1
|
Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202201288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ragini Singh
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Amrita Prasad
- Department of Chemistry Magadh Mahila College Patna University Patna Bihar. India
| | - Binayak Kumar
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Soni Kumari
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Ram Krishna Sahu
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Suresh T. Hedau
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| |
Collapse
|
2
|
Perrigue PM, Murray RA, Mielcarek A, Henschke A, Moya SE. Degradation of Drug Delivery Nanocarriers and Payload Release: A Review of Physical Methods for Tracing Nanocarrier Biological Fate. Pharmaceutics 2021; 13:770. [PMID: 34064155 PMCID: PMC8224277 DOI: 10.3390/pharmaceutics13060770] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug's delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.
Collapse
Affiliation(s)
- Patrick M. Perrigue
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Richard A. Murray
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena S/N, 48940 Leioa, Spain;
| | - Angelika Mielcarek
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Agata Henschke
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Sergio E. Moya
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| |
Collapse
|
3
|
Ilkhani H, Zhong CJ, Hepel M. Magneto-Plasmonic Nanoparticle Grid Biosensor with Enhanced Raman Scattering and Electrochemical Transduction for the Development of Nanocarriers for Targeted Delivery of Protected Anticancer Drugs. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1326. [PMID: 34069804 PMCID: PMC8157304 DOI: 10.3390/nano11051326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
Safe administration of highly cytotoxic chemotherapeutic drugs is a challenging problem in cancer treatment due to the adverse side effects and collateral damage to non-tumorigenic cells. To mitigate these problems, promising new approaches, based on the paradigm of controlled targeted drug delivery (TDD), and utilizing drug nanocarriers with biorecognition ability to selectively target neoplastic cells, are being considered in cancer therapy. Herein, we report on the design and testing of a nanoparticle-grid based biosensing platform to aid in the development of new targeted drug nanocarriers. The proposed sensor grid consists of superparamagnetic gold-coated core-shell Fe2Ni@Au nanoparticles, further functionalized with folic acid targeting ligand, model thiolated chemotherapeutic drug doxorubicin (DOX), and a biocompatibility agent, 3,6-dioxa-octanethiol (DOOT). The employed dual transduction method based on electrochemical and enhanced Raman scattering detection has enabled efficient monitoring of the drug loading onto the nanocarriers, attaching to the sensor surface, as well as the drug release under simulated intracellular conditions. The grid's nanoparticles serve here as the model nanocarriers for new TDD systems under design and optimization. The superparamagnetic properties of the Fe2Ni@Au NPs aid in nanoparticles' handling and constructing a dense sensor grid with high plasmonic enhancement of the Raman signals due to the minimal interparticle distance.
Collapse
Affiliation(s)
- Hoda Ilkhani
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
- Central New Mexico Community College, Albuquerque, NM 87106, USA
| | - Chuan-Jian Zhong
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA;
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| |
Collapse
|
4
|
Kurzątkowska K, Pazos MA, Herschkowitz JI, Hepel M. Cancer-Targeted Controlled Delivery of Chemotherapeutic Anthracycline Derivatives Using Apoferritin Nanocage Carriers. Int J Mol Sci 2021; 22:ijms22031362. [PMID: 33572999 PMCID: PMC7866407 DOI: 10.3390/ijms22031362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The interactions of chemotherapeutic drugs with nanocage protein apoferritin (APO) are the key features in the effective encapsulation and release of highly toxic drugs in APO-based controlled drug delivery systems. The encapsulation enables mitigating the drugs' side effects, collateral damage to healthy cells, and adverse immune reactions. Herein, the interactions of anthracycline drugs with APO were studied to assess the effect of drug lipophilicity on their encapsulation excess n and in vitro activity. Anthracycline drugs, including doxorubicin (DOX), epirubicin (EPI), daunorubicin (DAU), and idarubicin (IDA), with lipophilicity P from 0.8 to 15, were investigated. We have found that in addition to hydrogen-bonded supramolecular ensemble formation with n = 24, there are two other competing contributions that enable increasing n under strong polar interactions (APO(DOX)) or under strong hydrophobic interactions (APO(IDA) of the highest efficacy). The encapsulation/release processes were investigated using UV-Vis, fluorescence, circular dichroism, and FTIR spectroscopies. The in vitro cytotoxicity/growth inhibition tests and flow cytometry corroborate high apoptotic activity of APO(drugs) against targeted MDA-MB-231 adenocarcinoma and HeLa cells, and low activity against healthy MCF10A cells, demonstrating targeting ability of nanodrugs. A model for molecular interactions between anthracyclines and APO nanocarriers was developed, and the relationships derived compared with experimental results.
Collapse
Affiliation(s)
- Katarzyna Kurzątkowska
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
- Department of Biosensors, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
- Correspondence: (K.K.); (M.H.); Tel.: +1-315-267-2267 (M.H.)
| | - Manuel A. Pazos
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY 12222, USA; (M.A.P.II); (J.I.H.)
| | - Jason I. Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY 12222, USA; (M.A.P.II); (J.I.H.)
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
- Correspondence: (K.K.); (M.H.); Tel.: +1-315-267-2267 (M.H.)
| |
Collapse
|
5
|
Roohi H, Facehi A, Ghauri K. Adsorption of cytarabine and gemcitabine anticancer drugs on the BNNT surface: DFT and GD3-DFT approaches. ADSORPTION 2020. [DOI: 10.1007/s10450-020-00247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Zhao Y, Tang P, He X, Xie Y, Cheng W, Xing X, Xing M, Lu X, Liu S, Zhong L. Study on the precise mechanism of Mitoxantrone-induced Jurkat cell apoptosis using surface enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117718. [PMID: 31818647 DOI: 10.1016/j.saa.2019.117718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/09/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Mitoxantrone (MTX), one representative of anthraquinone ring anticancer drugs, reveals excellent anticancer effects in acute leukemia. Though current studies have shown that MTX-induced acute leukemia cell apoptosis is implemented by inserting into DNA, and then leading to DNA breakage and the subsequent transcription termination, but the specific location information of MTX embedded in DNA remains unknown. In this study, combining surface enhanced Raman scattering (SERS) and principal component analysis (PCA), we achieve the biochemical changes of MTX-induced Jurkat cell apoptosis and the location information of MTX embedded in DNA. In contrast, we also present the corresponding result of Daunorubicin (DNR)-induced Jurkat cell apoptosis. It is found that the location of MTX embedded in DNA of Jurkat cell is different from DNR, in which the action site of MTX is mainly implemented by blocking and destroying AT base pairs while DNR is performed by embedding and destroying GC base pairs and then the base A. Clearly, this achieved information is very useful for the designing and modification of anthraquinone ring anticancer drugs.
Collapse
Affiliation(s)
- Yao Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Brain Academy of South China Normal University, Guangzhou 510631, China
| | - Ping Tang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xuanmeng He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Brain Academy of South China Normal University, Guangzhou 510631, China
| | - Yue Xie
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Brain Academy of South China Normal University, Guangzhou 510631, China
| | - Wendai Cheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xinyue Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Meishuang Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Man T, Lai W, Xiao M, Wang X, Chandrasekaran AR, Pei H, Li L. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosens Bioelectron 2019; 147:111742. [PMID: 31672389 DOI: 10.1016/j.bios.2019.111742] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) as one of the effective tools for sensitive and selective detection of biomolecules has attracted tremendous attention. Here, we construct a versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy (PIERS) effect for ultrasensitive detection of multiple analytes. In our PIERS sensor, we exploit the molecular recognition capacity of aptamers and the high affinity of aptamers with analyte to trigger TiO2@AgNP substrates binding with Raman tag-labeled gold nanoparticles probes via analyte, thus forming sandwich complexes. Additionally, combining plasmonic nanoparticles with photo-activated substrates allows PIERS sensor to achieve increased sensitivity beyond the normal SERS effect upon ultraviolet irradiation. Accordingly, the PIERS can be implemented for analysis of multiple analytes by designing different analyte aptamers, and we further demonstrate that the constructed PIERS sensor can serve as a versatile detection platform for sensitively analyzing various biomolecules including small molecules (adenosine triphosphate (ATP), limit of detection (LOD) of 0.1 nM), a biomarker (thrombin, LOD of 50 pM), and a drug (cocaine, LOD of 5 nM). Therefore, this versatile biomolecular detection platform based on PIERS effect for ultrasensitive detection of multiple analytes holds great promise to be a practical tool.
Collapse
Affiliation(s)
- Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | | | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
8
|
Improving the SERS signals of biomolecules using a stacked biochip containing Fe 2O 3/Au nanoparticles and a DC magnetic field. Sci Rep 2019; 9:9566. [PMID: 31266975 PMCID: PMC6606591 DOI: 10.1038/s41598-019-45879-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/14/2019] [Indexed: 11/08/2022] Open
Abstract
This study proposes a magnetic biochip that uses surface-enhanced Raman scattering (SERS) for antigen detection. The biochip was a sandwich structure containing alternating layers of gold and magnetic Fe2O3 nanoparticles. Both single (Au/Fe2O3/Au) and multilayer (Au/Fe2O3/Au/Fe2O3/Au) chips containing Fe2O3 nanoparticles were fabricated to detect bovine serum albumin (BSA). The single-layer chip detected the BSA antigen at a signal-to-noise ratio (SNR) of 5.0. Peaks detected between 1000 and 1500 cm-1 corresponded to various carbon chains. With more Fe2O3 layers, bond resonance was enhanced via the Hall effect. The distribution of electromagnetic field enhancement was determined via SERS. The signal from the single-layer chip containing Au nanoparticles was measured in an external magnetic field. Maximum signal strength was recorded in a field strength of 12.5 gauss. We observed peaks due to other carbon-hydrogen molecules in a 62.5-gauss field. The magnetic field could improve the resolution and selectivity of sample observations.
Collapse
|
9
|
Plasmonics for Biosensing. MATERIALS 2019; 12:ma12091411. [PMID: 31052240 PMCID: PMC6539671 DOI: 10.3390/ma12091411] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
Techniques based on plasmonic resonance can provide label-free, signal enhanced, and real-time sensing means for bioparticles and bioprocesses at the molecular level. With the development in nanofabrication and material science, plasmonics based on synthesized nanoparticles and manufactured nano-patterns in thin films have been prosperously explored. In this short review, resonance modes, materials, and hybrid functions by simultaneously using electrical conductivity for plasmonic biosensing techniques are exclusively reviewed for designs containing nanovoids in thin films. This type of plasmonic biosensors provide prominent potential to achieve integrated lab-on-a-chip which is capable of transporting and detecting minute of multiple bio-analytes with extremely high sensitivity, selectivity, multi-channel and dynamic monitoring for the next generation of point-of-care devices.
Collapse
|
10
|
Li Z, Zilberman Y, Lu QB, Tang X(S. Electrochemical methods for probing DNA damage mechanisms and designing cisplatin-based combination chemotherapy. Biotechniques 2019; 66:135-142. [PMID: 30869547 DOI: 10.2144/btn-2018-0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An electrochemical approach was devised for detecting DNA damage and differentiating two DNA damage mechanisms, which is important to the design of new chemotherapeutics. This approach combined two platforms, based on the detection of base damage and DNA strand cleavage. In this work, our approach was demonstrated for the detection of cisplatin-induced DNA damage and the enhancement effects of two electron donors, N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) and reduced graphene oxide (rGO). Our results demonstrated that TMPD enhanced DNA strand cleavage, supporting the proposed dissociative electron transfer mechanism. While rGO, which is an efficient electron donor, failed to show any enhancement (suggesting the lack of free-radical generation), overall, this electrochemical approach could be implemented for discovering next-generation DNA damage-based chemotherapy drugs.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Yael Zilberman
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Qing-Bin Lu
- Department of Physics & Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Xiaowu (Shirley) Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
11
|
Wu H, Luo Y, Huang Y, Dong Q, Hou C, Huo D, Zhao J, Lei Y. A Simple SERS-Based Trace Sensing Platform Enabled by AuNPs-Analyte/AuNPs Double-Decker Structure on Wax-Coated Hydrophobic Surface. Front Chem 2018; 6:482. [PMID: 30460223 PMCID: PMC6232669 DOI: 10.3389/fchem.2018.00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/21/2018] [Indexed: 11/24/2022] Open
Abstract
In this work, a simple and versatile SERS sensing platform enabled by AuNPs-analyte/AuNPs double-decker structure on wax-coated hydrophobic surface was developed using a portable Raman spectrometer. Wax-coated silicon wafer served as a hydrophobic surface to induce both aggregation and concentration of aqueous phase AuNPs mixed with analyte of interest. After drying, another layer of AuNPs was drop-cast onto the layer of AuNPs-analyte on the substrate to form double-decker structure, thus introducing more “hot spots” to further enhance the Raman signal. To validate the sensing platform, methyl parathion (pesticide), and melamine (a nitrogen-enrich compound illegally added to food products to increase their apparent protein content) were employed as two model compounds for trace sensing demonstration. The as-fabricated sensor showed high reproducibility and sensitivity toward both methyl parathion and melamine detection with the limit of detection at the nanomolar and sub-nanomolar concentration level, respectively. In addition, remarkable recoveries for methyl parathion spiked into lake water samples were obtained, while reasonably good recoveries for melamine spiked into milk samples were achieved. These results demonstrate that the as-developed SERS sensing platform holds great promise in detecting trace amount of hazardous chemicals for food safety and environment protection.
Collapse
Affiliation(s)
- Huixiang Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, United States
| | - Yi Luo
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| | - Yikun Huang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Qiuchen Dong
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Zhao
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
12
|
Slepička P, Siegel J, Lyutakov O, Slepičková Kasálková N, Kolská Z, Bačáková L, Švorčík V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol Adv 2018; 36:839-855. [DOI: 10.1016/j.biotechadv.2017.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/26/2023]
|
13
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|
14
|
Ji M, Qiu X, Hou L, Huang S, Li Y, Liu Y, Duan S, Hu Y. Construction and application of a liver cancer-targeting drug delivery system based on core-shell gold nanocages. Int J Nanomedicine 2018; 13:1773-1789. [PMID: 29606870 PMCID: PMC5868592 DOI: 10.2147/ijn.s151043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background In order to achieve drug targeting and controlled release, we have successfully developed a novel drug release system DOX/AuNCs-PM-HA with gold nanocages (AuNCs) as photothermal cores, thermally responsive copolymer P(NIPAM-co-Am) (PM) as the near-infrared (NIR) stimuli gatekeeper and hyaluronic acid as a targeting ligand as well as a capping agent. Methods Cell uptake and cell viability were investigated. In vivo photoacoustic tomography imaging in H22 tumor bearing mice was analyzed for the tumor targeting effect of the nanocomplexes. Antitumor efficacy and the tissue distribution in vivo were investigated. Results In vitro results demonstrated that the DOX/AuNCs-PM-HA had significant anticancer activity against SMMC-7721 cells under NIR irradiation. Furthermore, in vivo photoacoustic tomography imaging of the nanocomplexes in H22 tumor bearing mice could indicate effective tumor targeting. Our studies on antitumor efficacy and the tissue distribution in vivo showed that many DOX/AuNCs-PM-HA nanocomplexes could efficiently accumulate at the tumor site so that they could inhibit the tumor growth effectively with limited side effects. The in vitro and in vivo results confirmed that the tumor-targeting and controlled-release drug system DOX/AuNCs-PM-HA with the combination of chemotherapy and photothermal therapy showed strong anti-tumor effect and would have great potential for future cancer therapy. Conclusion This tumor targeting DOX/AuNCs-PM-HA nanocomplex responded not only to the external stimuli of NIR, but also the internal stimuli of hyaluronidase, providing the potential for pinpointed and multi-stimuli responsive intracellular drug release.
Collapse
Affiliation(s)
- Mengfei Ji
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaojing Qiu
- Henan Eye Institute, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Lin Hou
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shengnan Huang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanmin Li
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yang Liu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shaofeng Duan
- College of Pharmacy, Henan University, Kaifeng, People's Republic of China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yurong Hu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
15
|
Efeoglu E, Maher MA, Casey A, Byrne HJ. Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis. Anal Bioanal Chem 2017; 410:1631-1646. [DOI: 10.1007/s00216-017-0812-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
|
16
|
Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomedicine 2017; 12:8483-8493. [PMID: 29238188 PMCID: PMC5713688 DOI: 10.2147/ijn.s148359] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy is still one of the main cancer therapy treatments, but the curative effect of chemotherapy is relatively low, as such the development of a new cancer treatment is highly desirable. The gradual maturation of nanotechnology provides an innovative perspective not only for cancer therapy but also for many other applications. There are a diverse variety of nanoparticles available, and choosing the appropriate carriers according to the demand is the key issue. The performance of nanoparticles is affected by many parameters, mainly size, shape, surface charge, and toxicity. Using nanoparticles as the carriers to realize passive targeting and active targeting can improve the efficacy of chemotherapy drugs significantly, reduce the mortality rate of cancer patients, and improve the quality of life of patients. In recent years, there has been extensive research on nanocarriers. In this review, the effects of several major parameters of nanoparticles on their physical and chemical properties are reviewed, and then the recent progress in the application of several commonly used nanoparticles is presented.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| | - Hua Tang
- Department of Hematology, People's Hospital of Xinghua City, Xinghua City, Jiangsu Province, People's Republic of China
| | - Zefa Liu
- Department of Hematology, People's Hospital of Xinghua City, Xinghua City, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| |
Collapse
|
17
|
Santiago T, DeVaux RS, Kurzatkowska K, Espinal R, Herschkowitz JI, Hepel M. Surface-enhanced Raman scattering investigation of targeted delivery and controlled release of gemcitabine. Int J Nanomedicine 2017; 12:7763-7776. [PMID: 29123391 PMCID: PMC5661449 DOI: 10.2147/ijn.s149306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Advanced and metastatic cancer forms are extremely difficult to treat and require high doses of chemotherapeutics, inadvertently affecting also healthy cells. As a result, the observed survival rates are very low. For instance, gemcitabine (GEM), one of the most effective chemotherapeutic drugs used for the treatment of breast and pancreatic cancers, sees only a 20% efficacy in penetrating cancer tissue, resulting in <5% survival rate in pancreatic cancer. Here, we present a method for delivering the drug that offers mitigation of side effects, as well as a targeted delivery and controlled release of the drug, improving its overall efficacy. By modifying the surface of gold nanoparticles (AuNPs) with covalently bonded thiol linkers, we have immobilized GEM on the nanoparticle (NP) through a pH-sensitive amide bond. This bond prevents the drug from being metabolized or acting on tissue at physiological pH 7.4, but breaks, releasing the drug at acidic pH, characteristic of cancer cells. Further functionalization of the NP with folic acid and/or transferrin (TF) offers a targeted delivery, as cancer cells overexpress folate and TF receptors, which can mediate the endocytosis of the NP carrying the drug. Thus, through the modification of AuNPs, we have been able to produce a nanocarrier containing GEM and folate/TF ligands, which is capable of targeted controlled-release delivery of the drug, reducing the side effects of the drug and increasing its efficacy. Here, we demonstrate the pH-dependent GEM release, using an ultrasensitive surface-enhanced Raman scattering spectroscopy to monitor the GEM loading onto the nanocarrier and follow its stimulated release. Further in vitro studies with model triple-negative breast cancer cell line MDA-MB-231 have corroborated the utility of the proposed nanocarrier method allowing the administration of high drug doses to targeted cancer cells.
Collapse
Affiliation(s)
- Ty Santiago
- Department of Chemistry, State University of New York at Potsdam, Potsdam
| | - Rebecca Sinnott DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
| | | | - Ricardo Espinal
- Department of Chemistry, State University of New York at Potsdam, Potsdam
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam
| |
Collapse
|
18
|
Qiu X, You X, Chen X, Chen H, Dhinakar A, Liu S, Guo Z, Wu J, Liu Z. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging. Int J Nanomedicine 2017; 12:4349-4360. [PMID: 28652737 PMCID: PMC5473606 DOI: 10.2147/ijn.s130648] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rapid development of near-infrared surface-enhanced Raman scattering (NIR SERS) imaging technology has attracted strong interest from scientists and clinicians due to its narrow spectral bandwidth, low background interference, and deep imaging depth. In this report, the graphene oxide (GO)-wrapped gold nanorods (GO@GNRs) were developed as a smart and robust nanoplatform for ultrafast NIR SERS bioimaging. The fabricated GO@ GNRs could efficiently load various NIR probes, and the in vitro evaluation indicated that the nanoplatform could exhibit a higher NIR SERS activity in comparison with traditional gold nanostructures. The GOs were prepared by directly pyrolyzing citric acid for greater convenience, and GO@GNRs were fabricated via a facile synthesis strategy. Higher NIR SERS activity, facile synthesis method, excellent biocompatibility, and superb stability make the GO@GNRs/probe complex promising nanoprobes for NIR SERS-based bioimaging applications.
Collapse
Affiliation(s)
- Xuejun Qiu
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Xinru You
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xing Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Haolin Chen
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Arvind Dhinakar
- Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Songhao Liu
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Zhouyi Guo
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiming Liu
- SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University
| |
Collapse
|