1
|
Nunziata G, Nava M, Lacroce E, Pizzetti F, Rossi F. Thermo-Responsive Polymer-Based Nanoparticles: From Chemical Design to Advanced Applications. Macromol Rapid Commun 2025:e2401127. [PMID: 39895239 DOI: 10.1002/marc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Thermo-responsive polymers have emerged as a cutting-edge tool in nanomedicine, paving the way for innovative approaches to targeted drug delivery and advanced therapeutic strategies. These "smart" polymers respond to temperature changes, enabling controlled drug release in pathological environments characterized by high temperatures. By exploiting their unique phase transition, occurring at the lower or upper critical solution temperatures (LCST and UCST), these systems ensure localized therapeutic action, minimizing collateral damage to healthy tissues. The integration of these polymers into nanoparticles with hydrophilic shells and hydrophobic cores enhances their stability and biocompatibility. Furthermore, advanced polymer engineering allows precise modulation of LCST and UCST through adjustments in composition and hydrophilic-lipophilic balance, optimizing their responsiveness for specific applications. In addition to drug delivery, thermo-responsive nanoparticles are gaining attention in several fields such as gene therapy and imaging. Therefore, this review explores the chemical and structural diversity of thermo-responsive nanoparticles, emphasizing their ability to encapsulate and release drugs effectively. Second, this review highlights the potential of thermo-responsive nanoparticles to redefine treatment paradigms, providing a comprehensive understanding of their mechanisms, applications, and future perspectives in biomedical research.
Collapse
Affiliation(s)
- Giuseppe Nunziata
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Marco Nava
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| |
Collapse
|
2
|
Ting WT, Ali MY, Mitea V, Wang MJ, Howlader MMR. Polyaniline-based bovine serum albumin imprinted electrochemical sensor for ultra-trace-level detection in clinical and food safety applications. Int J Biol Macromol 2024; 277:134137. [PMID: 39067725 DOI: 10.1016/j.ijbiomac.2024.134137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monitoring bovine serum albumin (BSA) at ultra-low levels is crucial for clinical and food safety applications, as it plays a significant role in identifying various health conditions and potential risks, necessitating fast, trace-level detection of BSA. This study proposes an approach to address these challenges by employing molecularly imprinted polymer (MIP) to develop an ultra-trace-level and cost-effective BSA sensing platform. The MIP electrochemical sensor was developed using polyaniline (PANI) combined with the protein crosslinker glutaraldehyde (GA) to optimize BSA surface imprinting in the MIP. As a result, the sensor achieves a sensitivity of 1.24 μA/log(pg/mL), with a picomolar detectable limit of 2.3 pg/mL (0.035 pM) and a wide detection range from 20 pg/mL to 200,000 pg/mL (0.303 pM to 3030 pM), making it suitable for clinical and food safety applications. Additionally, the study explores the interaction between an acidic surfactant protein eluent (acetic acid with sodium dodecyl sulfate, AcOH-SDS) and BSA vacant sites, enhancing recognition and re-binding. The PANI-based MIP sensor demonstrates initial feasibility and practicality in commercial milk and real human serum, opening avenues for early disease detection and ensuring food safety in BSA-related immune responses.
Collapse
Affiliation(s)
- Wei-Ting Ting
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan; Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan
| | - Md Younus Ali
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Victor Mitea
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan.
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
3
|
Gong H, Xu L, Yang X, Chen C, Chen F, Cai C. Construction of a thermoresponsive molecularly imprinted biomimetic hydrogel-based virus sensor and non-invasive cyclable detection of EV71. Mikrochim Acta 2024; 191:591. [PMID: 39261375 DOI: 10.1007/s00604-024-06673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
A thermoresponsive molecularly imprinted hydrogel sensor was constructed for the specific selective recognition of enterovirus 71 (EV71). Due to the introduction of the thermosensitive monomer N-isopropylacrylamide (NIPAM), when the imprinted hydrogel is incubated with the virus at 37℃, the surface specific imprinting cavity will specifically recognize and capture the target virus EV71. When the temperature rises to 45℃, the combined EV71 is rapidly released due to changes in the shape and function of the imprinted sites. The MIP hydrogel-based viral sensor developed recognized, captured, and released the target virus in a non-invasive way. The imprinting factor of the target virus was 5.2, suggesting high selectivity, and the detection limit was 7.1 fM, suggesting high sensitivity. Detection was rapid, as adsorption equilibrium was achieved within 30 min. This method provides a new sustainable avenue for the simple and rapid detection of viruses.
Collapse
Affiliation(s)
- Hang Gong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China.
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Luru Xu
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xi Yang
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Chunyan Chen
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Chen
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
4
|
Liang A, Lv T, Pan B, Zhu Z, Haotian R, Xie Y, Sun L, Zhang J, Luo A. Dynamic simulation and experimental studies of molecularly imprinted label-free sensor for determination of milk quality marker. Food Chem 2024; 449:139238. [PMID: 38583401 DOI: 10.1016/j.foodchem.2024.139238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Bovine serum albumin (BSA) has emerged as a biomarker for mammary gland health and cow quality, being recognized as a significant allergenic protein. In this study, a novel flexible molecular imprinted electrochemical sensor by surface electropolymerization using pyrrole (Py) as functional monomer, which can be better applied to the detection of milk quality marker BSA. Based on computational results, with regard to all polypyrrole (PPy) conformations and amino-acid positions within the protein, the BSA molecule remained firmly embedded into PPy polymers with no biological changes. The molecular imprinted electrochemical sensor displayed a broad linear detection range from 1.0 × 10-4 to 50 ng·mL-1 (R2 = 0.995) with a low detection limit (LOD) of 4.5 × 10-2 pg·mL-1. Additionally, the sensor was highly selective, reproducible, stable and recoverable, suggesting that it might be utilized for the evaluation of milk quality.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingchen Pan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Xie
- Beijing Dawn Aerospace Bio-Tech Co. Ltd, Beijing 100043, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Singh P, Aggrawal V, Badhulika S. Synergistic integration of Ni-metal organic framework/SnS 2nanocomposite and nickel foam electrode for ultrasensitive and selective electrochemical detection of albumin in simulated human blood serum. NANOTECHNOLOGY 2024; 35:185502. [PMID: 38295400 DOI: 10.1088/1361-6528/ad247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/29/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Albumin is a vital blood protein responsible for transporting metabolites and drugs throughout the body and serves as a potential biomarker for various medical conditions, including inflammatory, cardiovascular, and renal issues. This report details the fabrication of Ni-metal organic framework/SnS2nanocomposite modified nickel foam electrochemical sensor for highly sensitive and selective non enzymatic detection of albumin in simulated human blood serum samples. Ni-metal organic framework/SnS2nanocomposite was synthesized using solvothermal technique by combining Ni-metal-organic framework (MOF) with conductive SnS2leading to the formation of a highly porous material with reduced toxicity and excellent electrical conductivity. Detailed surface morphology and chemical bonding of the Ni-MOF/SnS2nanocomposite was studied using scanning electron microscopy, transmission electron microscopy, Fourier transform infra-red, and Raman analysis. The Ni-MOF/SnS2nanocomposite coated on Ni foam electrode demonstrated outstanding electrochemical performance, with a low limit of detection (0.44μM) and high sensitivity (1.3μA/pM/cm2) throughout a broad linear range (100 pM-10 mM). The remarkable sensor performance is achieved through the synthesis of a Ni-MOF/SnS2nanocomposite, enhancing electrocatalytic activity for efficient albumin redox reactions. The enhanced performance can be attributed due to the structural porosity of nickel foam and Ni-metal organic framework, which favours increased surface area for albumin interaction. The presence of SnS2shows stability in acidic and neutral solutions due to high surface to volume ratio which in turn improves sensitivity of the sensing material. The sensor exhibited commendable selectivity, maintaining its performance even when exposed to potential interfering substances like glucose, ascorbic acid, K+, Na+, uric acid, and urea. The sensor effectively demonstrates its accuracy in detecting albumin in real samples, showcasing substantial recovery percentages of 105.1%, 110.28%, and 91.16%.
Collapse
Affiliation(s)
- Pratiksha Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Vinayak Aggrawal
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| |
Collapse
|
6
|
Voltammetric immunoassay based on MWCNTs@Nd(OH) 3-BSA-antibody platform for sensitive BSA detection. Mikrochim Acta 2022; 189:422. [PMID: 36253569 DOI: 10.1007/s00604-022-05514-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL-1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL-1 and 61 pg mL-1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2-), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.
Collapse
|
7
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
8
|
Mazzotta E, Di Giulio T, Malitesta C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Anal Bioanal Chem 2022; 414:5165-5200. [PMID: 35277740 PMCID: PMC8916950 DOI: 10.1007/s00216-022-03981-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
Looking at the literature focused on molecularly imprinted polymers (MIPs) for protein, it soon becomes apparent that a remarkable increase in scientific interest and exploration of new applications has been recorded in the last several years, from 42 documents in 2011 to 128 just 10 years later, in 2021 (Scopus, December 2021). Such a rapid threefold increase in the number of works in this field is evidence that the imprinting of macromolecules no longer represents a distant dream of optimistic imprinters, as it was perceived until only a few years ago, but is rapidly becoming an ever more promising and reliable technology, due to the significant achievements in the field. The present critical review aims to summarize some of them, evidencing the aspects that have contributed to the success of the most widely used strategies in the field. At the same time, limitations and drawbacks of less frequently used approaches are critically discussed. Particular focus is given to the use of a MIP for protein in the assembly of electrochemical sensors. Sensor design indeed represents one of the most active application fields of imprinting technology, with electrochemical MIP sensors providing the broadest spectrum of protein analytes among the different sensor configurations.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy.
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
9
|
Recent Progress, Challenges, and Trends in Polymer-Based Sensors: A Review. Polymers (Basel) 2022; 14:polym14112164. [PMID: 35683835 PMCID: PMC9182651 DOI: 10.3390/polym14112164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Polymers are long-chain, highly molecular weight molecules containing large numbers of repeating units within their backbone derived from the product of polymerization of monomeric units. The materials exhibit unique properties based on the types of bonds that exist within their structures. Among these, some behave as rubbers because of their excellent bending ability, lightweight nature, and shape memory. Moreover, their tunable chemical, structural, and electrical properties make them promising candidates for their use as sensing materials. Polymer-based sensors are highly utilized in the current scenario in the public health sector and environment control due to their rapid detection, small size, high sensitivity, and suitability in atmospheric conditions. Therefore, the aim of this review article is to highlight the current progress in polymer-based sensors. More importantly, this review provides general trends and challenges in sensor technology based on polymer materials.
Collapse
|
10
|
Self-cleaning electrochemical protein-imprinting biosensor with a dual-driven switchable affinity for sensing bovine serum albumin. Talanta 2022; 237:122893. [PMID: 34736709 DOI: 10.1016/j.talanta.2021.122893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 01/31/2023]
Abstract
A facile, universal and highly efficient approach for producing a self-cleaning electrochemical protein-imprinting biosensor based on dual stimuli-responsive memory hydrogels via free-radical polymerisation is described. As confirmed by static contact angle and scanning electron microscopy results, the imprinted hydrogels exhibited reversible conformational changes after being simulated by an external electric field and temperature. By exploring the properties of imprinted hydrogels for sensing applications, the electrochemical protein-imprinting biosensor was originally fabricated on a glassy carbon electrode using the drop-casting method. Because of the trigger gates of the temperature and electric field, the biosensor demonstrated excellent self-cleaning behaviours compared with other corresponding electric-field or thermo-responsive imprinting biosensors. Moreover, the prepared biosensor exhibited satisfactory selectivity, good biocompatibility, comparable limits of detection and linearity ranges as well as acceptable stability toward bovine serum albumin. Consequently, the biosensor was successfully employed to simultaneously enrich, detect and extract bovine serum albumin from complex biological samples; the process was dynamic, controllable and harmless to the template under the dual external stimuli. Thus, the proposed biosensor exhibited considerable potential in controlled drug/chemical delivery and smart sensing for bioanalyses involving dual stimuli-responsive behaviours.
Collapse
|
11
|
Wang M, Zhou J, Zhang G, Liu Q, Zhang Q. Pyrrolidinyl ligand motif-assisted bovine serum albumin molecularly imprinted polymers with high specificity. J Colloid Interface Sci 2021; 609:102-113. [PMID: 34894545 DOI: 10.1016/j.jcis.2021.11.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022]
Abstract
Ideal binding ligands for anchoring proteins are essential for the design and assembly of desirable molecularly imprinted polymers (MIPs). In this study, bovine serum albumin-MIPs (BSA-MIPs) were successfully prepared by orchestrating the involvement of orientation-controllable binding ligands via sequential thiol-ene click and thiol-ene-amine conjugation. We showed that the optimal thiol-ene-amine conjugates and binding ligands were decisive in determining the rebinding capacity and selectivity. The pyrrolidinyl MIPs exhibited the best adsorption capacity of 352 ± 22 mg/g and a superior imprinting factor of 4.72 among MIPs with various binding ligands. These favourable results were further studied by computational simulation and isothermal titration calorimetry (ITC). Molecular docking revealed the preferential binding free energy and H-bonds between BSA residues and the thiol-ene-amine conjugates. Meanwhile, the pyrrolidinyl ligand motif enabled entropy-favourable affinity to be achieved via hydrophobic effects with the BSA template by ITC thermodynamics. Because of these favourable bindings, the MIPs exhibited excellent adsorption specificity to BSA over competing proteins. The proof-of-concept of MIPs with orientation-controllable conjugates and proven binding ligands for target proteins demonstrates that this material is promising for use with a real biological sample.
Collapse
Affiliation(s)
- Mingqi Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jingjing Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Guoxian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qing Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
12
|
Synthesis, physical and mechanical properties of amphiphilic hydrogels based on polycaprolactone and polyethylene glycol for bioapplications: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
13
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 330] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
14
|
Liu R, Poma A. Advances in Molecularly Imprinted Polymers as Drug Delivery Systems. Molecules 2021; 26:3589. [PMID: 34208380 PMCID: PMC8231147 DOI: 10.3390/molecules26123589] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the tremendous efforts made in the past decades, severe side/toxic effects and poor bioavailability still represent the main challenges that hinder the clinical translation of drug molecules. This has turned the attention of investigators towards drug delivery vehicles that provide a localized and controlled drug delivery. Molecularly imprinted polymers (MIPs) as novel and versatile drug delivery vehicles have been widely studied in recent years due to the advantages of selective recognition, enhanced drug loading, sustained release, and robustness in harsh conditions. This review highlights the design and development of strategies undertaken for MIPs used as drug delivery vehicles involving different drug delivery mechanisms, such as rate-programmed, stimuli-responsive and active targeting, published during the course of the past five years.
Collapse
Affiliation(s)
- Rui Liu
- UCL School of Pharmacy, 29–39 Brunswick Square, Bloomsbury, London WC1N 1AX, UK;
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
15
|
Wang L, Ma Y, Wang L. High selectivity sensing of bovine serum albumin: The combination of glass nanopore and molecularly imprinted technology. Biosens Bioelectron 2021; 178:113056. [DOI: 10.1016/j.bios.2021.113056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
|
16
|
Fan X, Wu L, Yang L. Fabrication and characterization of thermoresponsive composite carriers: PNIPAAm-grafted glass spheres. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Abstract
Processing capacity and product yield of three-dimensional (3D) smart responsive carriers are markedly superior to those of two-dimensional substrates with the same compositions due to the special structure; therefore, more attempts have been made to develop the 3D intelligent systems in recent decades. A novel preparation strategy of thermoresponsive glass sphere-based composite carriers was reported in this study. First, PNIPAAm copolymers were synthesized by free-radical polymerization of N-isopropylacrylamide (NIPAAm), hydroxypropyl methacrylate (HPM), and 3-trimethoxysilypropyl methacrylate (TMSPM). Then, the copolymer solution was sprayed on the surfaces of glass spheres using a self-made bottom-spray fluidized bed reactor, and the bonding between copolymers and glass spheres was fabricated by thermal annealing to form PNIPAAm copolymer/glass sphere composite carriers. The coating effects of PNIPAAm copolymers on sphere surfaces were investigated, including characteristic functional groups, surface microstructure, grafting density, equilibrium swelling, as well as biocompatibility and potential application for cell culture. The results show that the temperature-responsive PNIPAAm copolymers can be linked to the surfaces of glass spheres by bottom-spray coating technology, and the copolymer layers can be formed on the sphere surfaces. The composite carriers have excellent thermosensitivity and favorable biocompatibility, and they are available for effective cell adhesion and spontaneous cell detachment by the use of smart responsiveness.
Collapse
Affiliation(s)
- Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University , Shenyang 110866 , China
| | - Liyan Wu
- College of Engineering, Shenyang Agricultural University , Shenyang 110866 , China
| | - Lei Yang
- School of Petrochemical Engineering, Liaoning Petrochemical University , Fushun 113001 , China
| |
Collapse
|
17
|
Metal coordination assisted thermo-sensitive magnetic imprinted microspheres for selective adsorption and efficient elution of proteins. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
|
18
|
Kolouchová K, Lobaz V, Beneš H, de la Rosa VR, Babuka D, Švec P, Černoch P, Hrubý M, Hoogenboom R, Štěpánek P, Groborz O. Thermoresponsive properties of polyacrylamides in physiological solutions. Polym Chem 2021. [DOI: 10.1039/d1py00843a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
We show that the cloud point temperature (TCP) of thermoresponsive polyacrylamides is considerably lower in physiologically relevant solvents (phosphate-buffered saline, serum) than in pure water. This decrease of TCP may be critical for some biomedical applications.
Collapse
Affiliation(s)
- Kristýna Kolouchová
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Victor R. de la Rosa
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
- AVROXA BV, Technologiepark-Zwijnaarde 82, B-9052 Ghent, Belgium
| | - David Babuka
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
- Department of Biophysics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, 121 16, Czech Republic
| | - Pavel Švec
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, Prague 2, 128 00, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Ondřej Groborz
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
- Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2, Czech Republic
- Department of Organic and Medicinal Chemistry, Charles University, Faculty of Science, Hlavova 8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
19
|
Smart materials for point-of-care testing: From sample extraction to analyte sensing and readout signal generator. Biosens Bioelectron 2020; 170:112682. [PMID: 33035898 DOI: 10.1016/j.bios.2020.112682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
The last decade has seen a surge of technical developments in the field on point-of-care testing (POCT). While these developments are extremely diverse, the common aim is to implement improved methods for quick, reliable and inexpensive diagnosis of patients within the clinical setting. While examples of successful introduction and use of POCT techniques are growing, further developments are still necessary to create POCT devices with better portability, usability and performance. Advances in smart materials emerge as potentially valuable know-hows to provide a competitive edge to the development of next generation POCT devices. This review describes the key advantages of adopting smart material-based technologies at different analytical stages of a POCT platform. Under these analytical stages which involves sample pre-treatment, analyte sensing and readout signal generator, several concepts and approaches from contemporary research work in using smart material-based technologies will be the major focus in this review. Lastly, challenges and potential outlook in implementing materials technologies from the application point of view for POCT will be discussed.
Collapse
|
20
|
Luong JHT, Narayan T, Solanki S, Malhotra BD. Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications. J Funct Biomater 2020; 11:E71. [PMID: 32992861 PMCID: PMC7712382 DOI: 10.3390/jfb11040071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 02/01/2023] Open
Abstract
Conducting polymers (CPs) have been at the center of research owing to their metal-like electrochemical properties and polymer-like dispersion nature. CPs and their composites serve as ideal functional materials for diversified biomedical applications like drug delivery, tissue engineering, and diagnostics. There have also been numerous biosensing platforms based on polyaniline (PANI), polypyrrole (PPY), polythiophene (PTP), and their composites. Based on their unique properties and extensive use in biosensing matrices, updated information on novel CPs and their role is appealing. This review focuses on the properties and performance of biosensing matrices based on CPs reported in the last three years. The salient features of CPs like PANI, PPY, PTP, and their composites with nanoparticles, carbon materials, etc. are outlined along with respective examples. A description of mediator conjugated biosensor designs and enzymeless CPs based glucose sensing has also been included. The future research trends with required improvements to improve the analytical performance of CP-biosensing devices have also been addressed.
Collapse
Affiliation(s)
- John H. T. Luong
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
| | - Tarun Narayan
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
| | - Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
- Applied Chemistry Department, Delhi Technological University, Delhi 110042, India
| | - Bansi D. Malhotra
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
| |
Collapse
|
21
|
|
22
|
Guo PF, Gong HY, Zheng HW, Chen ML, Wang JH, Ye L. Iron-chelated thermoresponsive polymer brushes on bismuth titanate nanosheets for metal affinity separation of phosphoproteins. Colloids Surf B Biointerfaces 2020; 196:111282. [PMID: 32763792 DOI: 10.1016/j.colsurfb.2020.111282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 01/07/2023]
Abstract
Separation of phosphoproteins plays an important role for identification of biomarkers in life science. In this work, bismuth titanate supported, iron-chelated thermoresponsive polymer brushes were prepared for selective separation of phosphoproteins. The iron-chelated thermoresponsive polymer brushes were synthesized by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by a ring opening reaction of epoxy group, and chelation of the obtained cis-diols with Fe3+ ions. The composite material was characterized to determine the size and thickness, the content of the organic polymer and the metal loading. The bismuth titanate supported, iron-chelated thermoresponsive polymer brushes showed selective binding for phosphoproteins in the presence of abundant interfering proteins, and a high binding capacity for phosphoproteins by virtue of the metal affinity between the metal ions on the polymer brushes and the phosphate groups in the phosphoproteins (664 mg β-Casein per g sorbent). The thermoresponsive property of the polymer brushes made it possible to adjust phosphoprotein binding by changing temperature. Finally, separation of phosphoproteins from a complex biological sample (i.e. milk) was demonstrated using the nanosheet-supported thermoresponsive polymer brushes.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden; Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Hai-Yue Gong
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Hong-Wei Zheng
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| |
Collapse
|
23
|
Zhao W, Li B, Xu S, Zhu Y, Liu X. A fabrication strategy for protein sensors based on an electroactive molecularly imprinted polymer: Cases of bovine serum albumin and trypsin sensing. Anal Chim Acta 2020; 1117:25-34. [PMID: 32408951 DOI: 10.1016/j.aca.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
A high-performance molecularly imprinted sensing platform inspired by natural recognition mechanisms was fabricated to detect protein by employing a linear electro-polymerizable molecularly imprinted polymer as macromonomer. This was achieved via the combination of a biosensor fabrication with a self-assembly imprinting technique without the use of chemical labels. An amphipathic electroactive copolymer was designed as macro-monomer to maintain structural integrity of the protein template via self-assembly, resulting in generation of a 3D construction around the protein molecule to form imprinted sites. Electro-polymerization was utilized not only to anchor imprinted sites but also to enhance electron transfer. The adaptable sensing platform was based on a strengthened recognition reaction between the MIP layer and template protein after the generation of an electroactive network. Bovine serum albumin (BSA) and trypsin were used as model proteins to investigate the method's generality, which gave broad detection ranges of 10-14-10-5 mg mL-1 for BSA and 10-13-10-8 mg mL-1 for trypsin. These results indicate that the proposed fabrication offers an effective and versatile strategy for protein recognition.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
| | - Bing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
| | - Sheng Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
| | - Ye Zhu
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China.
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
24
|
Ansari S, Masoum S. Ultrasound-assisted dispersive solid-phase microextraction of capecitabine by multi-stimuli responsive molecularly imprinted polymer modified with chitosan nanoparticles followed by HPLC analysis. Mikrochim Acta 2020; 187:366. [DOI: 10.1007/s00604-020-04345-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2019] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
|
25
|
Wei Y, Zeng Q, Huang J, Guo X, Wang L, Wang L. Preparation of Gas-Responsive Imprinting Hydrogel and Their Gas-Driven Switchable Affinity for Target Protein Recognition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24363-24369. [PMID: 32366087 DOI: 10.1021/acsami.0c05561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Novel gas-responsive imprinting hydrogels were fabricated by combining N,N'-dimethylaminoethyl methacrylate gas-sensitive monomers, N,N'-methylenebis(acrylamide) cross-linkers, and human serum albumin (HSA) template proteins via a free radical polymerization. The hydrogel exhibited a reversible gas-responsive property upon N2/CO2 exchange. This result was supported by the evidences from hydrogen nuclear magnetic resonance spectroscopy and scanning electron microscopy. By applying this property to sensing application, a CO2-responsive imprinted biosensor was originally designed on the surface of a glassy carbon electrode. The biosensor exhibited unique self-clean and self-recognition properties toward HSA proteins based on reversible conformational changes driven by N2/CO2 stimuli. Moreover, the proposed imprinted biosensor favored HSA proteins by showing satisfactory sensitivity and selectivity and a wider detection range with a low detection limit. As a rare example in imprint sensing, the biosensor was successfully applied to the HSA extraction from complex serum samples. With gas stimuli, the whole process was efficient, controllable, and harmless to the proteins. Thus, the developed biosensor may provide a new prospect in molecularly imprinted sensing applications.
Collapse
Affiliation(s)
- Yubo Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, People's Republic of China
| | - Qiang Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Jianzhi Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xinrong Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lulu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lishi Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
26
|
Injectable pH-responsive poly (γ-glutamic acid)-silica hybrid hydrogels with high mechanical strength, conductivity and cytocompatibility for biomedical applications. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122489] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
|
27
|
Qiu Y, Lin C, Liu Y, Lv Y, Liu M. Functionalization of cellulose as imprinted adsorbent for selective adsorption of matrine. J Appl Polym Sci 2020. [DOI: 10.1002/app.48392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yueming Qiu
- College of Environment and ResourcesFuzhou University Fuzhou 350108 China
| | - Chunxiang Lin
- College of Environment and ResourcesFuzhou University Fuzhou 350108 China
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong ProvinceQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
- Shishi Xinggang Plastic Packaging Co., Ltd. Shishi 362700 China
| | - Yifan Liu
- College of Environment and ResourcesFuzhou University Fuzhou 350108 China
| | - Yuancai Lv
- College of Environment and ResourcesFuzhou University Fuzhou 350108 China
| | - Minghua Liu
- College of Environment and ResourcesFuzhou University Fuzhou 350108 China
| |
Collapse
|
28
|
Yang L, Fan X, Zhang J, Ju J. Preparation and Characterization of Thermoresponsive Poly( N-Isopropylacrylamide) for Cell Culture Applications. Polymers (Basel) 2020; 12:E389. [PMID: 32050412 PMCID: PMC7077488 DOI: 10.3390/polym12020389] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is a typical thermoresponsive polymer used widely and studied deeply in smart materials, which is attractive and valuable owing to its reversible and remote "on-off" behavior adjusted by temperature variation. PNIPAAm usually exhibits opposite solubility or wettability across lower critical solution temperature (LCST), and it is readily functionalized making it available in extensive applications. Cell culture is one of the most prospective and representative applications. Active attachment and spontaneous detachment of targeted cells are easily tunable by surface wettability changes and volume phase transitions of PNIPAAm modified substrates with respect to ambient temperature. The thermoresponsive culture platforms and matching thermal-liftoff method can effectively substitute for the traditional cell harvesting ways like enzymatic hydrolysis and mechanical scraping, and will improve the stable and high quality of recovered cells. Therefore, the establishment and detection on PNIPAAm based culture systems are of particular importance. This review covers the important developments and recommendations for future work of the preparation and characterization of temperature-responsive substrates based on PNIPAAm and analogues for cell culture applications.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Jia Ju
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| |
Collapse
|
29
|
Screening of functional monomers and solvents for the molecular imprinting of paclitaxel separation: a theoretical study. J Mol Model 2020; 26:26. [PMID: 31927620 DOI: 10.1007/s00894-019-4277-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The interactions between the template molecule paclitaxel (PTX) and seven functional monomers containing methacrylic acid (MA), acrolein (AC), 4-vinylbenzoic acid (4VA), acrylonitrile (AN), 2-vinylpyridine (2VP), 2,6-bisacrylamide pyridine (BAP) and methyl methacrylate (MM) were systematically investigated adopting the density functional theory (DFT) method. Moreover, the different binding sites on PTX and solvents embracing chloroform, acetone, ethanol, methanol, and acetonitrile were considered. The calculated solvent energies (ΔEsolvent) and template-monomer binding energies (ΔEb) suggest that the chloroform is the most suitable solvent for the molecular imprinting reaction of PTX among the studied five solvents. Furthermore, from the obtained ΔEb, we can find that the monomer 4VA combining with PTX in the form of the specific intermolecular hydrogen bonds would present the most stable structure among the investigated monomers. These results can provide valuable theoretical guidance for the efficient extraction of PTX by the molecular imprinting technique in experiments. Graphical abstracts.
Collapse
|
30
|
Chen W, Tian X, He W, Li J, Feng Y, Pan G. Emerging functional materials based on chemically designed molecular recognition. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s42833-019-0007-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
AbstractThe specific interactions responsible for molecular recognition play a crucial role in the fundamental functions of biological systems. Mimicking these interactions remains one of the overriding challenges for advances in both fundamental research in biochemistry and applications in material science. However, current molecular recognition systems based on host–guest supramolecular chemistry rely on familiar platforms (e.g., cyclodextrins, crown ethers, cucurbiturils, calixarenes, etc.) for orienting functionality. These platforms limit the opportunity for diversification of function, especially considering the vast demands in modern material science. Rational design of novel receptor-like systems for both biological and chemical recognition is important for the development of diverse functional materials. In this review, we focus on recent progress in chemically designed molecular recognition and their applications in material science. After a brief introduction to representative strategies, we describe selected advances in these emerging fields. The developed functional materials with dynamic properties including molecular assembly, enzyme-like and bio-recognition abilities are highlighted. We have also selected materials with dynamic properties in contract to traditional supramolecular host–guest systems. Finally, the current limitations and some future trends of these systems are discussed.
Collapse
|
31
|
Ma Y, Liu C, Zeng Q, Wang L. An Impedance Molecularly Imprinted Sensor for the Detection of Bovine Serum Albumin (BSA) Using the Dynamic Electrochemical Impedance Spectroscopy. ELECTROANAL 2019. [DOI: 10.1002/elan.201900570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ya Ma
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| | - Li‐Shi Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| |
Collapse
|
32
|
Dhanjai, Sinha A, Kalambate PK, Mugo SM, Kamau P, Chen J, Jain R. Polymer hydrogel interfaces in electrochemical sensing strategies: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
33
|
Jiang L, Ye L. Nanoparticle-supported temperature responsive polymer brushes for affinity separation of histidine-tagged recombinant proteins. Acta Biomater 2019; 94:447-458. [PMID: 31055124 DOI: 10.1016/j.actbio.2019.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023]
Abstract
We developed a modular approach for the preparation of nanoparticle-supported polymer brushes carrying repeating iminodiacetate units for affinity separation of histidine-tagged recombinant proteins. The nanoparticle-supported polymer brushes were prepared via the combination of surface-initiated atom transfer radical polymerization with Cu(I)-catalyzed azide-alkyne cycloaddition reaction. The nanocomposite materials were characterized to determine the particle size, morphology, organic content, densities of polymer chains and the affinity ligand. Protein binding assay illustrated that the iminodiacetate-rich polymer brushes enable to selectively bind histidine-tagged recombinant proteins in the presence of abundant interfering proteins. More importantly, the protein binding capacity can be tuned by adjusting the environmental temperature. STATEMENT OF SIGNIFICANCE: The nanoparticle core-polymer brush structure enables selective binding of histidine-tagged recombinant proteins via multiple metal-coordination interactions. The soft and flexible structure of the polymer brushes was found beneficial for lowering the steric hindrance in protein binding. Taking advantage of the conformational changes of the polymer brushes at different temperatures, it is possible to modulate the protein binding on the nanocomposite by adjusting the environmental temperature. In general, the iminodiacetate-rich core-brush nano adsorbents are attractive for purifying histidine-tagged recombinant proteins practically. The synthetic approach reported here may be expanded to develop other advanced functional materials for applications in various biomedical fields ranging from biosensors to drug delivery.
Collapse
Affiliation(s)
- Lingdong Jiang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
34
|
Liraglutide Immobilized on Poly(lactic-co-glycolic acid) Polymer Films Induced the Differentiation of Islet β-Like Cells from Bone Marrow Mesenchymal Stem Cells. Macromol Res 2019. [DOI: 10.1007/s13233-019-7061-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
35
|
Adsorption and Electrochemical Detection of Bovine Serum Albumin Imprinted Calcium Alginate Hydrogel Membrane. Polymers (Basel) 2019; 11:polym11040622. [PMID: 30960606 PMCID: PMC6524115 DOI: 10.3390/polym11040622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2019] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
Abstract
In this paper, bovine serum albumin (BSA)-imprinted calcium alginate (CaAlg) hydrogel membrane was prepared using BSA as a template, sodium alginate (NaAlg) as a functional monomer, and CaCl2 as a cross-linker. The thickness of the CaAlg membrane was controlled by a glass rod enlaced with brass wires (the diameter was 0.1, 0.2, 0.3, 0.4, and 0.5 mm). The swelling properties of the CaAlg membranes prepared with different contents of NaAlg were researched. Circular dichroism indicated that the conformation of BSA did not change during the preparing and eluting process. The thinner the CaAlg hydrogel membrane was, the larger the adsorption capacity and the higher the imprinting efficiency of the CaAlg. The maximum adsorption capacity of molecularly imprinted polymer (MIP) and non-imprinted CaAlg hydrogel membrane (NIP) was 38.6 mg·g−1 and 9.2 mg·g−1, respectively, with an imprinting efficiency of 4.2. The MIP was loaded on the electrode to monitor the selective adsorption of BSA by voltammetry curve.
Collapse
|
36
|
Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosens Bioelectron 2019; 131:156-162. [DOI: 10.1016/j.bios.2019.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022]
|
37
|
Kang M, Oderinde O, Liu S, Huang Q, Ma W, Yao F, Fu G. Characterization of Xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion. Carbohydr Polym 2019; 203:139-147. [DOI: 10.1016/j.carbpol.2018.09.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
|
38
|
Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol 2018; 37:294-309. [PMID: 30241923 DOI: 10.1016/j.tibtech.2018.08.009] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2018] [Revised: 08/25/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
Molecular imprinting is the process of template-induced formation of specific recognition sites in a polymer. Synthetic receptors prepared using molecular imprinting possess a unique combination of properties such as robustness, high affinity, specificity, and low-cost production, which makes them attractive alternatives to natural receptors. Improvements in polymer science and nanotechnology have contributed to enhanced performance of molecularly imprinted polymer (MIP) sensors. Encouragingly, recent years have seen an increase in high-quality publications describing MIP sensors for the determination of biomolecules, drugs of abuse, and explosives, driving toward applications of this technology in medical and forensic diagnostics. This review aims to provide a focused overview of the latest achievements made in MIP-based sensor technology, with emphasis on research toward real-life applications.
Collapse
Affiliation(s)
- Omar S Ahmad
- Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul, Iraq; Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK.
| | - Thomas S Bedwell
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Cem Esen
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK; Department of Chemistry, Faculty of Arts and Sciences, Aydın Adnan Menderes University, Aydın 09010, Turkey
| | - Alvaro Garcia-Cruz
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Sergey A Piletsky
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
39
|
Wei Y, Zeng Q, Huang J, Hu Q, Guo X, Wang L. An electro-responsive imprinted biosensor with switchable affinity toward proteins. Chem Commun (Camb) 2018; 54:9163-9166. [DOI: 10.1039/c8cc05482g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
We combined electro-responsive materials with molecular imprinted polymers (MIPs) to develop an electro-responsive imprinted biosensor for the first time.
Collapse
Affiliation(s)
- Yubo Wei
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Jianzhi Huang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Qiong Hu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Xinrong Guo
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
40
|
Wei Y, Zeng Q, Bai S, Wang M, Wang L. Nanosized Difunctional Photo Responsive Magnetic Imprinting Polymer for Electrochemically Monitored Light-Driven Paracetamol Extraction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44114-44123. [PMID: 29185695 DOI: 10.1021/acsami.7b14772] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
Herein, a novel photoresponsive magnetic electrochemical imprinting sensor for the selective extraction of paracetamol from biological samples was designed. In particular, nanosized photoresponsive molecular imprinted polymers were prepared on the surface of magnetic Fe3O4 nanoparticles through living radical polymerization of azobenzene. The introduction of a magnetic-controlled glassy carbon electrode makes the immobilization and removal of nanosized photoresponsive molecular imprinted polymers on the magnetic-controlled glassy carbon electrode surface facilely operational. With the photoresponsive property, the sensor undergoes reversible release and uptake of paracetamol upon alternative irradiation at 365 and 440 nm basing on a configurational change of azobenzene monomer in the photoresponsive molecular imprinted polymers receptor sites. Simultaneously, these processes are monitored by the photoresponsive changes of electrochemical signal from paracetamol. Two linear ranges from 0.001 to 0.7 mmol L-1 (R2 = 0.96) and 0.7 to 7 mmol L-1 (R2 = 0.95) for paracetamol determination were obtained with a quantification limit of 0.000 86 mmol L-1 and a detection limit of 0.000 43 mmol L-1. The recoveries of paracetamol in the urine as determined by photoresponsive molecular imprinted polymers extraction were varied between 87.5% and 93.3%. As a consequence, combining photocontrolled selective extraction, interfacial stability from magnetic adsorption, and specifically electrochemical response, the photoresponsive molecular imprinted polymers sensor shows significant advantages for simultaneous separation, enrichment, and detection of trace paracetamol in biological samples.
Collapse
Affiliation(s)
- Yubo Wei
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510641, People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510641, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510641, People's Republic of China
| | - Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510641, People's Republic of China
| | - Min Wang
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510641, People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510641, People's Republic of China
| |
Collapse
|
41
|
A highly sensitive VEGF 165 photoelectrochemical biosensor fabricated by assembly of aptamer bridged DNA networks. Biosens Bioelectron 2017; 101:213-218. [PMID: 29096358 DOI: 10.1016/j.bios.2017.10.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 01/06/2023]
Abstract
We developed a novel "signal-off" photoelectrochemical (PEC) aptasensor based on an aptamer bridged DNA network structure for the sensitive detection of vascular endothelial growth factor (VEGF165), using g-C3N4 as photoactive material. The DNA network provides an excellent platform for the immobilization of methylene blue (MB), which can facilitate the electron transport through the DNA helix structure and suppress the recombination of electron-hole pairs generated by g-C3N4. In the presence of the target VEGF165, the DNA network can be destroyed adequately by the recognition between VEGF165 and the aptamer, resulting in the release of MB. Therefore, the originally enhanced electron transfer process could be inhibited, leading to a remarkable decrease of the photocurrent. A good linear relationship between the PEC signal and the logarithm of VEGF165 concentration over the range of 100fM to 10nM with a detection limit of 30 fM can be obtained. Our concept can be easily extended to develop aptasensors for the sensitive detection of different targets by triggering the release of the payloads from their corresponding aptamer bridged DNA networks.
Collapse
|