1
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
2
|
Kassahun GS, Farias ED, Benizri S, Mortier C, Gaubert A, Salinas G, Garrigue P, Kuhn A, Zigah D, Barthélémy P. Electropolymerizable Thiophene-Oligonucleotides for Electrode Functionalization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26350-26358. [PMID: 35649248 DOI: 10.1021/acsami.2c02993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inserting complex biomolecules such as oligonucleotides during the synthesis of polymers remains an important challenge in the development of functionalized materials. In order to engineer such a biofunctionalized interface, a single-step method for the covalent immobilization of oligonucleotides (ONs) based on novel electropolymerizable lipid thiophene-oligonucleotide (L-ThON) conjugates was employed. Here, we report a new thiophene phosphoramidite building block for the synthesis of modified L-ThONs. The biofunctionalized material was obtained by direct electropolymerization of L-ThONs in the presence of 2,2'-bithiophene (BTh) to obtain a copolymer film on indium tin oxide electrodes. In situ electroconductance measurements and microstructural studies showed that the L-ThON was incorporated in the BTh copolymer backbone. Furthermore, the covalently immobilized L-ThON sequence showed selectivity in subsequent hybridization processes with a complementary target, demonstrating that L-ThONs can directly be used for manufacturing materials via an electropolymerization strategy. These results indicate that L-ThONs are promising candidates for the development of stable ON-based bioelectrochemical platforms.
Collapse
Affiliation(s)
- Getnet S Kassahun
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Eliana D Farias
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Sebastien Benizri
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| | - Claudio Mortier
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| | - Alexandra Gaubert
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| | - Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Patrick Garrigue
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Alexander Kuhn
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
| | - Dodzi Zigah
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac Cedex, France
- Université de Poitiers, IC2MP UMR-CNRS 7285, 86073 Poitiers Cedex 9, France
| | - Philippe Barthélémy
- ARNA Laboratory, University of Bordeaux, UMR CNRS 5320, INSERM U121, 33076 Bordeaux, France
| |
Collapse
|
3
|
Ting MS, Vella J, Raos BJ, Narasimhan BN, Svirskis D, Travas-Sejdic J, Malmström J. Conducting polymer hydrogels with electrically-tuneable mechanical properties as dynamic cell culture substrates. BIOMATERIALS ADVANCES 2022; 134:112559. [PMID: 35527144 DOI: 10.1016/j.msec.2021.112559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023]
Abstract
Hydrogels are a popular substrate for cell culture due to their mechanical properties closely resembling natural tissue. Stimuli-responsive hydrogels are a good platform for studying cell response to dynamic stimuli. Poly(N-isopropylacrylamide) (pNIPAM) is a thermo-responsive polymer that undergoes a volume-phase transition when heated to 32 °C. Conducting polymers can be incorporated into hydrogels to introduce electrically responsive properties. The conducting polymer, polypyrrole (PPy), has been widely studied as electrochemical actuators due to its electrochemical stability, fast actuation and high strains. We determine the volume-phase transition temperature of pNIPAM hydrogels with PPy electropolymerised with different salts as a film within the hydrogel network. We also investigate the electro-mechanical properties at the transition temperature (32 °C) and physiological temperature (37 °C). We show statistically significant differences in the Young's modulus of the hybrid hydrogel at elevated temperatures upon electrochemical stimulation, with a 5 kPa difference at the transition temperature. Furthermore, we show a three-fold increase in actuation at transition temperature compared to room temperature and physiological temperature, attributed to the movement of ions in/out of the PPy film that induce the volume-phase transition of the pNIPAM hydrogel. Furthermore, cell adhesion to the hybrid hydrogel was demonstrated with mouse articular chondrocytes.
Collapse
Affiliation(s)
- Matthew S Ting
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Polymer Biointerface Centre, The University of Auckland, Auckland, New Zealand
| | - Joseph Vella
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jadranka Travas-Sejdic
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Polymer Biointerface Centre, The University of Auckland, Auckland, New Zealand; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Polymer Biointerface Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Cheema JA, Carraher C, Plank NOV, Travas-Sejdic J, Kralicek A. Insect odorant receptor-based biosensors: Current status and prospects. Biotechnol Adv 2021; 53:107840. [PMID: 34606949 DOI: 10.1016/j.biotechadv.2021.107840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Whilst the senses of vision and hearing have been successfully automated and miniaturized in portable formats (e.g. smart phone), this is yet to be achieved with the sense of smell. This is because the sensing challenge is not trivial as it involves navigating a chemosensory space comprising thousands of volatile organic compounds. Distinct aroma recognition is based on detecting unique combinations of volatile organic compounds. In natural olfactory systems this is accomplished by employing odorant receptors (ORs) with varying specificities, together with combinatorial neural coding mechanisms. Attempts to mimic the remarkable sensitivity and accuracy of natural olfactory systems has therefore been challenging. Current portable chemical sensors for odorant detection are neither sensitive nor selective, prompting research exploring artificial olfactory devices that use natural OR proteins for sensing. Much research activity to develop OR based biosensors has concentrated on mammalian ORs, however, insect ORs have not been explored as extensively. Insects possess an extraordinary sense of smell due to a repertoire of odorant receptors evolved to interpret olfactory cues vital to the insects' survival. The potential of insect ORs as sensing elements is only now being unlocked through recent research efforts to understand their structure, ligand binding mechanisms and development of odorant biosensors. Like their mammalian counterparts, there are many challenges with working with insect ORs. These include expression, purification and presentation of the insect OR in a stable display format compatible with an effective transduction methodology while maintaining OR structure and function. Despite these challenges, significant progress has been demonstrated in developing OR-based biosensors which exploit insect ORs in cells, lipid bilayers, liposomes and nanodisc formats. Ultrasensitive and highly selective detection of volatile organic compounds has been validated by coupling these insect OR display formats with transduction methodologies spanning optical (fluorescence) and electrical (field effect transistors, electrochemical impedance spectroscopy) techniques. This review summarizes the current status of insect OR based biosensors and their future outlook.
Collapse
Affiliation(s)
- Jamal Ahmed Cheema
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Natalie O V Plank
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Andrew Kralicek
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; Scentian Bio Limited, 1c Goring Road, Sandringham, Auckland 1025, New Zealand.
| |
Collapse
|
5
|
Hai X, Li Y, Zhu C, Song W, Cao J, Bi S. DNA-based label-free electrochemical biosensors: From principles to applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Runsewe D, Betancourt T, Irvin JA. Biomedical Application of Electroactive Polymers in Electrochemical Sensors: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2629. [PMID: 31426613 PMCID: PMC6720215 DOI: 10.3390/ma12162629] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Conducting polymers are of interest due to their unique behavior on exposure to electric fields, which has led to their use in flexible electronics, sensors, and biomaterials. The unique electroactive properties of conducting polymers allow them to be used to prepare biosensors that enable real time, point of care (POC) testing. Potential advantages of these devices include their low cost and low detection limit, ultimately resulting in increased access to treatment. This article presents a review of the characteristics of conducting polymer-based biosensors and the recent advances in their application in the recognition of disease biomarkers.
Collapse
Affiliation(s)
- Damilola Runsewe
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Tania Betancourt
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA.
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Jennifer A Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA.
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
7
|
Dakshayini B, Reddy KR, Mishra A, Shetti NP, Malode SJ, Basu S, Naveen S, Raghu AV. Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.061] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Fallahi A, Mandla S, Kerr-Phillip T, Seo J, Rodrigues RO, Jodat YA, Samanipour R, Hussain MA, Lee CK, Bae H, Khademhosseini A, Travas-Sejdic J, Shin SR. Flexible and Stretchable PEDOT-Embedded Hybrid Substrates for Bioengineering and Sensory Applications. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2019; 5:729-737. [PMID: 33859923 PMCID: PMC8045745 DOI: 10.1002/cnma.201900146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 05/27/2023]
Abstract
Herein, we introduce a flexible, biocompatible, robust and conductive electrospun fiber mat as a substrate for flexible and stretchable electronic devices for various biomedical applications. To impart the electrospun fiber mats with electrical conductivity, poly(3,4-ethylenedioxythiophene) (PEDOT), a conductive polymer, was interpenetrated into nitrile butadiene rubber (NBR) and poly(ethylene glycol) dimethacrylate (PEGDM) crosslinked electrospun fiber mats. The mats were fabricated with tunable fiber orientation, random and aligned, and displayed elastomeric mechanical properties and high conductivity. In addition, bending the mats caused a reversible change in their resistance. The cytotoxicity studies confirmed that the elastomeric and conductive electrospun fiber mats support cardiac cell growth, and thus are adaptable to a wide range of applications, including tissue engineering, implantable sensors and wearable bioelectronics.
Collapse
Affiliation(s)
- Afsoon Fallahi
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Serena Mandla
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- S. Mandla, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kerr-Phillip
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, Polymer Electronics Research Centre (PERC), School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Jungmok Seo
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Prof. J. Seo, Centre for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Raquel O Rodrigues
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- R. O. Rodrigues, Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Yasamin A Jodat
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Y. A. Jodat, Department of Mechanical Engineering, Stevens Institute of Technology, New Jersey, USA
| | - Roya Samanipour
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dr. R. Samanipour, School of Engineering, University of British Columbia, Okanagan, BC, Canada
| | - Mohammad Asif Hussain
- Prof. M. A. Hussain, Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Chang Kee Lee
- Dr. C. K. Lee, Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon, Republic of Korea
| | - Hojae Bae
- Prof. H. Bae, Prof. A. Khademhosseini, KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ali Khademhosseini
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Prof. H. Bae, Prof. A. Khademhosseini, KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
- Prof. A. Khademhosseini, Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Prof. A. Khademhosseini, Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Prof. A. Khademhosseini, California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Prof. A. Khademhosseini, Centre for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Jadranka Travas-Sejdic
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, Polymer Electronics Research Centre (PERC), School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Su Ryon Shin
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Hairpin probes based click polymerization for label-free electrochemical detection of human T-lymphotropic virus types II. Anal Chim Acta 2019; 1059:86-93. [DOI: 10.1016/j.aca.2019.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/05/2019] [Accepted: 01/14/2019] [Indexed: 11/24/2022]
|
10
|
Voorhaar L, Chan EWC, Baek P, Wang M, Nelson A, Barker D, Travas-Sejdic J. Self-healing polythiophene phenylenes for stretchable electronics. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Baek P, Voorhaar L, Barker D, Travas-Sejdic J. Molecular Approach to Conjugated Polymers with Biomimetic Properties. Acc Chem Res 2018; 51:1581-1589. [PMID: 29897228 DOI: 10.1021/acs.accounts.7b00596] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The field of bioelectronics involves the fascinating interplay between biology and human-made electronics. Applications such as tissue engineering, biosensing, drug delivery, and wearable electronics require biomimetic materials that can translate the physiological and chemical processes of biological systems, such as organs, tissues. and cells, into electrical signals and vice versa. However, the difference in the physical nature of soft biological elements and rigid electronic materials calls for new conductive or electroactive materials with added biomimetic properties that can bridge the gap. Soft electronics that utilize organic materials, such as conjugated polymers, can bring many important features to bioelectronics. Among the many advantages of conjugated polymers, the ability to modulate the biocompatibility, solubility, functionality, and mechanical properties through side chain engineering can alleviate the issues of mechanical mismatch and provide better interface between the electronics and biological elements. Additionally, conjugated polymers, being both ionically and electrically conductive through reversible doping processes provide means for direct sensing and stimulation of biological processes in cells, tissues, and organs. In this Account, we focus on our recent progress in molecular engineering of conjugated polymers with tunable biomimetic properties, such as biocompatibility, responsiveness, stretchability, self-healing, and adhesion. Our approach is general and versatile, which is based on functionalization of conjugated polymers with long side chains, commonly polymeric or biomolecules. Applications for such materials are wide-ranging, where we have demonstrated conductive, stimuli-responsive antifouling, and cell adhesive biointerfaces that can respond to external stimuli such as temperature, salt concentration, and redox reactions, the processes that in turn modify and reversibly switch the surface properties. Furthermore, utilizing the advantageous chemical, physical, mechanical and functional properties of the grafts, we progressed into grafting of the long side chains onto conjugated polymers in solution, with the vision of synthesizing solution-processable conjugated graft copolymers with biomimetic functionalities. Examples of the developed materials to date include rubbery and adhesive photoluminescent plastics, biomolecule-functionalized electrospun biosensors, thermally and dually responsive photoluminescent conjugated polymers, and tunable self-healing, adhesive, and stretchable strain sensors, advanced functional biocidal polymers, and filtration membranes. As outlined in these examples, the applications of these biomimetic, conjugated polymers are still in the development stage toward truly printable, organic bioelectronic devices. However, in this Account, we advocate that molecular engineering of conjugated polymers is an attractive approach to a versatile class of organic electronics with both ionic and electrical conductivity as well as mechanical properties required for next-generation bioelectronics.
Collapse
Affiliation(s)
- Paul Baek
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Lenny Voorhaar
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Barker
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
12
|
Lee KM, Kim KH, Yoon H, Kim H. Chemical Design of Functional Polymer Structures for Biosensors: From Nanoscale to Macroscale. Polymers (Basel) 2018; 10:E551. [PMID: 30966585 PMCID: PMC6415446 DOI: 10.3390/polym10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
Over the past decades, biosensors, a class of physicochemical detectors sensitive to biological analytes, have drawn increasing interest, particularly in light of growing concerns about human health. Functional polymeric materials have been widely researched for sensing applications because of their structural versatility and significant progress that has been made concerning their chemistry, as well as in the field of nanotechnology. Polymeric nanoparticles are conventionally used in sensing applications due to large surface area, which allows rapid and sensitive detection. On the macroscale, hydrogels are crucial materials for biosensing applications, being used in many wearable or implantable devices as a biocompatible platform. The performance of both hydrogels and nanoparticles, including sensitivity, response time, or reversibility, can be significantly altered and optimized by changing their chemical structures; this has encouraged us to overview and classify chemical design strategies. Here, we have organized this review into two main sections concerning the use of nanoparticles and hydrogels (as polymeric structures) for biosensors and described chemical approaches in relevant subcategories, which act as a guide for general synthetic strategies.
Collapse
Affiliation(s)
- Kyoung Min Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Kyung Ho Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyungwoo Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|
13
|
Zhu B, Travas-Sejdic J. PNA versus DNA in electrochemical gene sensing based on conducting polymers: study of charge and surface blocking effects on the sensor signal. Analyst 2018; 143:687-694. [PMID: 29297913 DOI: 10.1039/c7an01590a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this communication, we present an in-depth study of DNA/DNA, DNA/PNA and PNA/PNA hybridisation on a conducting polymer-modified electrode, measured by means of electrochemical impedance spectroscopy (EIS). DNA or PNA nucleic base sequence probes (where DNA stands for deoxyribonucleic acid and PNA for peptide nucleic acid) were covalently attached onto the sensor surface. As PNA is a non-charged variant of DNA, we investigate the effects of the surface charge and surface blocking by the surface confined probe/target nucleic bases complexes onto the kinetics of redox reaction of Fe(CN)63-/4- couple occurring at the electrode/solution interface that provides electrochemical readout for hybridisation. A range of hybridisation detection experiments were performed, where the surface charge and surface charge density were varied, through varying the charged nature of the probe and the target (i.e. PNA or DNA) and the density of surface-bound PNA and DNA probes. To further the understanding of these effects on the measured electrochemical signal, kinetic studies of the hybridisation reactions were undertaken, and the equilibrium binding constants and binding rate constants for the hybridisation reactions were obtained. The study provides valuable insights to guide future designs of biosensors.
Collapse
Affiliation(s)
- Bicheng Zhu
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
14
|
Bao B, Pan Y, Gu B, Chen J, Xu Y, Su P, Liu Y, Tong L, Wang L. Highly sensitive detection of nucleic acids using a cascade amplification strategy based on exonuclease III-assisted target recycling and conjugated polyelectrolytes. Analyst 2018; 143:4267-4272. [DOI: 10.1039/c8an01024b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ratiometric and cascade amplification strategy that combines the signal amplification and effecitive FRET property of CPEs with the Exo III-assisted target recycling method has been developed for DNA detection.
Collapse
Affiliation(s)
- Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yanrui Pan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Bingbing Gu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Jia Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yu Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Peng Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yunfei Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Li Tong
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| |
Collapse
|
15
|
Kerr-Phillips TE, Aydemir N, Chan EWC, Barker D, Malmström J, Plesse C, Travas-Sejdic J. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosens Bioelectron 2017; 100:549-555. [PMID: 29017070 DOI: 10.1016/j.bios.2017.09.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023]
Abstract
A highly selective, label-free sensor for the non-Hodgkin lymphoma gene, with an aM detection limit, utilizing electrochemical impedance spectroscopy (EIS) is presented. The sensor consists of a conducting electrospun fibre mat, surface-grafted with poly(acrylic acid) (PAA) brushes and a conducting polymer sensing element with covalently attached oligonucleotide probes. The sensor was fabricated from electrospun NBR rubber, embedded with poly(3,4-ethylenedioxythiophene) (PEDOT), followed by grafting poly(acrylic acid) brushes and then electrochemically polymerizing a conducting polymer monomer with ssDNA probe sequence pre-attached. The resulting non-Hodgkin lymphoma gene sensor showed a detection limit of 1aM (1 × 10-18mol/L), more than 400 folds lower compared to a thin-film analogue. The sensor presented extraordinary selectivity, with only 1%, 2.7% and 4.6% of the signal recorded for the fully non-complimentary, T-A and G-C base mismatch oligonucleotide sequences, respectively. We suggest that such greatly enhanced selectivity is due to the presence of negatively charged carboxylic acid moieties from PAA grafts that electrostatically repel the non-complementary and mismatch DNA sequences, overcoming the non-specific binding.
Collapse
Affiliation(s)
- Thomas E Kerr-Phillips
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Nihan Aydemir
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Eddie Wai Chi Chan
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Barker
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Jenny Malmström
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand; Chemical and Materials Engineering, University of Auckland, 2-6 Park Avenue, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Cedric Plesse
- LPPI-EA2528, Institut des Materiaux, 5 mail Gay Lussac, Neuville sur Oise, Cergy-Pontoise cedex 95031, France
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|