1
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
2
|
Gene Therapy for Congenital Hearing Loss. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Kalaigar SS, Rajashekar RB, Nataraj SM, Vishwanath P, Prashant A. Bioinformatic Tools for the Identification of MicroRNAs Regulating the Transcription Factors in Patients with β-Thalassemia. Bioinform Biol Insights 2022; 16:11779322221115536. [PMID: 35935529 PMCID: PMC9354123 DOI: 10.1177/11779322221115536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022] Open
Abstract
β-thalassemia is a significant health issue worldwide, with approximately 7% of the world’s population having defective hemoglobin genes. MicroRNAs (miRNAs) are short noncoding RNAs regulating gene expression at the post-transcriptional level by targeting multiple gene transcripts. The levels of fetal hemoglobin (HbF) can be increased by regulating the expression of the γ-globin gene using the suppressive effects of miRNAs on several transcription factors such as MYB, BCL11A, GATA1, and KLF. An early step in discovering miRNA:mRNA target interactions is the computational prediction of miRNA targets that can be later validated with wet-lab investigations. This review highlights some commonly employed computational tools such as miRBase, Target scan, DIANA-microT-CDS, miRwalk, miRDB, and micro-TarBase that can be used to predict miRNA targets. Upon comparing the miRNA target prediction tools, 4 main aspects of the miRNA:mRNA target interaction are shown to include a few common features on which most target prediction is based: conservation sites, seed match, free energy, and site accessibility. Understanding these prediction tools’ usage will help users select the appropriate tool and interpret the results accurately. This review will, therefore, be helpful to peers to quickly choose a list of the best miRNAs associated with HbF induction. Researchers will obtain significant results using these bioinformatics tools to establish a new important concept in managing β-thalassemia and delivering therapeutic strategies for improving their quality of life.
Collapse
Affiliation(s)
- Sumayakausar S Kalaigar
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | | | - Suma M Nataraj
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,Special Interest Group-Human Genomics & Rare Disorders (SIG-HGRD), JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,Special Interest Group-Human Genomics & Rare Disorders (SIG-HGRD), JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,Special Interest Group-Human Genomics & Rare Disorders (SIG-HGRD), JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
4
|
Ozturk EA, Caner A. Liquid Biopsy for Promising Non-invasive Diagnostic Biomarkers in Parasitic Infections. Acta Parasitol 2022; 67:1-17. [PMID: 34176040 DOI: 10.1007/s11686-021-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liquid biopsy refers to the sampling and molecular analysis of body fluids such as blood, saliva, and urine in contrast to conventional tissue biopsies. Liquid biopsy approach can offer powerful non-invasive biomarkers (circulating markers) for diagnosis and monitoring treatment response of a variety of diseases, including parasitic infections. METHODS In this review, we concentrate on cell-free DNA (cfDNA), microRNA (miRNA), and exosomes in the published literature. RESULTS Considering the high prevalence and severity of parasitic infections worldwide, circulating biomarkers can provide a new insight into the diagnosis and prognosis of parasites in the near future. Moreover, identifying and characterizing parasite- or host-derived circulating markers are important for a better understanding of the pathogenesis of parasite infection and host-parasite relationship at the molecular level. Profiling of biomarkers for parasitic diseases is a promising potential field, though further studies and optimization strategies are required, both in vitro and in vivo. CONCLUSION In this review, we discuss three approaches in the liquid biopsy including circulating cfDNA, miRNAs, and exosomes for diagnosis and evaluation of parasites and summarize circulating biomarkers in non-invasive samples during parasitic infections.
Collapse
Affiliation(s)
- Eylem Akdur Ozturk
- Department of Parasitology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Ayse Caner
- Department of Parasitology, Ege University Faculty of Medicine, 35100, Izmir, Turkey.
- Cancer Research Center, Ege University, Izmir, Turkey.
| |
Collapse
|
5
|
Orzeł-Gajowik K, Milewski K, Zielińska M. Insight into microRNAs-Mediated Communication between Liver and Brain: A Possible Approach for Understanding Acute Liver Failure? Int J Mol Sci 2021; 23:224. [PMID: 35008650 PMCID: PMC8745738 DOI: 10.3390/ijms23010224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
Acute liver failure (ALF) is a life-threatening consequence of hepatic function rapid loss without preexisting liver disease. ALF may result in a spectrum of neuropsychiatric symptoms that encompasses cognitive impairment, coma, and often death, collectively defined as acute hepatic encephalopathy. Micro RNAs are small non-coding RNAs that modulate gene expression and are extensively verified as biomarker candidates in various diseases. Our systematic literature review based on the last decade's reports involving a total of 852 ALF patients, determined 205 altered circulating miRNAs, of which 25 miRNAs were altered in the blood, regardless of study design and methodology. Selected 25 miRNAs, emerging predominantly from the analyses of samples obtained from acetaminophen overdosed patients, represent the most promising biomarker candidates for a diagnostic panel for symptomatic ALF. We discussed the role of selected miRNAs in the context of tissue-specific origin and its possible regulatory role for molecular pathways involved in blood-brain barrier function. The defined several common pathways for 15 differently altered miRNAs were relevant to cellular community processes, indicating loss of intercellular, structural, and functional components, which may result in blood-brain barrier impairment and brain dysfunction. However, a causational relationship between circulating miRNAs differential expression, and particular clinical features of ALF, has to be demonstrated in a further study.
Collapse
Affiliation(s)
| | | | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland; (K.O.-G.); (K.M.)
| |
Collapse
|
6
|
Huang Z, Han Y, Liu L, Cui Q, Zhou Y. LE-MDCAP: A Computational Model to Prioritize Causal miRNA-Disease Associations. Int J Mol Sci 2021; 22:ijms222413607. [PMID: 34948403 PMCID: PMC8706837 DOI: 10.3390/ijms222413607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are associated with various complex human diseases and some miRNAs can be directly involved in the mechanisms of disease. Identifying disease-causative miRNAs can provide novel insight in disease pathogenesis from a miRNA perspective and facilitate disease treatment. To date, various computational models have been developed to predict general miRNA-disease associations, but few models are available to further prioritize causal miRNA-disease associations from non-causal associations. Therefore, in this study, we constructed a Levenshtein-Distance-Enhanced miRNA-disease Causal Association Predictor (LE-MDCAP), to predict potential causal miRNA-disease associations. Specifically, Levenshtein distance matrixes covering the sequence, expression and functional miRNA similarities were introduced to enhance the previous Gaussian interaction profile kernel-based similarity matrix. LE-MDCAP integrated miRNA similarity matrices, disease semantic similarity matrix and known causal miRNA-disease associations to make predictions. For regular causal vs. non-disease association discrimination task, LF-MDCAP achieved area under the receiver operating characteristic curve (AUROC) of 0.911 and 0.906 in 10-fold cross-validation and independent test, respectively. More importantly, LE-MDCAP prominently outperformed the previous MDCAP model in distinguishing causal versus non-causal miRNA-disease associations (AUROC 0.820 vs. 0.695). Case studies performed on diabetic retinopathy and hsa-mir-361 also validated the accuracy of our model. In summary, LE-MDCAP could be useful for screening causal miRNA-disease associations from general miRNA-disease associations.
Collapse
|
7
|
Thakur A, Parra DC, Motallebnejad P, Brocchi M, Chen HJ. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioact Mater 2021; 10:281-294. [PMID: 34901546 PMCID: PMC8636666 DOI: 10.1016/j.bioactmat.2021.08.029] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a deadly disease that is globally and consistently one of the leading causes of mortality every year. Despite the availability of chemotherapy, radiotherapy, immunotherapy, and surgery, a cure for cancer has not been attained. Recently, exosomes have gained significant attention due to the therapeutic potential of their various components including proteins, lipids, nucleic acids, miRNAs, and lncRNAs. Exosomes constitute a set of tiny extracellular vesicles with an approximate diameter of 30-100 nm. They are released from different cells and are present in biofluids including blood, cerebrospinal fluid (CSF), and urine. They perform crucial multifaceted functions in the malignant progression of cancer via autocrine, paracrine, and endocrine communications. The ability of exosomes to carry different cargoes including drug and molecular information to recipient cells make them a novel tool for cancer therapeutics. In this review, we discuss the major components of exosomes and their role in cancer progression. We also review important literature about the potential role of exosomes as vaccines and delivery carriers in the context of cancer therapeutics.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| | - Diana Carolina Parra
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Pedram Motallebnejad
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| |
Collapse
|
8
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
9
|
Giordani C, Silvestrini A, Giuliani A, Olivieri F, Rippo MR. MicroRNAs as Factors in Bidirectional Crosstalk Between Mitochondria and the Nucleus During Cellular Senescence. Front Physiol 2021; 12:734976. [PMID: 34566699 PMCID: PMC8458936 DOI: 10.3389/fphys.2021.734976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondria are essential organelles that generate most of the chemical energy to power the cell through ATP production, thus regulating cell homeostasis. Although mitochondria have their own independent genome, most of the mitochondrial proteins are encoded by nuclear genes. An extensive bidirectional communication network between mitochondria and the nucleus has been discovered, thus making them semi-autonomous organelles. The nucleus-to-mitochondria signaling pathway, called Anterograde Signaling Pathway can be deduced, since the majority of mitochondrial proteins are encoded in the nucleus, less is known about the opposite pathway, the so-called mitochondria-to-nucleus retrograde signaling pathway. Several studies have demonstrated that non-coding RNAs are essential "messengers" of this communication between the nucleus and the mitochondria and that they might have a central role in the coordination of important mitochondrial biological processes. In particular, the finding of numerous miRNAs in mitochondria, also known as mitomiRs, enabled insights into their role in mitochondrial gene transcription. MitomiRs could act as important mediators of this complex crosstalk between the nucleus and the mitochondria. Mitochondrial homeostasis is critical for the physiological processes of the cell. Disruption at any stage in their metabolism, dynamics and bioenergetics could lead to the production of considerable amounts of reactive oxygen species and increased mitochondrial permeability, which are among the hallmarks of cellular senescence. Extensive changes in mitomiR expression and distribution have been demonstrated in senescent cells, those could possibly lead to an alteration in mitochondrial homeostasis. Here, we discuss the emerging putative roles of mitomiRs in the bidirectional communication pathways between mitochondria and the nucleus, with a focus on the senescence-associated mitomiRs.
Collapse
Affiliation(s)
- Chiara Giordani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
10
|
Jin F, Xu D. A Cascaded DNA Circuit in Bead Arrays for Quantitative Single-Cell MicroRNA Analysis. Anal Chem 2021; 93:11617-11625. [PMID: 34375096 DOI: 10.1021/acs.analchem.1c02388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-cell microRNA (miRNA) analysis helps people understand the causes of diseases and formulate new disease treatment strategies. However, miRNA from a single cell is usually very rare and requires signal amplification for accurate quantification. Here, to amplify the signal, we constructed the cascaded DNA circuits consisting of catalytic hairpin assembly and hybrid chain reaction into the bead array platform, on which the uniformly distributed beads were adopted for miRNA quantification. After exponential signal amplification, a consistent linear correlation between the percentage of fluorescent beads and the copy number of miRNA was detected. The proposed bead array can achieve ultrahigh sensitivity as low as 60 copies of miR-155 and high specificity for distinguishing single nucleotide differences. This method has been successfully applied to the quantitative detection of miRNA in a single cancer cell. The high sensitivity, programmability, and simple workflow of the bead array chip will give a huge advantage in basic and clinical research.
Collapse
Affiliation(s)
- Furui Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing 210023, P. R. China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Tang S, Qi T, Yao Y, Tang L, Chen W, Chen T, Shen W, Kong D, Shi HW, Liu T, Lee HK. Magnetic Three-Phase Single-Drop Microextraction for Rapid Amplification of the Signals of DNA and MicroRNA Analysis. Anal Chem 2020; 92:12290-12296. [DOI: 10.1021/acs.analchem.0c01936] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Liangxiu Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Wenhui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Hai-Wei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, PR China
- Key Laboratory for Impurity Profile of Chemical Drugs, National Medical Products Administration, Nanjing 210019, Jiangsu Province, PR China
| | - Tianlong Liu
- Department of Pharmacy, Xuzhou Cancer Hospital, Xuzhou 221000, Jiangsu Province, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
12
|
Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies. Mol Aspects Med 2020; 72:100832. [DOI: 10.1016/j.mam.2019.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023]
|
13
|
Loo JFC, Ho HP, Kong SK, Wang TH, Ho YP. Technological Advances in Multiscale Analysis of Single Cells in Biomedicine. ACTA ACUST UNITED AC 2019; 3:e1900138. [PMID: 32648696 DOI: 10.1002/adbi.201900138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Indexed: 12/20/2022]
Abstract
Single-cell analysis has recently received significant attention in biomedicine. With the advances in super-resolution microscopy, fluorescence labeling, and nanoscale biosensing, new information may be obtained for the design of cancer diagnosis and therapeutic interventions. The discovery of cellular heterogeneity further stresses the importance of single-cell analysis to improve our understanding of disease mechanism and to develop new strategies for disease treatment. To this end, many studies are exploited at the single-cell level for high throughput, highly parallel, and quantitative analysis. Technically, microfluidics are also designed to facilitate single-cell isolation and enrichment for downstream detection and manipulation in a robust, sensitive, and automated manner. Further achievements are made possible by consolidating optically label-free, electrical, and molecular sensing techniques. Moreover, these technologies are coupled with computing algorithms for high throughput and automated quantitative analysis with a short turnaround time. To reflect on how the technological developments have advanced single-cell analysis, this mini-review is aimed to offer readers an introduction to single-cell analysis with a brief historical development and the recent progresses that have enabled multiscale analysis of single-cells in the last decade. The challenges and future trends are also discussed with the view to inspire forthcoming technical developments.
Collapse
Affiliation(s)
- Jacky Fong-Chuen Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Siu Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
14
|
Lu W, Wang Y, Song S, Chen C, Yao B, Wang M. A fishhook probe-based rolling circle amplification (FP-RCA) assay for efficient isolation and detection of microRNA without total RNA extraction. Analyst 2018; 143:5046-5053. [PMID: 30238116 DOI: 10.1039/c8an01544a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNA (miRNA) analysis has vital significance as a potential biomarker in clinical diagnosis and cancer research. In this study, a simple and practical technique was proposed for the detection of microRNAs from cell lysates based on fishhook probe-mediated rolling circle amplification (RCA) and fluorescence imaging with a smartphone. Compared with reported methods related to miRNA detection, this method mainly focused on simplicity, low cost and portability. Fishhook probes were designed and immobilized on the surface of streptavidin-coated magnetic beads for effectively recognizing and capturing target miRNAs, thus achieving simple and selective separation from the sample matrix. Moreover, the captured miRNAs initiated and transferred RCA reaction into solution, thus making the heterogeneous separation and homogeneous amplification reactions compatible. Excess circular probes as well as other nucleic acids were removed by two-step magnetic separation, minimizing nonspecific amplification and background signal. Using magnetic separation, high specificity was obtained even for one base mismatch strand. Moreover, the detection of miR-21 in cell lysates was performed without total RNA extraction. The fishhook probe-based rolling circle amplification (FP-RCA) assay integrated isolation and detection of miRNAs into a compact process, which was simple and effective without the need for bulky and expensive equipment such as centrifuge, thermal cycler and fluorescent microscope except for a blue light source device and a smartphone camera. Our study may provide a low-cost and reliable platform for miRNA detection and related research.
Collapse
Affiliation(s)
- Wei Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
15
|
Li T, Wu X, Tao G, Yin H, Zhang J, Liu F, Li N. A simple and non-amplification platform for femtomolar DNA and microRNA detection by combining automatic gold nanoparticle enumeration with target-induced strand-displacement. Biosens Bioelectron 2018; 105:137-142. [DOI: 10.1016/j.bios.2018.01.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
|
16
|
Kalogianni DP, Kalligosfyri PM, Kyriakou IK, Christopoulos TK. Advances in microRNA analysis. Anal Bioanal Chem 2017; 410:695-713. [DOI: 10.1007/s00216-017-0632-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
|