscopy (FESEM) and attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR). CV as well as electrochemical impedance spectroscopy (EIS) was performed to investigate the electrochemical behavior of the electrode with respect to different diffusion regimes. The mediator-less biosensor had a limit of detection of 23 μM and sensitivity of 1462 μA mM-1 cm-2 and 1050 μA mM-1 cm-2 at the linear range of 1.2-7.8 mM and 7.8-11.2 mM, respectively. The presence of other biological compounds such as uric acid (UA) and ascorbic acid (AA) did not interfere with the detection of glucose. Finally, the designed POC device was successfully applied for the determination of glucose in human blood plasma samples.
Collapse
|
33
|
Yan L, Ma P, Liu Y, Ma X, Chen F, Li M. 3D coral-like gold/carbon paper electrode modified with covalent and cross-linked enzyme aggregates for electrochemical sensing of glucose. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
|
35
|
Facile preparation of novel Pd nanowire networks on a polyaniline hydrogel for sensitive determination of glucose. Anal Bioanal Chem 2020; 412:6849-6858. [PMID: 32740821 DOI: 10.1007/s00216-020-02816-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 01/21/2023]
Abstract
In this study, novel Pd nanowire networks (PdNW) grown on three-dimensional polyaniline hydrogel (3D-PANI) were prepared via a facile one-step electrodeposition approach at a constant potential of - 0.2 V and further utilized as an electrochemical sensing material for sensitive determination of glucose in alkaline medium. Compared with the sensor based on Pd nanofilm (PdNF)/3D-PANI prepared by electrodeposition at - 0.9 V, the sensor based on PdNW/3D-PANI presented substantially enhanced electrocatalytic activity towards glucose oxidation, with an excellent sensitivity of 146.6 μA mM-1 cm-2, a linear range from 5.0 to 9800 μM, and a low detection limit of 0.7 μM and was, therefore, demonstrated to be available for the determination of glucose in human serum. These findings are likely attributed to the combination of advantages of both PdNW and 3D-PANI, which outperformed most other Pd-based non-enzymatic glucose sensors reported earlier. Moreover, this non-enzymatic electrochemical sensor based on PdNW/3D-PANI may serve as an alternative tool for the assay of glucose and possibly other biomolecules. Graphical abstract.
Collapse
|
36
|
Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016-2020). Biosens Bioelectron 2020; 159:112165. [DOI: 10.1016/j.bios.2020.112165] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
|
37
|
Safadi BN, Gonçalves JM, Castaldelli E, Matias TA, Rossini PO, Nakamura M, Angnes L, Araki K. Lamellar FeOcPc‐Ni/GO Composite‐Based Enzymeless Glucose Sensor. ChemElectroChem 2020. [DOI: 10.1002/celc.202000138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bill N. Safadi
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Josué M. Gonçalves
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Evandro Castaldelli
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Tiago A. Matias
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
- Center for Natural and Human Sciences (CCNH)Federal University of ABC (UFABC) Av. dos Estados 5001 Santo Andre, SP 09210-580 Brazil
| | - Pamela O. Rossini
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Marcelo Nakamura
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Lucio Angnes
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of Sao Paulo Av. Prof. Lineu Prestes 748 Butanta, Sao Paulo, SP 05508-000 Brazil
| |
Collapse
|
38
|
Olejnik A, Karczewski J, Dołęga A, Siuzdak K, Grochowska K. Novel approach to interference analysis of glucose sensing materials coated with Nafion. Bioelectrochemistry 2020; 135:107575. [PMID: 32506003 DOI: 10.1016/j.bioelechem.2020.107575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
We focus here on a novel approach to analysing the mechanisms of interference phenomena in glucose sensing, taking into account the changes within the Nafion layer deposited on the active surface. Several electrochemical techniques were used to verify the sustainability of catalytic properties of the electrode material after exposure to different compounds, i.e. ascorbic acid (AA), glycine, urea, acetylsalicylic acid (AsA), and acetaminophen (AAp). Through analysis of impedance data, we concluded that AAp and AsA were trapped permanently in the Nafion membrane, which significantly affected results repeatability. These observations were also confirmed by FT-IR investigations of the membrane after its immersion in solutions containing different interfering species. Moreover, after exposure to AsA and, unexpectedly, large concentrations of urea, the catalytic properties were completely lost, which, in consequence, make sensor reuse impossible. Such behaviour was justified by the chain reorganisation and swelling. Mechanisms involving adsorption onto the interphase and absorption in the membrane were proposed as key factors responsible for deterioration of membrane functionality and were confronted with FT-IR investigations. Following that, application of Nafion for non-invasive glucose sensor protection is unsatisfactory and cannot be considered for multiple detection procedures, especially taking into account biological fluids full of different interfering species.
Collapse
Affiliation(s)
- Adrian Olejnik
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| | - Anna Dołęga
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| | - Katarzyna Grochowska
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland.
| |
Collapse
|
39
|
Tajik S, Beitollahi H, Nejad FG, Shoaie IS, Khalilzadeh MA, Asl MS, Van Le Q, Zhang K, Jang HW, Shokouhimehr M. Recent developments in conducting polymers: applications for electrochemistry. RSC Adv 2020; 10:37834-37856. [PMID: 35515168 PMCID: PMC9057190 DOI: 10.1039/d0ra06160c] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
Scientists have categorized conductive polymers as materials having strongly reversible redox behavior and uncommon combined features of plastics and metal. Because of their multifunctional characteristics, e.g., simplistic synthesis, acceptable environmental stability, beneficial optical, electronic, and mechanical features, researchers have largely considered them for diverse applications. Therefore, their capability of catalyzing several electrode reactions has been introduced as one of their significant features. A thin layer of the conducting polymer deposited on the substrate electrode surface can augment the electrode process kinetics of several solution species. Such electrocatalytic procedures with modified conducting polymer electrodes can create beneficial utilization in diverse fields of applied electrochemistry. This review article explores typical recent applications of conductive polymers (2016–2020) as active electrode materials for energy storage applications, electrochemical sensing, and conversion fields such as electrochemical supercapacitors, lithium-ion batteries, fuel cells, and solar cells. Scientists have categorized conductive polymers as materials having strongly reversible redox behavior and uncommon combined features of plastics and metal.![]()
Collapse
|
40
|
Mounesh, Venugopal Reddy KR. The electrochemical investigation of carboxamide-PEG2-biotin-CoPc using composite MWCNTs on modified GCE: the sensitive detections for glucose and hydrogen peroxide. NEW J CHEM 2020. [DOI: 10.1039/c9nj05807a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electroanalytical study of a synthesized novel tetra-cobalt(ii) carboxamide-PEG2-biotin phthalocyanine (CoTPEG2BAPc) composite with MWCNTs to create a biosensor with a high response to glucose in the presence of H2O2.
Collapse
Affiliation(s)
- Mounesh
- Department of Chemistry
- Vijayanagara Srikrishnadevaraya University
- Ballari-583 105
- India
| | - K. R. Venugopal Reddy
- Department of Chemistry
- Vijayanagara Srikrishnadevaraya University
- Ballari-583 105
- India
| |
Collapse
|
41
|
Xiao F, Li H, Yan X, Yan L, Zhang X, Wang M, Qian C, Wang Y. Graphitic carbon nitride/graphene oxide(g-C 3N 4/GO) nanocomposites covalently linked with ferrocene containing dendrimer for ultrasensitive detection of pesticide. Anal Chim Acta 2019; 1103:84-96. [PMID: 32081192 DOI: 10.1016/j.aca.2019.12.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022]
Abstract
We report herein the design of a novel electrochemical sensing strategy for sensitive detection of pesticide based on graphitic carbon nitride (g-C3N4)/graphene oxide(GO) nanocomposite covalently bound to a ferrocene containing dendrimer(Fc-TED). The g-C3N4 with sufficient N atoms for providing lone pairs of electrons to an electron acceptor so as to enhance the adsorption towards organic molecules. The Fc-TED dendrimers with the native redox signaling center (Fe3+/Fe2+) can increase the electron transition of g-C3N4 from valence to conduction band. While GO can accelerate the electron transfer from g-C3N4 surface and Fc-TED to glassy carbon electrode(GCE), which would amplify the electrochemical signal of g-C3N4/GO/Fc-TED/GCE sensor and then improve the sensing performance. It is found that the fabricated electrode demonstrated an admirable electrochemical sensing performance towards metolcarb in terms of low detection limit (8.3 nM), wide concentration range (0.045-213 μM) and rapid response time (2s). The proposed sensor can selectively detect the metolcarb and easily discriminated metolcarb from the possible interfering species. The practical applicability of the sensor was successfully evaluated in real vegetable sample and achieved satisfactory recoveries with good precision and accuracy.
Collapse
Affiliation(s)
- Fengjuan Xiao
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China.
| | - Hongli Li
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Xinrui Yan
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Lu Yan
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Xuefei Zhang
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Meng Wang
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Cheng Qian
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| | - Yiqi Wang
- School of Material Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, No. 17 North 2nd-Ring East Road, Shijiazhuang, Hebei, China
| |
Collapse
|
42
|
|
43
|
Muthusankar E, Ragupathy D. Graphene/Poly(aniline-co-diphenylamine) nanohybrid for ultrasensitive electrochemical glucose sensor. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Dhanjai, Sinha A, Kalambate PK, Mugo SM, Kamau P, Chen J, Jain R. Polymer hydrogel interfaces in electrochemical sensing strategies: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Al-Sagur H, Shanmuga sundaram K, Kaya E, Durmuş M, Basova T, Hassan A. Amperometric glucose biosensing performance of a novel graphene nanoplatelets-iron phthalocyanine incorporated conducting hydrogel. Biosens Bioelectron 2019; 139:111323. [DOI: 10.1016/j.bios.2019.111323] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/12/2019] [Indexed: 12/25/2022]
|
46
|
Feng X, Liu C, Wang X, Jiang Y, Yang G, Wang R, Zheng K, Zhang W, Wang T, Jiang J. Functional Supramolecular Gels Based on the Hierarchical Assembly of Porphyrins and Phthalocyanines. Front Chem 2019; 7:336. [PMID: 31157209 PMCID: PMC6530257 DOI: 10.3389/fchem.2019.00336] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Supramolecular gels containing porphyrins and phthalocyanines motifs are attracting increased interests in a wide range of research areas. Based on the supramolecular gels systems, porphyrin or phthalocyanines can form assemblies with plentiful nanostructures, dynamic, and stimuli-responsive properties. And these π-conjugated molecular building blocks also afford supramolecular gels with many new features, depending on their photochemical and electrochemical characteristics. As one of the most characteristic models, the supramolecular chirality of these soft matters was investigated. Notably, the application of supramolecular gels containing porphyrins and phthalocyanines has been developed in the field of catalysis, molecular sensing, biological imaging, drug delivery and photodynamic therapy. And some photoelectric devices were also fabricated depending on the gelation of porphyrins or phthalocyanines. This paper presents an overview of the progress achieved in this issue along with some perspectives for further advances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
47
|
Liu G, Ma C, Jin BK, Chen Z, Cheng FL, Zhu JJ. Electrochemiluminescence Investigation of Glucose Transporter 4 Expression at Skeletal Muscle Cells Surface Based on a Graphene Hydrogel Electrode. Anal Chem 2019; 91:3021-3026. [PMID: 30693766 DOI: 10.1021/acs.analchem.8b05340] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In situ detection of the expression level of cell-surface receptors has become a hotspot study in recent years. We propose in this manuscript a novel strategy for sensitive electrochemiluminescence (ECL) detection of glucose transporter 4 (GLUT4) on human skeletal muscle cells (HSMCs). Graphene hydrogel (GH) was selected to fabricate a permeable electrode with the purpose of overcoming the steric hindrance of cells on electrode, which leads to errors in the detection of cell-surface receptors. GLUT4 was labeled with carbon dots (CDs), which generate ECL emission at the interface between GH and cells, so about half the amount of GLUT4 expressed at the cell surface could be determined, which provided an accurate GLUT4 expression quantification. The prepared cytosensor exhibited good analytical performance for HSMC cells, ranging from 500 to 1.0 × 106 cells·mL-1, with a detection limit of 200 cells·mL-1. The average amount of GLUT4 per HSMC cell was calculated to be 1.88 × 105. Furthermore, GLUT4 on HSMC surface had a 2.3-fold increase under the action of insulin. This strategy is capable of evaluating the receptors on the cell surface, which may push the application of ECL for disease diagnosis.
Collapse
Affiliation(s)
- Gen Liu
- College of Chemistry & Chemical Engineering , Anhui University , Hefei 230601 , P. R. China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Bao-Kang Jin
- College of Chemistry & Chemical Engineering , Anhui University , Hefei 230601 , P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Fa-Liang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering , Dongguan University of Technology , Dongguan 523808 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
48
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|
49
|
Novel electrochemical synthesis of cellulose microfiber entrapped reduced graphene oxide: A sensitive electrochemical assay for detection of fenitrothion organophosphorus pesticide. Talanta 2019; 192:471-477. [DOI: 10.1016/j.talanta.2018.09.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
|
50
|
Yang L, Liu X, Zhou N, Tian Y. Characteristics of refold acid urease immobilized covalently by graphene oxide-chitosan composite beads. J Biosci Bioeng 2019; 127:16-22. [DOI: 10.1016/j.jbiosc.2018.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
|