1
|
Pei X, Liu J, Zhang Y, Huang Y, Li Z, Niu X, Zhang W, Sun W. Tetrahedral DNA-linked aptamer-antibody-based sandwich-type electrochemical sensor with Ag@Au core-shell nanoparticles as a signal amplifier for highly sensitive detection of α-fetoprotein. Mikrochim Acta 2024; 191:414. [PMID: 38904836 DOI: 10.1007/s00604-024-06485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
The conventional electrochemical detection strategy for alpha-fetoprotein (AFP) is limited by the antigen-antibody (Ag-Ab) reactions and suffers from low sensitivity and poor reproducibility due to the inconsistency of Ab-modified electrodes. Herein, we designed and explored a sandwich-type electrochemical sensor for highly sensitive detection of AFP based on aptamer (Apt)-AFP-Ab interaction mode with silver@gold (Ag@Au) core-shell nanoparticles (NPs) as a signal amplifier. AuNPs were electrodeposited onto MXene (Ti3C2TX)-modified glassy carbon electrode (GCE) to get AuNPs/MXene/GCE and further used as the signal amplification substrate. The tetrahedral DNA-linked AFP aptamers were immobilized onto AuNPs/MXene/GCE surface via Au-S bonds and used as the sensing and recognition platform for AFP capturing. Ag@AuNPs with core-shell structures were synthesized, characterized, and bound with Ab as detection elements by catalyzing H2O2 reduction. In the presence of AFP, a stable Apt-AFP-Ab sandwich structure was formed owing to the high affinities of aptamer and Ab toward the target AFP. The catalytic current produced by H2O2 reduction increased linearly with the logarithm of AFP concentration from 5 × 10-4 ng/mL to 1 × 105 ng/mL, accompanied by a low detection limit (1.6 × 10-4 ng/mL). Moreover, the novel sandwich-type electrochemical sensor shows high sensitivity, outstanding selectivity, and promising performance in the analysis of actual samples, displaying a broad application prospect in bioanalysis.
Collapse
Affiliation(s)
- Xiaoying Pei
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Junhong Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Yulong Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Yan Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Xueliang Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China.
| | - Weili Zhang
- College of Pharmacy, Key Laboratory of Biomedical Engineering and Technology in Universities of Shandong, Qilu Medical University, Zibo, 255300, P. R. China.
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.
| |
Collapse
|
2
|
Mao Z, Zhao Y, Jia J, Xu Y, Li L, Zhou Y. Ultrasensitive Electrochemiluminescence Biosensor to Detect Ampicillin Resistance Gene (ARG AMP) Based on a Novel Near-Infrared Ruthenium Carbene Complex/TPrA/PEI Ternary ECL System. Anal Chem 2024; 96:934-942. [PMID: 38165813 DOI: 10.1021/acs.analchem.3c05367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The establishment of rapid target identification and analysis methods for antibiotic resistance genes (ARGs) is urgently needed. In this study, we unprecedently designed a target-catalyzed hairpin assembly (CHA) electrochemiluminescent (ECL) biosensor for the ultrasensitive detection of ampicillin resistance genes (ARGAMP) based on a novel, efficient near-infrared ruthenium carbene complex/TPrA/PEI ternary ECL system with low oxidation potential. The ternary NIR-ECL system illustrated in this work displayed double ECL intensity in comparison with their corresponding traditional binary ECL system. The as-prepared ECL biosensor illustrated in this work demonstrates highly selective and sensitive determination of ARGAMP from 1 fM to 1 nM and a low detection limit of 0.23 fM. Importantly, it also exhibits good accuracy and stabilities to identify ARGAMP in plasmid and bacterial genome DNA, which demonstrates its excellent reliability and great potential in detecting ARGAMP in real environmental samples.
Collapse
Affiliation(s)
- Ziwang Mao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yaoyao Xu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
3
|
Gao H, Ding Y, Ping P, Wang D, Ma Y, Li H. Signal-on electrogenerated chemiluminescence detection of gonyautoxin 1/4 based on proximity ligation-induced an electrode-bound pseudoknot DNA. Talanta 2024; 266:124938. [PMID: 37467666 DOI: 10.1016/j.talanta.2023.124938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
A "signal on" electrogenerated chemiluminescence (electrochemiluminescence, ECL) aptasensor based on proximity ligation-induced an electrode-bound pseudoknot DNA for sensitive detection of gonyautoxin 1/4 (GTX1/4) was developed on basis of the competitive type reaction mode. Aptamer was adopted as recognition element. Ru(bpy)32+ as ECL signal, was attached on the glassy carbon electrode (GCE) surface modified with nafion and gold nanoparticles (AuNPs) by electrostatic attraction to obtain the ECL platform. The pseudoknot DNA as capture probe, was immobilized onto the ECL platform via Au-S bond to obtain the ECL aptasensor. In the absence of GTX1/4, Y-shape proximate cooperative complex among aptamer, pseudoknot DNA and DNA1 was formed, drawing the ferrocene groups Fc, as ECL quencher) of both pseudoknot DNA and DNA1 near the electrode surface and resulting in low ECL signal. In the presence of GTX1/4, GTX1/4 competed with pseudoknot DNA and DNA1 for aptamer in homogeneous solution, preventing the formation of proximate cooperative complex and keeping the capture DNA in the pseudoknot conformation with Fc groups far away from the electrode surface, generating a high ECL signal. The recovery of ECL intensity increased with the GTX1/4 concentration and allowed the detection of GTX1/4 in the range of 0.01 ng/mL to 10 ng/mL with a detection of limit as low as 6.56 pg/mL. Additionally, the accuracy of this method was validated for analysis of spiked sea water samples with good recoveries, which indicates great potential in commercial application.
Collapse
Affiliation(s)
- Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China.
| | - Yilin Ding
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Ping Ping
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Denghong Wang
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Yujie Ma
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Haiyu Li
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| |
Collapse
|
4
|
Wang M, Jiang M, Ma C, Zhao C, Lai W, Li J, Wang D, Hong C, Qi Y. Construction of a Dual-Mode Immune Platform Based on the Photothermal Effect of AgCo@NC NPs for the Detection of α-Fetoprotein. Anal Chem 2023; 95:16225-16233. [PMID: 37877873 DOI: 10.1021/acs.analchem.3c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Compared with the accuracy of a single signal and the limitation of environmental applicability, the application value of dual-mode detection is gradually increasing. To this end, based on the photothermal effect of Ag/Co embedded N-rich mesoporous carbon nanomaterials (AgCo@NC NPs), we designed a dual-mode signal response system for the detection of α-fetoprotein (AFP). First, AgCo@NC NPs act as a photothermal immunoprobe that converts light energy into heat driven by a near-infrared (NIR) laser and obtains temperature changes corresponding to the analyte concentration on a hand-held thermal imager. In addition, this temperature recognition system can significantly improve the efficiency of Fenton-like reactions. AgCo@NC NPs act as peroxidase mimics to initiate the generation of poly N-isopropylacrylamide (PNIPAM, resistance enhancer) by cascade catalysis and the degradation of methylene blue (MB), thus enabling electrochemical testing. The dual-mode assay ranges from 0.01 to 100 and 0.001-10 ng/mL, with lower limits of detection (LOD) of 3.2 and 0.089 pg/mL, respectively, and combines visualization, portability, and high efficiency, opening new avenues for future clinical diagnostics and inhibitor studies.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Mingzhe Jiang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chaoyun Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chulei Zhao
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wenjing Lai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jiajia Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Dasheng Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chenglin Hong
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yu Qi
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
5
|
Zeng Y, Qian M, Yang X, Gao Q, Zhang C, Qi H. Electrochemiluminescence bioassay with anti-fouling ability for determination of matrix metalloproteinase 9 secreted from living cells under external stimulation. Mikrochim Acta 2023; 190:422. [PMID: 37775573 DOI: 10.1007/s00604-023-05996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
An electrochemiluminescence (ECL) bioassay with high sensitivity and anti-fouling ability was developed for determination of matrix metalloproteinase 9 (MMP-9) secreted from living cells under external stimulation. A peptide with sequence of CLGRMGLPGK and a new cyclometalated iridium(III) complex bearing carboxyl group, (pq)2Ir(dcbpy) (pq = 2-phenylquinoline, dcbpy = 2,2'-bipyridyl-4,4'-dicarboxyli acid, abbreviated as Ir) were employed as molecular recognition substrate and ECL emitter, respectively. The peptide was labelled with the Ir to form Ir-peptide as ECL probe. Ir-peptide was self-assembled onto Nafion and gold nanoparticles (AuNPs) modified glassy carbon electrode (AuNPs/Nafion/GCE) and then both of 6-mercapto-1-hexanol (MCH) and zwitterionic peptide as blocking reagents were co-assembled on Ir-peptide/AuNPs/Nafion/GCE to form an anti-fouling ECL peptide-based biosensor. MMP-9 can be quantified in the range 1.0-50 ng·mL-1 with a detection limit of 0.50 ng·mL-1 based on the decreased ECL intensity. Relative standard derivation was 2.3% for six fabricated anti-fouling ECL peptide-based biosensors after reaction with 50 ng·mL-1 MMP-9. The anti-fouling ECL peptide-based biosensor can be used to monitor MMP-9 secreted from living cells under external stimulation. 96.0%-108.0% of recoveries were obtained in 60-diluted cell culture media. This study demonstrates that the ECL biosensor by the combination of iridium(III) complex-based sensitive ECL method and the anti-fouling interface provides a promising way for the determination of MMP-9 in biological sample, which is viable in clinical diagnosis and point-of-care test of protease.
Collapse
Affiliation(s)
- Yu Zeng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
6
|
Zhou H, Liu R, Pan G, Cao M, Zhang L. Unique Electron-Transfer-Mediated Electrochemiluminescence of AuPt Bimetallic Nanoclusters and the Application in Cancer Immunoassay. BIOSENSORS 2023; 13:bios13050550. [PMID: 37232911 DOI: 10.3390/bios13050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Noble Metal nanoclusters (NCs) are promising electrochemiluminescence (ECL) emitters due to their amazing optical properties and excellent biocompatibility. They have been widely used in the detection of ions, pollutant molecules, biomolecules, etc. Herein, we found that glutathione-capped AuPt bimetallic NCs (GSH-AuPt NCs) emitted strong anodic ECL signals with triethylamine as co-reactants which had no fluorescence (FL) response. Due to the synergistic effect of bimetallic structures, the ECL signals of AuPt NCs were 6.8 and 94 times higher than those of monometallic Au and Pt NCs, respectively. The electric and optical properties of GSH-AuPt NCs differed from those of Au and Pt NCs completely. An electron-transfer mediated ECL mechanism was proposed. The excited electrons may be neutralized by Pt(II) in GSH-Pt and GSH-AuPt NCs, resulting in the vanished FL. Furthermore, abundant TEA radicals formed on the anode contributed electrons to the highest unoccupied molecular orbital of GSH-Au2.5Pt NCs and Pt(II), booming intense ECL signals. Because of the ligand effect and ensemble effect, bimetallic AuPt NCs exhibited much stronger ECL than GSH-Au NCs. A sandwich-type immunoassay for alpha fetoprotein (AFP) cancer biomarkers was fabricated with GSH-AuPt NCs as signal tags, which displayed a wide linear range from 0.01 to 1000 ng·mL-1 and a limit of detection (LOD) down to 1.0 pg·mL-1 at 3S/N. Compared to previous ECL AFP immunoassays, this method not only had a wider linear range but also a lower LOD. The recoveries of AFP in human serum were around 108%, providing a wonderful strategy for fast, sensitive, and accurate cancer diagnosis.
Collapse
Affiliation(s)
- Huiwen Zhou
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ruanshan Liu
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Guangxing Pan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Miaomiao Cao
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Wei Y, Zhang J, Yang X, Wang Z, Wang J, Qi H, Gao Q, Zhang C. Washing-free electrogenerated chemiluminescence magnetic microbiosensors based on target assistant proximity hybridization for multiple protein biomarkers. Anal Chim Acta 2023; 1253:340926. [PMID: 36965986 DOI: 10.1016/j.aca.2023.340926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
This work reports washing-free electrogenerated chemiluminescence (ECL) magnetic microbiosensors based on target assistant proximity hybridization (TAPH) for multiple protein biomarkers for the first time. As a principle-of-proof, alpha-fetoprotein (AFP) was chosen as a model analyte, and biotin-DNA1 bound streptavidin-coated magnetic microbeads (MMB@SA⋅biotin-DNA1) were designed as the universal capture MMB, while the corresponding two antibodies tagged with DNA2 or DNA3 were utilized as hybrid recognition probes, and ruthenium complex-tagged DNA4-10A was designed as a universal ECL signal probe. When the capture MMB was added into the mixture solution (containing the analyte, hybrid recognition probes, signal probe and tri-n-propylamine), biocomplexes were formed on the MMB. After the resulting MMB was efficiently brought to the surface of a magnetic glassy carbon electrode (MGCE), ECL measurement was performed without a washing step, resulting in an increase in the ECL intensity. A model for ECL measuring the second-order rate constants of hybridization reactions on MMB was derived. It was found that the rate constants for hybridization reactions on MMB in rotating mode are 1.6-fold higher than those in shaking mode, and a suitable DNA length of the signal probe can improve the signal-to-noise ratio. The washing-free ECL method was developed for the determination of AFP with a much lower detection limit (LOD) of 0.04 ng mL-1. The developed flexible strategy has been extended to determine D-dimer with an LOD of 0.1 ng mL-1 and myoglobinglobin with an LOD of 1.1 ng mL-1. This work demonstrated that the proposed strategy of ECL TAPH on MMB at MGCE is a washing-free and flexible promising strategy, and can be extended to qualify other multiple protein biomarkers in real clinical assays.
Collapse
Affiliation(s)
- Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Jian Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Zimei Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Junxia Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
8
|
Gao H, Wang K, Li H, Fan Y, Sun X, Wang X, Sun H. Recent advances in electrochemical proximity ligation assay. Talanta 2023; 254:124158. [PMID: 36502611 DOI: 10.1016/j.talanta.2022.124158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Proximity ligation assay (PLA) is a vigorously developed homogeneous immunoassay assisted by DNA combining dual recognition of target protein by pairs of proximity probes, in which the detection of protein is tactfully converted to the detection of DNA. The booming developments in PLA have enabled a variety of ultrasensitive assays for the detection of protein and this concept of PLA is also extended to the detection of nucleic acids and some small molecule. The association between PLA and electrochemical method, defined as electrochemical proximity ligation assay (ECPLA), has gained much interests in disease diagnosis, food safety and environmental assays with the advantages, such as broad range of targets, simplicity, low cost and rapid response. In this review, we took a different perspective to present the history of PLA, the classical ECPLA biosensing methodology as well as the developments of ECPLA based on several key parameters, such as sensitivity, selectivity, reusability and generalization. In addition, the developments of PLA with electrochemiluminescence as readout are also presented. Finally, perspective and some unresolved challenges in ECPLA that can potentially be addressed have also been discussed.
Collapse
Affiliation(s)
- Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China.
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Haiyu Li
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xiong Sun
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xia Wang
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Huiping Sun
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215000, PR China
| |
Collapse
|
9
|
Li R, Zhang D, Li X, Qi H. Sensitive and selective electrogenerated chemiluminescence aptasensing method for the determination of dopamine based on target-induced conformational displacement. Bioelectrochemistry 2022; 146:108148. [DOI: 10.1016/j.bioelechem.2022.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
|
10
|
Proximity hybridization-induced competitive rolling circle amplification to construct fluorescent dual-sensor for simultaneous evaluation of glycated and total hemoglobin. Biosens Bioelectron 2022; 202:113998. [DOI: 10.1016/j.bios.2022.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
|
11
|
Kurup CP, Mohd-Naim NF, Ahmed MU. A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor. Mikrochim Acta 2022; 189:165. [PMID: 35355134 DOI: 10.1007/s00604-022-05275-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/10/2022] [Indexed: 01/16/2023]
Abstract
An electrochemiluminescence (ECL) aptasensor for the detection of the milk protein allergen β-lactoglobulin (β-LG) using nanocomposite as luminophore was fabricated. The Ru-AuNPs/GNP/Naf complex was formed by combining the Rubpy32+-AuNPs complex (Ru-AuNPs), prepared by modifying the negatively charged surface of gold nanoparticles (AuNPs) with positively charged Rubpy32+ through electrostatic interactions and the graphene nanoplatelets-Nafion (GNP/Naf) at a ratio of 2:1. The nanocomposite was coated on the surface of the screen-printed electrode (SPCE) through the film-forming properties of Nafion. A layer of chitosan (CS) was coated onto this modified electrode, and later amine-terminated β-LG aptamers were covalently attached to the CS/Ru-AuNP/GNP/Naf via glutaraldehyde (GLUT) cross-linking. When β-LG was incubated with the aptasensor, a subsequent decrease in ECL intensity was recorded. Under the optimal conditions, the ECL intensity of the aptasensor changed linearly with the logarithmic concentration of β-LG, in the range 0.1 to 1000 pg/ml, and the detection limit was 0.02 pg/mL (3σ/m). The constructed aptasensor displayed simple and fast determination of β-LG with excellent reproducibility, stability, and high specificity. Additionally, the proposed ECL aptasensor displayed high recoveries (92.5-112%) and low coefficients of variation (1.6-7.8%), when β-LG fortified samples were analyzed. Integrating Ru-AuNPs/GNP/Naf nanocomposite in the ECL aptasensor paves the way towards a cost-effective and sensitive detection of the milk allergen β-LG.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam.
| |
Collapse
|
12
|
Su Y, Lai W, Liang Y, Zhang C. Novel cloth-based closed bipolar solid-state electrochemiluminescence (CBP-SS-ECL) aptasensor for detecting carcinoembryonic antigen. Anal Chim Acta 2022; 1206:339789. [DOI: 10.1016/j.aca.2022.339789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022]
|
13
|
Huang Q, Luo F, Lin C, Wang J, Qiu B, Lin Z. Electrochemiluminescence biosensor for thrombin detection based on metal organic framework with electrochemiluminescence indicator embedded in the framework. Biosens Bioelectron 2021; 189:113374. [PMID: 34087726 DOI: 10.1016/j.bios.2021.113374] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022]
Abstract
Ru(dcbpy)32+-polyethyleneimine-L-lysine (Ru-PEI-L-lys) had been immobilized on metal organic frameworks (ZIF-8) to form an electrochemiluminescent(ECL) indicator (Ru-PEI-L-lys-ZIF-8). In this ECL indicator, PEI-L-lys is used as a co-reactant. Platinum nanoparticles (PtNPs) has been mixed with Ru-PEI-L-lys-ZIF-8 to form a thin film to increase the electron transfer rate and enhanced the ECL response of the system. The prepared material had been characterized carefully and been combined with high selectivity of aptamer to develop a ECL biosensor for thrombin detection. RecJf exonuclease (an ssDNA specific exonuclease) assistant target recycling amplification has been adopted to enhance the sensitivity of the system. The ECL response of the system has a linear relationship with logarithm of thrombin concentration in the range of 1 fM to 10 pM with a detection limit of 0.02 aM. This work not only provides a new strategy for the design and synthesis of high performance and stable ECL indicator, but also opens up a new approach for the development of highly sensitive ECL sensors for biological analysis.
Collapse
Affiliation(s)
- Qingqing Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
14
|
Zhang M, Shi L, Liu X, Qian M, Qi H. “Signal‐on” Electrogenerated Chemiluminescence Biosensing Method for the Determination of Matrix Metalloproteinase 2. ELECTROANAL 2021. [DOI: 10.1002/elan.202100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mengyu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
| | - Liang Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
- School of Electronic Information Engineering Xi'an Technological University Xi'an 710021 P.R. China
| | - Xiaoru Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P.R. China
| |
Collapse
|
15
|
Ren H, Zhang S, Huang Y, Chen Y, Lv L, Dai H. Dual-readout proximity hybridization-regulated and photothermally amplified protein analysis based on MXene nanosheets. Chem Commun (Camb) 2020; 56:13413-13416. [PMID: 33035288 DOI: 10.1039/d0cc05148a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, an ingenious dual-readout sensing platform based on a proximity hybridization-regulated strategy is proposed for protein detection. For the first time, Ti3C2 MXene@thionine composites (MXene@Thi) with an excellent photothermal effect not only acted as an amplifier to enhance the electrochemical signal, but were also used as a converter to achieve the temperature readout.
Collapse
Affiliation(s)
- Huizhu Ren
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China.
| | | | | | | | | | | |
Collapse
|
16
|
Zhang S, Chen Y, Huang Y, Dai H, Lin Y. Design and application of proximity hybridization-based multiple stimuli-responsive immunosensing platform for ovarian cancer biomarker detection. Biosens Bioelectron 2020; 159:112201. [PMID: 32364942 DOI: 10.1016/j.bios.2020.112201] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
Abstract
The development of convenient and sensitive multi-readout immunoassay is crucial but highly challenged for meeting the demand of exactness and diversity in early clinical diagnosis. Herein, a split-type multiple stimuli-responsive biosensor was outlined combined with the outstanding superiority of luminol probe-based electrochemiluminescence (ECL) strategy, mimicking enzyme-mediated colorimetric system and portable photothermal effect-induced temperature sensing. Especially, versatile MoS2 nanosheets (MoS2 NSs) with distinguished property not only acted as dual-promoter to improve the cathodic ECL of luminol because of its good electrocatalytic activity for dissolved O2 and favorable photothermal effect for elevating electrode temperature, but also used as nanozyme to regulate subsequent split-type visual colorimetric sensing due to its peroxidase-like activity for the generation of oxidized 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) in ABTS-H2O2 colorimetric system. More importantly, the green oxidized ABTS (ABTS•+) also exhibited strong near-infrared (NIR) laser-triggered photothermal performance, which can be innovatively employed as sensitive photothermal agent for converting biological signals into temperature under the irradiation of NIR laser, accomplishing more simpler temperature quantitative detection by a portable thermometer. Furthermore, on account of the affinity discrepancy of MoS2 NSs to single-stranded and double-stranded nucleic acids, a label-free proximity hybridization-based multifunctional assay platform was proposed for target detection with human epididymis-specific protein 4 (HE4) as model protein, demonstrating good analytical performances. Significantly, this innovative work not only enriches the foundational study of multi-model biosensing based on the unitary material but also provides an unambiguous guideline for exploring more accurate and simpler point-of-care diagnosis.
Collapse
Affiliation(s)
- Shupei Zhang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China; Fujian Provincial Maternity and Children Hospital, Fuzhou, Fujian, 350108, China
| | - Yanjie Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Yitian Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Hong Dai
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China; Fujian Provincial Maternity and Children Hospital, Fuzhou, Fujian, 350108, China.
| | - Yanyu Lin
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
17
|
Proximity-enabled bidirectional enzymatic repairing amplification for ultrasensitive fluorescence sensing of adenosine triphosphate. Anal Chim Acta 2020; 1104:156-163. [PMID: 32106947 DOI: 10.1016/j.aca.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023]
Abstract
A novel fluorescence sensing strategy for ultrasensitive and highly specific detection of adenosine triphosphate (ATP) has been developed by the combination of the proximity ligation assay with bidirectional enzymatic repairing amplification (BERA). The strategy relies on proximity binding-triggered the release of palindromic tail that initiates bidirectional cyclic enzymatic repairing amplification reaction with the aid of polymerase and two DNA repairing enzymes, uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV). A fluorescence-quenched hairpin probe with a palindromic tail at the 3' end is skillfully designed that functions as not only the recognition element, primer, and polymerization template for BERA but also the indicator for fluorescence signal output. On the basis of the amplification strategy, this biosensor displays excellent sensitivity and selectivity for ATP detection with an outstanding detection limit of 0.81 pM. Through simultaneously enhancing the target response signal value and reducing nonspecific background, this work deducted the background effect, and showed high sensitivity and reproducibility. Moreover, our biosensor also shows promising potential in real sample analysis. Therefore, the proximity-enabled BERA strategy indeed creates a simple and valuable fluorescence sensing platform for ATP identification and related disease diagnosis and biomedical research.
Collapse
|
18
|
Wang B, Shi S, Yang X, Wang Y, Qi H, Gao Q, Zhang C. Separation-Free Electrogenerated Chemiluminescence Immunoassay Incorporating Target Assistant Proximity Hybridization and Dynamically Competitive Hybridization of a DNA Signal Probe. Anal Chem 2019; 92:884-891. [DOI: 10.1021/acs.analchem.9b03662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bing Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Suwen Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Yue Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| |
Collapse
|
19
|
Zhang Z, Guan Y, Xu G, Guo C. A new washing-free immunosensor for tumor marker detection based on functionalized Fe3O4 submicron particles. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Zhang X, Liu S, Pan J, Jia H, Chen Z, Guo T. Multifunctional oligomer immobilized on quartz crystal microbalance: a facile and stabilized molecular imprinting strategy for glycoprotein detection. Anal Bioanal Chem 2019; 411:3941-3949. [DOI: 10.1007/s00216-019-01867-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/17/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023]
|
21
|
Li B, Pu W, Xu H, Ge L, Kwok HF, Hu L. Magneto-controlled flow-injection device for electrochemical immunoassay of alpha-fetoprotein on magnetic beads using redox-active ferrocene derivative polymer nanospheres. Analyst 2019; 144:1433-1441. [DOI: 10.1039/c8an01978a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new electrochemical immunosensing protocol by coupling with a magneto-controlled flow-through microfluidic device was developed for the sensitive detection of alpha-fetoprotein (AFP) on magnetic beads (MB) using ferrocene derivative polymer nanospheres (FDNP) as the electroactive mediators.
Collapse
Affiliation(s)
- Bin Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
- Institute of Translational Medicine
| | - Wenyuan Pu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Houxi Xu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Lilin Ge
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Hang Fai Kwok
- Institute of Translational Medicine
- Faculty of Health Sciences
- University of Macau
- Avenida de Universidade
- Macau SAR
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
22
|
Xiong E, Jiang L. An ultrasensitive electrochemical immunoassay based on a proximity hybridization-triggered three-layer cascade signal amplification strategy. Analyst 2019; 144:634-640. [DOI: 10.1039/c8an01800f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An ultrasensitive electrochemical immunoassay based on a proximity hybridization-triggered three-layer cascade signal amplification strategy.
Collapse
Affiliation(s)
- Erhu Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Ling Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|
23
|
Voltammetric immunoassay of human IgG based on the release of cadmium(II) from CdS nanocrystals deposited on mesoporous silica nanospheres. Mikrochim Acta 2018; 186:15. [PMID: 30542980 DOI: 10.1007/s00604-018-3142-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
Abstract
The authors describe a nanocomposite that was obtained by in-situ deposition of CdS nanocrystals on mesoporous silica nanospheres (MSNs), and its use in an electrochemical immunoassay of human immunoglobulin G (HIgG). The MCN/CdS nanocomposite was covalently modified with the antibodies against HIgG and then employed in a voltammetric immunoassay at antibody-functionalized magnetic beads. Through sandwich immunoreaction, the MCN/CdS nanoprobes are quantitatively captured onto the magnetic beads where numerous Cd(II) ions are released in an acidic solution. The Cd(II) can be detected by anodic stripping voltammetry at a typical working potential of -0.78 V (vs. Ag/AgCl). In combination with the high loading of CdS on MSNs, the use of the stripping voltammetric analysis renders the method high sensitivity. A wide linear range varying from 0.01 to 100 ng mL-1 is obtained for HIgG detection with a lower detection limit at 2.9 pg mL-1. In addition, the preparation of the nanoprobe is inexpensive. The magnetic bead-based assay does not require complex manipulations. Therefore, this method is deemed to possess a wide scope in that it may be applied to other immunoassays. Graphical abstract Graphical Abstract contains poor quality and small text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.A TIFF file at 900 dpi resolution of the Graphical Abstract has been attached via this online system. Schematic presentation of the preparation of the mesoporous silica nanosphere (MSN)/CdS nanocomposite for the electrochemical immunoassay of human IgG at magnetic beads. The high decoration of CdS on MSN and the stripping voltammetric analysis of Cd(II) ions render the method high sensitivity.
Collapse
|
24
|
“Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Chen S, Lv Y, Shen Y, Ji J, Zhou Q, Liu S, Zhang Y. Highly Sensitive and Quality Self-Testable Electrochemiluminescence Assay of DNA Methyltransferase Activity Using Multifunctional Sandwich-Assembled Carbon Nitride Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6887-6894. [PMID: 29376630 DOI: 10.1021/acsami.7b17813] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation catalyzed by methylase plays a key role in many biological activities. However, developing a highly sensitive, simple, and reliable way for evaluation of DNA methyltransferase (MTase) activity is still a challenge. Here, we report a sandwich-assembled electrochemiluminescence (ECL) biosensor using multifunctional carbon nitride nanosheets (CNNS) to evaluate the Dam MTase activity. The CNNS could not only be used as an excellent substrate to conjugate a large amount of hairpin probe DNA to improve the sensitivity but also be utilized as an internal reliability checker and an analyte reporter in the bottom and top layers of the biosensor, respectively. Such a unique sandwich configuration of CNNS well coupled the advantages of ECL luminophor that were generally assembled in the bottom or top layer in a conventional manner. As a result, the biosensor exhibited an ultralow detection limit down to 0.043 U/mL and a linear range between 0.05 and 80 U/mL, superior to the MTase activity assay in most previous reports. We highlighted the great potential of emerging CNNS luminophor in developing highly sensitive and smart quality self-testable ECL sensing systems using a sandwiched configuration for early disease diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Shiyu Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yanqin Lv
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yanfei Shen
- Medical School, Southeast University , Nanjing 210009, China
| | - Jingjing Ji
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| |
Collapse
|
26
|
Wang X, Gao H, Qi H, Gao Q, Zhang C. Proximity Hybridization-Regulated Immunoassay for Cell Surface Protein and Protein-Overexpressing Cancer Cells via Electrochemiluminescence. Anal Chem 2018; 90:3013-3018. [DOI: 10.1021/acs.analchem.7b04359] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaofei Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| | - Hongfang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| |
Collapse
|
27
|
Wang H, Chai Y, Li H, Yuan R. Sensitive electrochemiluminescent immunosensor for diabetic nephropathy analysis based on tris(bipyridine) ruthenium(II) derivative with binary intramolecular self-catalyzed property. Biosens Bioelectron 2018; 100:35-40. [DOI: 10.1016/j.bios.2017.08.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022]
|