1
|
Dou S, Liu M, Wang H, Zhou S, Marrazza G, Guo Y, Sun X, Darwish IA. Synthesis of dual models multivalent activatable aptamers based on HCR and RCA for ultrasensitive detection of Salmonella typhimurium. Talanta 2024; 275:126101. [PMID: 38631268 DOI: 10.1016/j.talanta.2024.126101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Aptamers have superior structural properties and have been widely used in bacterial detection methods. However, the problem of low affinity still exists in complex sample detection. In contrast, hybridization chain reaction (HCR)-based model I and rolling circle amplification (RCA)-based model II multivalent activatable aptamers (multi-Apts) can fulfill the need for low-cost, rapid, highly sensitive and high affinity detection of S. typhimurium. In our research, two models of multi-Apts were designed. First, a monovalent activatable aptamer (mono-Apt) was constructed by fluorescence resonance energy transfer (FRET) with an S. typhimurium aptamer and its complementary chain of BHQ1. Next, the DNA scaffold was obtained by HCR and RCA, and the multi-Apts were obtained by self-assembly of the mono-Apt with a DNA scaffold. In model I, when target was presented, the complementary chain BHQ1 was released due to the binding of multi-Apts to the target and was subsequently adsorbed by UIO66. Finally, a FRET-based fluorescence detection signal was obtained. In mode II, the multi-Apts bound to the target, and the complementary chain BHQ1 was released to become the trigger chain for the next round of amplification of HCR with a fluorescence detection signal. HCR and RCA based multi-Apts were able to detect S. typhimurium as low as 2 CFU mL-1 and 1 CFU mL-1 respectively. Multi-Apts amplification strategy provides a new method for early diagnosis of pathogenic microorganisms in foods.
Collapse
Affiliation(s)
- Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuxian Zhou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Yu S, Liu J, Li L, Ma K, Kong J, Zhang X. An electrochemical biosensor for the amplification of thrombin activity by perylene-mediated photoinitiated polymerization. Anal Chim Acta 2024; 1302:342494. [PMID: 38580414 DOI: 10.1016/j.aca.2024.342494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Thrombin, a coagulation system protease, is a key enzyme involved in the coagulation cascade and has been developed as a marker for coagulation disorders. However, the methods developed in recent years have the disadvantages of complex operation, long reaction time, low specificity and sensitivity. Meanwhile, thrombin is at a lower level in the pre-disease period. Therefore, to accurately diagnose the disease, it is necessary to develop a fast, simple, highly sensitive and specific method using signal amplification technology. RESULTS We designed an electrochemical biosensor based on photocatalytic atom transfer radical polymerization (photo-ATRP) signal amplification for the detection of thrombin. Sulfhydryl substrate peptides (without carboxyl groups) are self-assembled to the gold electrode surface via Au-S bond and serve as thrombin recognition probes. The substrate peptide is cleaved in the presence of thrombin to generate -COOH, which can form a carboxylate-Zr(IV)-carboxylate complex via Zr(IV) and initiator (α-bromophenylacetic acid, BPAA). Subsequently, an electrochemical biosensor was prepared by introducing polymer chains with electrochemical signaling molecules (ferrocene, Fc) onto the electrode surface by photocatalytic (perylene, Py) mediated ATRP using ferrocenylmethyl methacrylate (FMMA) as a monomer. The concentration of thrombin was evaluated by the voltammetric signal generated by square wave voltammetry (SWV), and the result showed that the biosensor was linear between 1.0 ng/mL ∼ 10 fg/mL, with a lower detection limit of 4.0 fg/mL (∼0.1 fM). Moreover, it was shown to be highly selective for thrombin activity in complex serum samples and for thrombin inhibition screening. SIGNIFICANCE The biosensor is an environmentally friendly and economically efficient strategy while maintaining the advantages of high sensitivity, anti-interference, good stability and simplicity of operation, which has great potential for application in the analysis of complex samples.
Collapse
Affiliation(s)
- Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jingliang Liu
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Kefeng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
3
|
Cui W, Liu J, Zhao W, Zhang J, Wang Y, Li Q, Wang R, Qiao M, Xu S. An enzyme-free and label-free fluorescent aptasensor for sensitive detection of kanamycin in milk samples based on hybridization chain reaction. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Li P, Luo C, Chen X, Huang C. An off-on fluorescence aptasensor for trace thrombin detection based on FRET between CdS QDs and AuNPs. RSC Adv 2022; 12:35763-35769. [PMID: 36545096 PMCID: PMC9749934 DOI: 10.1039/d2ra06891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
An off-on fluorescence aptasensor was developed for trace thrombin detection based on fluorescence resonance energy transfer (FRET) between CdS QDs and gold nanoparticles (AuNPs). Using DNA pairwise hybridization of the aptamer to the complementary DNA (cDNA), the CdS QDs (energy donor) were tightly coupled to the AuNPs (energy acceptor), resulting in the occurrence of FRET and there was a dramatic fluorescence quenching of CdS QDs (turn off). When the thrombin was added to the fluorescence aptasensor, the specific binding of the aptamer to the target formed a G-quadruplex that caused the AuNPs receptor to detach and the DNA duplex to be disassembled. The process would inhibit the FRET which contribute to the recovery of fluorescence (turn on) and an "off-on" fluorescence aptasensor for thrombin detection was constructed accordingly. Under optimal conditions, the fluorescence recovery showed good linearity with the concentration of thrombin in the range of 1.35-54.0 nmol L-1, and the detection limit was 0.38 nmol L-1 (S/N = 3, n = 9). Importantly, the fluorescence aptasensor presented excellent specificity for thrombin, and was successfully applied to the quantitative determination of thrombin in real serum with satisfactory recoveries of 98.60-102.2%.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chen Luo
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University Lanxi 321100 China
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
5
|
Recent Progresses in Development of Biosensors for Thrombin Detection. BIOSENSORS 2022; 12:bios12090767. [PMID: 36140153 PMCID: PMC9496736 DOI: 10.3390/bios12090767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/11/2022]
Abstract
Thrombin is a serine protease with an essential role in homeostasis and blood coagulation. During vascular injuries, thrombin is generated from prothrombin, a plasma protein, to polymerize fibrinogen molecules into fibrin filaments. Moreover, thrombin is a potent stimulant for platelet activation, which causes blood clots to prevent bleeding. The rapid and sensitive detection of thrombin is important in biological analysis and clinical diagnosis. Hence, various biosensors for thrombin measurement have been developed. Biosensors are devices that produce a quantifiable signal from biological interactions in proportion to the concentration of a target analyte. An aptasensor is a biosensor in which a DNA or RNA aptamer has been used as a biological recognition element and can identify target molecules with a high degree of sensitivity and affinity. Designed biosensors could provide effective methods for the highly selective and specific detection of thrombin. This review has attempted to provide an update of the various biosensors proposed in the literature, which have been designed for thrombin detection. According to their various transducers, the constructions and compositions, the performance, benefits, and restrictions of each are summarized and compared.
Collapse
|
6
|
Yan H, He B, Zhao R, Ren W, Suo Z, Xu Y, Zhang Y, Bai C, Yan H, Liu R. Electrochemical aptasensor based on Ce 3NbO 7/CeO 2@Au hollow nanospheres by using Nb.BbvCI-triggered and bipedal DNA walker amplification strategy for zearalenone detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129491. [PMID: 35785741 DOI: 10.1016/j.jhazmat.2022.129491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Herein, an electrochemical aptasensor combining Nb.BbvCI-triggered bipedal DNA walking strategy was constructed for ultrasensitive assay of zearalenone (ZEN). The aptasensor used Ce3NbO7/CeO2 @Au hollow nanospheres as electrode modification material and PdNi@MnO2/MB as the signal label. Importantly, the Ce3NbO7/CeO2 synthesized by hydrothermal method were combined with Au nanoparticles and applied to the electrode surface. The as-prepared Ce3NbO7/CeO2 @Au possessed a large surface area, excellent electrical conductivity, stability and more binding sites. PdNi@MnO2 with high specific surface area and porosity combined with molecule methylene blue (MB) was introduced into electrodes as the signal label. The proposed aptasensor utilized the advantages of specific recognition of aptamers and target molecules to release bipedal DNA walker (w-DNA), and then the w-DNA was triggered by Nb.BbvCI and entered the cycle to release more signal probes. The feasibility of this strategy was recorded by the differential pulse voltammetry (DPV) method. Under the optimized conditions, the electrochemical aptasensor exhibited a wide linear dynamic range from 1 × 10-4 to 1 × 103 ng mL-1 with a low detection limit of 4.57 × 10-6 ng mL-1. Moreover, the aptasensor had high selectivity, good stability, excellent repeatability and provided an effective method for the trace detection of ZEN in real samples.
Collapse
Affiliation(s)
- Han Yan
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Renyong Zhao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yurong Zhang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chunqi Bai
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Haoyang Yan
- School of International Education, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Renli Liu
- Sinograin Zhengzhou Depot Ltd. Company, Zhengzhou, Henan 450066, PR China
| |
Collapse
|
7
|
Wang S, Zhao Y, Ma R, Wang W, Zhang L, Li J, Sun J, Mao nvestigation X. Aptasensing a class of small molecules based on split aptamers and hybridization chain reaction-assisted AuNPs nanozyme. Food Chem 2022; 401:134053. [DOI: 10.1016/j.foodchem.2022.134053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
8
|
Sun X, Zhou L, Zhao W. A novel electrochemical immunosensor for dibutyl phthalate based on Au@Pt/PEI-rGO and DNA hybridization chain reaction signal amplification strategy. Bioelectrochemistry 2022; 145:108104. [DOI: 10.1016/j.bioelechem.2022.108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 11/02/2022]
|
9
|
Dong Q, Jia X, Wang Y, Wang H, Liu Q, Li D, Wang J, Wang E. Sensitive and selective detection of Mucin1 in pancreatic cancer using hybridization chain reaction with the assistance of Fe 3O 4@polydopamine nanocomposites. J Nanobiotechnology 2022; 20:94. [PMID: 35197099 PMCID: PMC8867748 DOI: 10.1186/s12951-022-01289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Pancreatic cancer is characterized as the worst for diagnosis lacking symptoms at the early stage, which results in a low overall survival rate. The frequently used techniques for pancreatic cancer diagnosis rely on imaging and biopsy, which have limitations in requiring experienced personnel to operate the expensive instruments and analyze the results. Therefore, there is a high demand to develop alternative tools or methods to detect pancreatic cancer. Herein, we propose a new strategy to enhance the detection sensitivity of pancreatic cancer cells both in biofluids and on tissues by combining the unique property of dopamine coated Fe3O4 nanoparticles (Fe3O4@DOP NPs) to specifically quench and separate free 6-carboxyfluorescein (FAM) labeled DNA (H1-FAM/H2-FAM), and the key feature of hybridization chain reaction (HCR) amplification. We have determined the limit of detection (LOD) to be 21 ~ 41 cells/mL for three different pancreatic cancer cell lines. It was also discovered that the fluorescence intensity of pancreatic cancer cells was significantly higher than that of HPDE-C7 and HepG-2 cells (control cell lines), which express lower MUC1 protein. Moreover, the HCR amplification system was used to identify the cancer cells on pancreatic tissue, which indicated the versatility of our strategy in clinical application. Therefore, the presented detection strategy shows good sensitivity, specificity and has great potential for the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Qing Dong
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Yuling Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
| | - Hao Wang
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China.
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA.
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| |
Collapse
|
10
|
Li K, Lei Z, Zhang C, Zhu L, Huang K, Shang Y, Xu W. Graphene oxide nanosheet-mediated fluorescent RPA "turn-on" biosensor for rapid RNAi transgenic plant detection. Anal Chim Acta 2022; 1189:339222. [PMID: 34815046 DOI: 10.1016/j.aca.2021.339222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 11/01/2022]
Abstract
In this paper preliminarily verified that graphene oxide (GO) nanomaterials enhanced the recombinase polymerase amplification (RPA). GO nanosheets improved the efficiency of RPA amplification by absorbing ingredients to induce local aggregation. The recombinase initially aggregated with the primers to form nucleoprotein filaments, absorbed on the GO nanosheets, changing the structure. Therefore, an isothermal fluorescence biosensor was developed based on GO nanosheets enhanced the RPA to detect RNA interference (RNAi) transgenic plants. FAM-labeled primers were absorbed and quenched by the GO nanosheets. After amplification, the primers were extended into double-stranded DNA, detaching from the GO surface to recover the fluorescent signal. The biosensor displayed high sensitivity and selectivity and showed an excellent relationship ranging from 1.5 to 100 ng of genome DNA, with a detection limit (LOD) of 1.5 ng. Consequently, the biosensor provides an enhanced isothermal method for detecting genetically modified (GM) products and exhibits significant potential for molecular detection.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100191, China
| | - Zhan Lei
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health(Institute of Nutrition and Health), China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100191, China.
| | - Ying Shang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100191, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health(Institute of Nutrition and Health), China Agricultural University, Beijing 100083, China.
| |
Collapse
|
11
|
Yang L, Ma P, Chen X, Cheng Z, Lin J. High-Sensitivity Fluorescence Detection for lung cancer CYFRA21-1 DNA based on Accumulative Hybridization of Quantum Dots. J Mater Chem B 2022; 10:1386-1392. [DOI: 10.1039/d1tb02557k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitive detection of circulating tumor DNA (ctDNA) in vitro has attracted growing attention owing to its potential application in diagnostics of cancer. In this study, we synthesized hydrophilic AgInS2@ZnS core-shell...
Collapse
|
12
|
Wu X, Li Y, Xu H, Chen Y, Mao H, Ma Q, Du Q, Gao P, Xia F. Exponential Increase in an Ionic Signal: A Dominant Role of the Space Charge Effect on the Outer Surface of Nanochannels. Anal Chem 2021; 93:13711-13718. [PMID: 34581576 DOI: 10.1021/acs.analchem.1c03431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanochannels have advantage in sensitive analyses due to the confinement effects on ionic signal in nano- or sub-nanometric confines but could realize further gains by optimizing signal mechanism. Making target recognitions on the outer surface of nanochannels has been verified to improve target recognitions and signal conversions by maximizing surfaces accessible to targets and ions, but until recently, the signal mechanism has been still unclear. Using electroneutral peptide nucleic acid (PNA) and negative-charged DNA, we verified a dominant space charge effect on an ionic signal on the outer surface of nanochannels. A typical exponential increase of the ionic signal with the charge density on the outer surface has been demonstrated through the PNA-PNA, PNA-DNA, DNA-DNA hybrid, DNA cleavage, and hybridization chain reaction. These results challenge the essential role of steric hindrance on the ionic signal and describe a new ion passageway surrounded and accelerated by the stern layer of charged species on the nanochannel outer surface.
Collapse
Affiliation(s)
- Xiaoqing Wu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yu Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hongquan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yajie Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Haowei Mao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Pengcheng Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
13
|
Chai H, Cheng W, Jin D, Miao P. Recent Progress in DNA Hybridization Chain Reaction Strategies for Amplified Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38931-38946. [PMID: 34374513 DOI: 10.1021/acsami.1c09000] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the continuous development of DNA nanotechnology, various spatial DNA structures and assembly techniques emerge. Hybridization chain reaction (HCR) is a typical example with exciting features and bright prospects in biosensing, which has been intensively investigated in the past decade. In this Spotlight on Applications, we summarize the assembly principles of conventional HCR and some novel forms of linear/nonlinear HCR. With advantages like great assembly kinetics, facile operation, and an enzyme-free and isothermal reaction, these strategies can be integrated with most mainstream reporters (e.g., fluorescence, electrochemistry, and colorimetry) for the ultrasensitive detection of abundant targets. Particularly, we select several representative studies to better illustrate the novel ideas and performances of HCR strategies. Theoretical and practical utilities are confirmed for a range of biosensing applications. In the end, a deep discussion is provided about the challenges and future tasks of this field.
Collapse
Affiliation(s)
- Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| |
Collapse
|
14
|
Dong J, Zeng Z, Sun R, Zhang X, Cheng Z, Chen C, Zhu Q. Specific and sensitive detection of CircRNA based on netlike hybridization chain reaction. Biosens Bioelectron 2021; 192:113508. [PMID: 34284304 DOI: 10.1016/j.bios.2021.113508] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023]
Abstract
Circular RNA (circRNA), as a new class of biomarker, plays an important role in the occurrence and development of cancer. However, the limitations of detection methods in recent years have severely restricted the related research of circRNA. Here, we have developed an effective circRNA detection method based on the thermostatic netlike hybridization chain reaction (HCR). It combines reverse transcription-rolling circle amplification (RT-RCA) with well-designed netlike HCR to achieve dual selection and dual signal amplification, which can eliminate the interference of linear isomers. This two-dimensional netlike HCR is composed of an ingeniously designed trigger chain and two hairpin fuel probes, which can generate a stable network structure with RT-RCA products containing multiple sets of repeats at a constant temperature, thereby producing enhanced fluorescent signals. Systematic studies reveal that the optimized netlike HCR system has higher detection efficiency for DNA strands containing multiple sets of repetitive sequences, can detect circRNA as low as 0.1 pM, and has excellent selectivity. By using human tumor cell lines and tissues, it has been verified that the netlike HCR-based method can accurately detect specific circRNA in real biological samples without RNase R enrichment, which provides a simple and useful platform for detecting low-abundance circRNA. Furthermore, the proposed strategy is also a potential method for detecting some genes containing repetitive sequences, such as telomere DNA, centromere DNA and ribosomal DNA (rDNA).
Collapse
Affiliation(s)
- Jiani Dong
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Zhuoer Zeng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, 410300, Hunan, China.
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, 410300, Hunan, China.
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
15
|
Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021; 13:3396. [PMID: 34298610 PMCID: PMC8307033 DOI: 10.3390/cancers13143396] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid development of multidrug co-delivery and nano-medicines has made spontaneous progress in tumor treatment and diagnosis. DNA is a unique biological molecule that can be tailored and molded into various nanostructures. The addition of ligands or stimuli-responsive elements enables DNA nanostructures to mediate highly targeted drug delivery to the cancer cells. Smart DNA nanostructures, owing to their various shapes, sizes, geometry, sequences, and characteristics, have various modes of cellular internalization and final disposition. On the other hand, functionalized DNA nanocarriers have specific receptor-mediated uptake, and most of these ligand anchored nanostructures able to escape lysosomal degradation. DNA-based and stimuli responsive nano-carrier systems are the latest advancement in cancer targeting. The data exploration from various studies demonstrated that the DNA nanostructure and stimuli responsive drug delivery systems are perfect tools to overcome the problems existing in the cancer treatment including toxicity and compromised drug efficacy. In this light, the review summarized the insights about various types of DNA nanostructures and stimuli responsive nanocarrier systems applications for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Fakhara Sabir
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
16
|
Hybridization chain reaction and its applications in biosensing. Talanta 2021; 234:122637. [PMID: 34364446 DOI: 10.1016/j.talanta.2021.122637] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
To pursue the sensitive and efficient detection of informative biomolecules for bioanalysis and disease diagnosis, a series of signal amplification techniques have been put forward. Among them, hybridization chain reaction (HCR) is an isothermal and enzyme-free process where the cascade reaction of hybridization events is initiated by a target analyte, yielding a long nicked dsDNA molecule analogous to alternating copolymers. Compared with conventional polymerase chain reaction (PCR) that can proceed only with the aid of polymerases and complicated thermal cycling, HCR has attracted increasing attention because it can occur under mild conditions without using enzymes. As a powerful signal amplification tool, HCR has been employed to construct various simple, sensitive and economic biosensors for detecting nucleic acids, small molecules, cells, and proteins. Moreover, HCR has also been applied to assemble complex nanostructures, some of which even act as the carriers to execute the targeted delivery of anticancer drugs. Recently, HCR has engendered tremendous progress in RNA imaging applications, which can not only achieve endogenous RNA imaging in living cells or even living animals but also implement imaging-guided photodynamic therapy, paving a promising path to promote the development of theranostics. In this review, we begin with the fundamentals of HCR and then focus on summarizing the recent advances in HCR-based biosensors for biosensing and RNA imaging strategies. Further, the challenges and future perspective of HCR-based signal amplification in biosensing and theranostic application are discussed.
Collapse
|
17
|
Zhao Y, Li L, Ma R, Wang L, Yan X, Qi X, Wang S, Mao X. A competitive colorimetric aptasensor transduced by hybridization chain reaction-facilitated catalysis of AuNPs nanozyme for highly sensitive detection of saxitoxin. Anal Chim Acta 2021; 1173:338710. [PMID: 34172145 DOI: 10.1016/j.aca.2021.338710] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
Saxitoxin (STX) is a small molecule toxin (Mw. ca. 299 g/mol) with high acute toxicity, and it has urgent need of facile analytical methods. Herein, a competitive colorimetric aptasensor was developed for highly sensitive detection of STX. An anti-STX aptamer was hybridized with a complementary strand on the magnetic beads and was competitively bound by STX. The supernatant containing the aptamer binding to STX was obtained by magnetic separation, which could trigger hybridization chain reaction (HCR) to generate rigid double stranded DNAs (dsDNAs) with sticky end and variable length. These HCR-dsDNAs were found to be able to facilitate significant enhancement on the peroxidase-like catalytic capability of AuNPs nanozyme towards 3,3,5,5-tetramethylbenzidine (TMB). The concentration of STX was responded in a "turn on" mode, based on the amplified colorimetric transduction thereof. The aptasensor realized high sensitivity, with a limit of detection (LOD) as low as 42.46 pM. Moreover, a wide linear detection range of 78.13-2500 pM, good selectivity, as well as good recovery rates of 106.2-113.5% when analyzing STX in real shellfish samples were obtained. This strategy could be referred to develop robust aptasensors for simple and highly sensitive detection of other small molecules and toxins.
Collapse
Affiliation(s)
- Yinglin Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Ling Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Rui Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Lele Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiaochen Yan
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyan Qi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
18
|
Hollow BiOBr/reduced graphene oxide hybrids encapsulating hemoglobin for a mediator-free biosensor. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04958-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Mahnashi MH, Mahmoud AM, AZ A, Alhazzani K, Alanazi SA, Alanazi MM, El-Wekil MM. A novel design and facile synthesis of nature inspired poly (dopamine-Cr3+) nanocubes decorated reduced graphene oxide for electrochemical sensing of flibanserin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Zhao LZ, Fu YZ, Ren SW, Cao JT, Liu YM. A novel chemiluminescence imaging immunosensor for prostate specific antigen detection based on a multiple signal amplification strategy. Biosens Bioelectron 2021; 171:112729. [PMID: 33113387 DOI: 10.1016/j.bios.2020.112729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
A novel chemiluminescence (CL) imaging platform was constructed for prostate specific antigen (PSA) detection in a multiple signal amplifying manner. To construct the platform, the primary antibody for PSA was firstly immobilized on a O-ring area of a glass slide for recognizing the PSA. The horseradish peroxidase (HRP) and the secondary antibody of PSA (Ab2) functionalized Au NPs (HRP-Au NPs-Ab2) were modified on the platform through immunoreaction between PSA and Ab2. The excellent catalytic effect of Au NPs and HRP on the HRP-Au NPs-Ab2 to the luminol-H2O2 CL system provided the dual-signal amplification for PSA detection. To further enhance the sensitivity, tyramine signal amplification (TSA) strategy was introduced: tyramine-HRP conjugates were added into the O-ring reservoir and thus tyramine-HRP repeats formed in the presence of H2O2, generating a multiple signal amplification because of the large amounts of HRP on the sensing interface. The excellent performance of HRP-Au NPs-Ab2 and TSA strategy endows the CL platform with high sensitivity. The PSA was detected with a photomultiplier tube (PMT) and visually analyzed by a charge coupled device (CCD), respectively. The linear ranges of PMT and CCD for PSA are 0.1-100.0 ng mL-1 with a detection limit of 0.05 pg mL-1 and 0.5 - 100.0 ng mL-1 with a detection limit of 0.1 pg mL-1, respectively. The levels of PSA in several human serum samples were determined and the recoveries are ranged from 82.5% - 117.0%. This CL immunosensing platform holds great potential for bioactive molecules detection visually and sensitively.
Collapse
Affiliation(s)
- Li-Zhen Zhao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Yi-Zhuo Fu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang, 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China.
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
21
|
Bezuneh TT, Fereja TH, Addisu Kitte S, Li H, Jin Y. Enzyme-free signal amplified Au nanoparticle fluorescence detection of thrombin via target-triggered catalytic hairpin assembly. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Wang Q, Yang Q, Wu W. Ensuring seafood safe to spoon: a brief review of biosensors for marine biotoxin monitoring. Crit Rev Food Sci Nutr 2020; 62:2495-2507. [PMID: 33287557 DOI: 10.1080/10408398.2020.1854170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With harmful algal blooms, marine food poisoning caused by marine biotoxins frequently occurs and is life-threatening if severe. However, the conventional detection methods of marine toxins have a few limitations: low sensitivity and high-cost. Therefore, it is necessary to establish a fast and sensitive on-site detection method for real seafood sample. Biosensors based on aptamers, antibodies, and cells have been applied in marine toxins monitoring. This review presents the classification and toxic effects of marine toxins, and recent biosensor for marine toxin detection. In addition, we have compared the superiority and limitation of these biosensors. Finally, challenges and opportunities of biosensors in food safety detection were discussed. Considering the excellent results achieved by the aptasensor in the field of detection, it seems ready to be put into practical applications.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
23
|
Jamei HR, Rezaei B, Ensafi AA. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C 60/MWCNTs- polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry 2020; 138:107701. [PMID: 33254052 DOI: 10.1016/j.bioelechem.2020.107701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
In this study, an ultra-sensitive and selective Thrombin biosensor with aptamer-recognition surface is introduced based on carbon nanocomposite. To prepare the this biosensor, screen-printed carbon electrodes (SPCE) were modified with a nanocomposite made from fullerene (C60), multi-walled carbon nanotubes (MWCNTs), polyethylenimine (PEI) and polymer quantum dots (PQdot). The unique characteristics of each component of the C60/MWCNTs-PEI/PQdot nanocomposite allow for synergy between nanoparticles while polymer quantum dots resulted in characteristics such as high stability, high surface to volume ratio, high electrical conductivity, high biocompatibility, and high mechanical and chemical stability. The large number of amine groups in C60/MWCNTs-PEI/PQdot nanocomposite created more sites for better covalent immobilization of amino-linked aptamer (APT) which improved the sensitivity and stability of the aptasensor. Differential Pulse Voltammetry (DPV) method with probe solution was used as the measurment method. Binding of thrombin protein to aptamers immobilized on the transducer resulted in reduced electron transfer at the electrode/electrolyte interface which reduces the peak current (IP) in DPV. The calibration curve was drawn using the changes in the peak current (ΔIP),. The proposed aptasensor has a very low detection limit of 6 fmol L-1, and a large linear range of 50 fmol L-1 to 20 nmol L-1. Furthermore, the proposed C60/MWCNTs-PEI/PQdot/APT aptasensor has good reproducibility, great selectivity, low response time and a good stability during its storage. Finally, the application of the proposed aptasensor for measuring thrombin on human blood serum samples was investigated. This aptasensor can be useful in bioengineering and biomedicine applications as well as for clinical studies.
Collapse
Affiliation(s)
- Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
24
|
Zhang C, Chen J, Sun R, Huang Z, Luo Z, Zhou C, Wu M, Duan Y, Li Y. The Recent Development of Hybridization Chain Reaction Strategies in Biosensors. ACS Sens 2020; 5:2977-3000. [PMID: 32945653 DOI: 10.1021/acssensors.0c01453] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the continuous development of biosensors, researchers have focused increasing attention on various signal amplification strategies to pursue superior performance for more applications. In comparison with other signal amplification strategies, hybridization chain reaction (HCR) as a powerful signal amplification technique shows its certain charm owing to nonenzymatic and isothermal features. Recently, on the basis of conventional HCR, this technique has been developed and improved rapidly, and a variety of HCR-based biosensors with excellent performance have been reported. Herein, we present a systematic and critical review on the research progress of HCR in biosensors in the last five years, including the newly developed HCR strategies such as multibranched HCR, migration HCR, localized HCR, in situ HCR, netlike HCR, and so on, as well as the combination strategies of HCR with isothermal signal amplification techniques, nanomaterials, and functional DNA molecules. By illustrating some representative works, we also summarize the advantage and challenge of HCR in biosensors, and offer a deep discussion of the latest progress and future development trends of HCR in biosensors.
Collapse
Affiliation(s)
- Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| |
Collapse
|
25
|
Liu L, Li M, Xu M, Wang Z, Zeng Z, Li Y, Zhang Y, You R, Li CH, Guan YQ. Actively targeted gold nanoparticle composites improve behavior and cognitive impairment in Parkinson's disease mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111028. [PMID: 32994016 DOI: 10.1016/j.msec.2020.111028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by motor and non-motor symptoms, primarily affecting dopaminergic neurons (DAergic neurons) in substantia nigra (SN). However, it is still very challenging to identify new drugs that not only inhibit motor dysfunction but also improve non-motor dysfunction. It has been identified as a potential PD treatment that the inhibition of α-syn aggregation could decrease the death of DAergic neurons in SN. In this study, we synthesized gold nanoparticle composites (NPs) that were loaded with plasmid DNA (pDNA) to inhibit α-syn expression. In vivo, our results showed that NPs improved tyrosine hydroxylase (TH) levels and decreased aggregation of α-syn in the SN. Additionally, NPs attenuated motor dysfunction and exploration ability declined. Moreover, NPs reversed the inhibition of long-term potentiation (LTP) and improved non-motor dysfunction in PD mice. These results indicated that NPs had significantly neuroprotective effects not only in motor, but also in non-motor dysfunction to PD mice, providing a new strategy for gene therapy in PD.
Collapse
Affiliation(s)
- Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Mingchao Li
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Mingze Xu
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Zhen Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Zhi Zeng
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Yunqing Li
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Yi Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
26
|
Yu Y, Zhang WS, Guo Y, Peng H, Zhu M, Miao D, Su G. Engineering of exosome-triggered enzyme-powered DNA motors for highly sensitive fluorescence detection of tumor-derived exosomes. Biosens Bioelectron 2020; 167:112482. [PMID: 32795917 DOI: 10.1016/j.bios.2020.112482] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Tumor-derived exosomes containing multiple proteins originating from parent cancer cells have emerged as biomarkers for cancer diagnosis. Herein, we propose a three-dimensional DNA motor-based exosome assay platform for the selective and sensitive detection of exosomes. The DNA motor used gold nanoparticle (GNP) tracks, consisting of fluorescein-labeled substrate strands and aptamer-locked motor strands. Recognition of the target protein on exosomes by its aptamer unlocked the motor strand and triggered the DNA motor process. Powered by restriction endonuclease, the motor strands autonomously walked along the GNP track. Each movement step cleaved one substrate strand and restored one fluorescein molecule. For exosome detection, the proposed method displayed a broad dynamic range acrossing 5 orders of magnitude with the detection limit as low as 8.2 particles/μL in PBS. The method also exhibited good selectivity among different tumor-derived exosomes and performed well in complex biological samples. The capability to profile exosomal surface proteins efficiently endowed our DNA motor great potential for developing a simple and cost-effective device for clinical diagnosis.
Collapse
Affiliation(s)
- Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wei S Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yuehua Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Huaping Peng
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Min Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Dandan Miao
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
27
|
A fluorometric assay of thrombin using magnetic nanoparticles and enzyme-free hybridization chain reaction. Mikrochim Acta 2020; 187:295. [PMID: 32347383 DOI: 10.1007/s00604-020-04279-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
A fluorescence method based on functionalized magnetic nanoparticles (FMNPs) and hybridization chain reaction (HCR) is developed for the enzyme-free amplified determination of thrombin. In the proposed design, aptamer against thrombin was hybridized with the capture DNA-modified magnetic nanoparticles to yield the FMNPs. In the presence of thrombin, aptamers are released due to the specific and high-affinity binding between thrombin and its aptamer. The exposed capture DNA subsequently hybridized with the partial sequence of helper DNA, and the vacant sequence of helper DNA further hybridized with HCR products which is pre-formed by the alternate hybridization of single-stranded DNAs (H1 and H2). The immobilized HCR products were then labeled with YOYO-1 for fluorescence measurement. Fluorescence signal intensity of labeled YOYO-1 was measured at an emission wavelength of 519 nm (excitation under 488 nm) and used for calibration. By taking advantage of HCR amplification, this direct assay strategy showed a linear response in the 20- to 200-pM concentration range, and the limit of detection is 9.2 pM which is about 3-orders of magnitude lower than the serum thrombin concentration (10 nM) that triggers blood clotting. This developed method can efficiently differentiate the target protein from a protein matrix, and it is verified by determination of thrombin in spiked serum samples with recoveries in the range of 94.5-103.3%. Graphical abstract A fluorometry method for thrombin detection using magnetic nanoparticles and enzyme-free hybridization chain reaction.
Collapse
|
28
|
Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Mikrochim Acta 2020; 187:274. [DOI: 10.1007/s00604-020-04244-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
|
29
|
Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee MH. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 2020; 159:112208. [PMID: 32364932 DOI: 10.1016/j.bios.2020.112208] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023]
Abstract
Multiple and sensitive detection of oncomiRs for accurate cancer diagnostics is still a challenge. Here, a synergetic amplification strategy was introduced by combining a MXene-based electrochemical signal amplification and a duplex-specific nuclease (DSN)-based amplification system for rapid, attomolar and concurrent quantification of multiple microRNAs on a single platform in total plasma. Synthesized MXene-Ti3C2Tx modified with 5 nm gold nanoparticles (AuNPs) was casted on a dual screen-printed gold electrode to host vast numbers of DNA probes identically co-immobilized on dedicated electrodes. Interestingly, presence of MXene provided biofouling resistance and enhanced the electrochemical signals by almost 4 folds of magnitude, attributed to its specious surface area and remarkable charge mobility. The 5 nm AuNPs were perfectly distributed within the whole flaky architect of the MXene to give rise to the electrochemical performance of MXene and provide the thiol-Au bonding feature. This synergetic strategy reduced the DSN-based biosensors' assay time to 80 min, provided multiplexability, antifouling activity, substantial sensitivity and specificity (single mutation recognition). The limit of detection of the proposed biosensor for microRNA-21 and microRNA-141 was respectively 204 aM and 138 aM with a wide linear range from 500 aM to 50 nM. As a proof of concept, this newly-developed strategy was coupled with a 96-well adaptive sensing device to successfully profile three cancer plasma samples based on their altered oncomiR abundances.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK, 2800, Denmark
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK, 2800, Denmark
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| |
Collapse
|
30
|
Pei X, Wu X, Xiong J, Wang G, Tao G, Ma Y, Li N. Competitive aptasensor for the ultrasensitive multiplexed detection of cancer biomarkers by fluorescent nanoparticle counting. Analyst 2020; 145:3612-3619. [PMID: 32285061 DOI: 10.1039/d0an00239a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer biomarker quantification in human serum is of great importance for accurate patient diagnosis and informed clinical management. To date, ultrasensitive multiplexed detection of proteins without amplification is still a major challenge. Herein, we proposed a competitive aptasensor strategy for ultrasensitive multiplexed cancer biomarker detection by fluorescent nanoparticle (FNP) counting. The sequences are designed such that the binding abilities of linker DNA (L-DNA) with DNA-functionalized FNPs (DNA-FNPs) and aptamer are comparable. As long as one target binds with one molecule of aptamer, a signalling FNP forms a sandwich-structured nanocomposite, which was subsequently observed and enumerated with a fluorescence microscope. This 1 : 1 target-to-signal FNP production assured an improved sensitivity, benefiting from the reasonably good brightness and photostability of FNPs. For both singleplexed and multiplexed detection, this proposed strategy achieved an approximately 1000-fold improved limit of detection than the conventional method with the detection volume of 3.2 μL. Notably, the results for carcinoembryonic antigen (CEA) detection obtained directly from 9 human serum samples (colorectal/lung/healthy individuals) were consistent with that obtained by ELISA, showing potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Xiaojing Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ultrasensitive electrochemiluminescence biosensing platform for miRNA-21 and MUC1 detection based on dual catalytic hairpin assembly. Anal Chim Acta 2020; 1105:87-94. [DOI: 10.1016/j.aca.2020.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
|
32
|
A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Xu H, Cui H, Yin Z, Wei G, Liao F, Shu Q, Ma G, Cheng L, Hong N, Xiong J, Fan H. Highly sensitive host-guest mode homogenous electrochemical thrombin signal amplification aptasensor based on tetraferrocene label. Bioelectrochemistry 2020; 134:107522. [PMID: 32278295 DOI: 10.1016/j.bioelechem.2020.107522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
The development of sensitive and convenient detection methods to monitor thrombin without the use of enzymes or complex nanomaterials is highly desirable for the diagnosis of cardiovascular diseases. In this article, tetraferrocene was first synthesized and then a sensitive and homogeneous electrochemical aptasensor was developed for thrombin detection based on host-guest recognition between tetraferrocene and β-cyclodextrin (β-CD). In the absence of thrombin, the double stem-loop of thrombin aptamer (TBA) prevented tetraferrocenes labeled at both ends from entering the cavity of β-CD deposited on gold electrode surface. After binding with thrombin, the stem-loop structure of TBA opened and transformed into special G-quarter structure, forcing tetraferrocene into the cavity of β-CD. As a result, thrombin allowed eight ferrocene molecules to reach the gold electrode surface, greatly amplifying the response signal. The obtained aptasensors showed dynamic detection range from 4 pM to 12.5 nM with detection limit around 1.2 pM. Overall, the results indicate that the proposed aptasensors are promising for future rapid clinical detection of thrombin and development of signal amplification strategies for detection of various proteins.
Collapse
Affiliation(s)
- Huihui Xu
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Hanfeng Cui
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Zhaojiang Yin
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Guobing Wei
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Fusheng Liao
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Qingxia Shu
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Guangqiang Ma
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lin Cheng
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Nian Hong
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jun Xiong
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China.
| | - Hao Fan
- The Affiliated Hospital, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China.
| |
Collapse
|
34
|
Yan SR, Foroughi MM, Safaei M, Jahani S, Ebrahimpour N, Borhani F, Rezaei Zade Baravati N, Aramesh-Boroujeni Z, Foong LK. A review: Recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol 2020; 155:184-207. [PMID: 32217120 DOI: 10.1016/j.ijbiomac.2020.03.173] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
One of the most studied topics in analytical chemistry and physics is to develop bio-sensors. Aptamers are small single-stranded RNA or DNA oligonucleotides (5-25 kDa), which have advantages in comparison to their antibodies such as physicochemical stability and high binding specificity. They are able to integrate with proteins or small molecules, including intact viral particles, plant lectins, gene-regulation factor, growth factors, antibodies and enzymes. The aptamers have reportedly shown some unique characteristics, including long shelf-life, simple modification to provide covalent bonds to material surfaces, minor batch variation, cost-effectiveness and slight denaturation susceptibility. These features led important efforts toward the development of aptamer-based sensors, known as apta-sensors classified into optical, electrical and mass-sensitive based on the signal transduction mode. This review provided a number of current advancements in selecting, development criteria, and aptamers application with the focus on the effect of apta-sensors, specifically for disease-associated analyses. The review concentrated on the current reports of apta-sensors that are used for evaluating different food and environmental pollutants.
Collapse
Affiliation(s)
- Shu-Rong Yan
- Institute of Smart Finance, Yango University, Fuzhou 350015, China
| | | | - Mohadeseh Safaei
- Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Shohreh Jahani
- Student Research Committee, School of Public Health, Bam University of Medical Sciences, Bam, Iran; Bam University of Medical Sciences, Bam, Iran
| | - Nasser Ebrahimpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Borhani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Loke Kok Foong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
35
|
A highly sensitive electrochemical biosensor for protein based on a tetrahedral DNA probe, N- and P-co-doped graphene, and rolling circle amplification. Anal Bioanal Chem 2020; 412:915-922. [PMID: 31900531 DOI: 10.1007/s00216-019-02314-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
A tetrahedral DNA probe can effectively overcome the steric effects of a single-stranded probe to obtain well-controlled density and minimize nonspecific adsorption. Herein, a highly sensitive electrochemical biosensor is fabricated for determination of protein using a tetrahedral DNA probe and rolling circle amplification (RCA). N- and P-co-doped graphene (NP-rGO) is prepared, and AuNPs are then electrodeposited on it for DNA probe immobilization. Benefitting from the synergistic effects of the excellent electrical conductivity of NP-rGO, the stability of the tetrahedral DNA probe and the signal amplification of RCA, the biosensor achieves a low limit of 3.53 × 10-14 M for thrombin and a wide linear range from 1 × 10-13 to 1 × 10-7 M. This study provides a sensitive and effective method for the detection of protein in peripheral biofluids, and paves the way for future clinical diagnostics and treatment of disease. Graphical abstract.
Collapse
|
36
|
Kong FY, Yao L, Lu XY, Li HY, Wang ZX, Fang HL, Wang W. Au–Hg/rGO with enhanced peroxidase-like activity for sensitive colorimetric determination of H2O2. Analyst 2020; 145:2191-2196. [DOI: 10.1039/d0an00235f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Au–Hg/rGO is applied as a novel nanozyme to construct a sensitive sensing platform for the colorimetric determination of H2O2.
Collapse
Affiliation(s)
- Fen-Ying Kong
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| | - Lei Yao
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| | - Xin-Yang Lu
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| | - Zhong-Xia Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| | - Hai-Lin Fang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| | - Wei Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- China
| |
Collapse
|
37
|
Wang FT, Wang YH, Xu J, Huang KJ. A high-energy sandwich-type self-powered biosensor based on DNA bioconjugates and a nitrogen doped ultra-thin carbon shell. J Mater Chem B 2020; 8:1389-1395. [DOI: 10.1039/c9tb02574j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A high-energy self-powered sensing platform for the ultrasensitive detection of proteins is developed based on enzymatic biofuel cells (EBFCs) by using DNA bioconjugate assisted signal amplification.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yi-Han Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Jing Xu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
38
|
Wang C, Chen M, Wu J, Mo F, Fu Y. Multi-functional electrochemiluminescence aptasensor based on resonance energy transfer between Au nanoparticles and lanthanum ion-doped cadmium sulfide quantum dots. Anal Chim Acta 2019; 1086:66-74. [DOI: 10.1016/j.aca.2019.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/03/2019] [Indexed: 12/31/2022]
|
39
|
Pourtaheri E, Taher MA, Ali GA, Agarwal S, Gupta VK. Electrochemical detection of gliclazide and glibenclamide on ZnIn2S4 nanoparticles-modified carbon ionic liquid electrode. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Saa L, Díez-Buitrago B, Briz N, Pavlov V. CdS quantum dots generated in-situ for fluorometric determination of thrombin activity. Mikrochim Acta 2019; 186:657. [DOI: 10.1007/s00604-019-3765-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
|
41
|
Cao JT, Zhang WS, Wang H, Ma SH, Liu YM. A novel nitrogen and sulfur co-doped carbon dots-H 2O 2 chemiluminescence system for carcinoembryonic antigen detection using functional HRP-Au@Ag for signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:281-287. [PMID: 31051422 DOI: 10.1016/j.saa.2019.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
A novel nitrogen and sulfur co-doped carbon dots (NS-CDs)-H2O2 chemiluminescence (CL) system was developed to detect carcinoembryonic antigen (CEA) by taking advantage of dual-signal amplification of functional Au@Ag nanoparticles (NPs) nanoprobes. Horseradish peroxidase (HRP) and the complementary DNA were co-immobilized onto Au@Ag NPs surface to shape the functional nanoprobes (HRP-Au@Ag-cDNA) for signal amplification. In this proposal, HRP-Au@Ag-cDNA was specifically hybridized with CEA aptamer-functionalized magnetic beads to form the double-strand hybridization nanocomposites (HRP-Au@Ag-dsDNA-MB). Upon the addition of CEA, the CEA aptamer preferred to bind with CEA instead of double-strand hybridization interaction, thus HRP-Au@Ag-dsDNA-MB was dehybridized and the HRP-Au@Ag-cDNA nanoprobe was released. The synergistic catalytic effects of HRP and Au @Ag NPs endow the nanoprobe producing a dual CL signal amplification in the NS-CDs-H2O2 CL system. The CL intensity of the developed strategy enhanced with CEA concentration increasing in the range of 0.3-80 ng mL-1. Benefiting from the synergistic effect, a detection limit as low as 94 pg mL-1 was obtained. Moreover, successful application of this CL sensing platform was achieved for the determination of CEA in human serum samples, demonstrating the promising prospect in the early tumor warning and therapeutic monitoring.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China.
| | - Wen-Sheng Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| | - Shu-Hui Ma
- Xinyang Central Hospital, Xinyang 464000, PR China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
42
|
He B, Wang L, Dong X, Yan X, Li M, Yan S, Yan D. Aptamer-based thin film gold electrode modified with gold nanoparticles and carboxylated multi-walled carbon nanotubes for detecting oxytetracycline in chicken samples. Food Chem 2019; 300:125179. [PMID: 31325751 DOI: 10.1016/j.foodchem.2019.125179] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
In this work, a disposable and portable aptasensor for the fast and sensitive detection of oxytetracycline (OTC) using gold nanoparticles (AuNPs)/carboxylated multi-walled carbon nanotubes (cMWCNTs)@thionine connecting complementary strand of aptamer (cDNA) as signal tags was constructed. The substrate electrode of the aptasensor was thin film gold electrode (TFGE), which have the advantages of portable and uniform performance. In the presence of OTC, OTC competed with cDNA to combine with aptamer. The bioconjugate (AuNPs/cMWCNTs/cDNA@thionine) was released from the TFGE. Thus, the electrochemical signal declined. Under optimized conditions, the aptasensor exhibited good stability, high selectivity and high sensitivity. Furthermore, the developed electrochemical aptamer-based TFGE had a wide dynamic range of 1 × 10-13-1 × 10-5 g mL-1 for target OTC with a low detection limit of 3.1 × 10-14 g mL-1 and was successfully used for the determination of OTC in chicken sample.
Collapse
Affiliation(s)
- Baoshan He
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou 450001, Henan Province, People's Republic of China.
| | - Long Wang
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Xiaoze Dong
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Xiaohai Yan
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Ming Li
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Sasa Yan
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Dandan Yan
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou 450001, Henan Province, People's Republic of China
| |
Collapse
|
43
|
Mohammadniaei M, Go A, Chavan SG, Koyappayil A, Kim SE, Yoo HJ, Min J, Lee MH. Relay-race RNA/barcode gold nanoflower hybrid for wide and sensitive detection of microRNA in total patient serum. Biosens Bioelectron 2019; 141:111468. [PMID: 31279178 DOI: 10.1016/j.bios.2019.111468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/17/2019] [Accepted: 06/21/2019] [Indexed: 02/04/2023]
Abstract
Development of a very sensitive biosensor is accompanied with an inevitable shrinkage in the linear detection range. Here, we developed an electrochemical biosensor with a novel methodology to detect microRNA-21 (miR21) at an ultralow level and broad linear detection range. A three-way junction RNA structure was designed harboring (i) a methylene blue (MB)-modified hairpin structure at its one leg to function as the sensing moiety and (ii) the other two legs to be further hybridized with barcode gold nanoparticles (MB/barG) as the signal amplifiers. Addition of target miR21 resulted in opening the hairpin moiety and subsequent hybridization with DNA-modified gold nanoflower/platinum electrode (GNF@Pt) to form the MB-3 sensor. Inspired by the relay-race run, to extend the dynamic detection range and increase the sensitivity of the biosensor, MB/barG was added to form the second detection modality (MBG-3). The combined sensor required very low sample volume (4 μL) and could identify 135 aM or 324 molecules of miR21 with the ability to operate within a wide linear range from 1 μM down to 500 aM. The fabricated GNF@Pt showed a remarkable conductivity compared with the gold nanoparticle-modified electrode. Addition of MB/barG boosted the electrochemical signal of the MB by almost 230 times. Moreover, a new protocol was introduced by the authors to increase the efficiency of microRNA extraction from the total serum. Possessing a sound selectivity and specificity towards single base-pair mutations, the developed biosensor could profile cancer development stages of two patient serums.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea
| | - Seong-Eun Kim
- Human IT Convergence Research Center, Convergence System R&D Division, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Hyun Jin Yoo
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| |
Collapse
|
44
|
He B, Yan X. An amperometric zearalenone aptasensor based on signal amplification by using a composite prepared from porous platinum nanotubes, gold nanoparticles and thionine-labelled graphene oxide. Mikrochim Acta 2019; 186:383. [PMID: 31140009 DOI: 10.1007/s00604-019-3500-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/12/2019] [Indexed: 11/29/2022]
Abstract
The authors constructed a voltammetric zearalenone (ZEN) aptasensor based on use of porous platinum nanotubes, gold nanoparticles (p-PtNTs/AuNPs) and thionine (Thi) labelled graphene oxide (GO). The p-PtNTs were synthesized in-situ based on tellurium nanowires as sacrificial templates. Subsequently, thiol-modified aptamers were self-assembled on the AuNPs that had been electrodeposited on the surface of the modified electrode. The presence of p-PtNTs on the electrode increases the loading with AuNPs and aptamers. It also warrants that the Thi-labelled GO can be assembled onto the aptamer via π interactions. In the presence of ZEN, it will be bound by the aptamer. The GO/Thi conjugate will be released from the aptamer, and this causes a decrease in Thi current. Under the optimal conditions and at a typical working potential of -0.22 V (vs. Ag/AgCl), the method has a linear range that covers the 0.5 pg·mL-1 to 0.5 μg·mL-1 ZEN concentraion range and a lower detection limit of 0.17 pg·mL-1. Graphical abstract Voltammetric zearalenone aptasensor based on use of porous platinum nanotubes/gold nanoparticles and thionine labelled graphene oxide was fabricated for the detection of zearalenone.
Collapse
Affiliation(s)
- Baoshan He
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Xiaohai Yan
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou, 450001, Henan Province, People's Republic of China
| |
Collapse
|
45
|
A label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection based on aggregation-induced emission probe. Anal Biochem 2019; 578:60-65. [PMID: 31095938 DOI: 10.1016/j.ab.2019.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Based on Aggregation-Induced Emission (AIE), the development of a label-free, simple and sensitive fluorometric aptasensor for adenosine triphosphate (ATP) detection is described. With ATP present, the aptamers will combine with ATP and the conformation of the aptamer will switch from a random coil to an antiparallel G-quadruplex, which impedes the digestion by exonuclease I (Exo I). Addition of 4,4 -(1E,1E)-2,2-(anthracene-9,10-diyl) bis (ethene-2,1-diyl) bis (N,N, N-trimethyl-benzenaminium iodide) (DSAI) into the solution will cause aggregation of DSAI on the surface of the aptamer/ATP complex and consequently give rise to strong emission. Additionally, a good linear relationship was observed under optimized conditions between the fluorescence intensities and the logarithm of ATP concentrations (R2 = 0.9908). The established aptamer sensor was highly sensitive and exhibited a low limit of detection of 32.8 nM, with superior specificity for ATP. It was also used in the quantification of ATP levels in human serum samples and demonstrated satisfactory recoveries in the scope of 93.2%-107.6%. The cellular ATP assay results indicated that the developed method can be used for monitoring ATP concentrations in cell extracts without the interference of other substances in the cells. This method offers several advantages such as simplicity, rapidity, low cost and excellent selectivity, which make it hold great potential for the detection of ATP in bioanalytical and biological studies.
Collapse
|
46
|
Label-free DNA Y junction for detection of Hg2+ using exonuclease III or graphene oxide-assisted background reduction. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Liu Z, Lei S, Zou L, Li G, Xu L, Ye B. A label-free and double recognition-amplification novel strategy for sensitive and accurate carcinoembryonic antigen assay. Biosens Bioelectron 2019; 131:113-118. [PMID: 30826645 DOI: 10.1016/j.bios.2019.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Herein, a label-free and double recognition-amplification (LDRA) strategy for carcinoembryonic antigen (CEA) detection was developed, based on a new designed dual-function messenger probe (DMP) coalescing with DNA tetrahedron probes (DTPs) and hybridization chain reaction (HCR). The DMP possess dual-function to replace CEA for specific interface hybridization and initiate hybridization chain reaction. The interfacial hybridization event was quantitatively converted to an electrochemical signal by using hemin/G-quadruplex (h-Gx) formed after the hybridization chain reaction. Self-assembled DNA tetrahedron probes, which were readily decorated on an electrode surface as a scaffold with rigid support and ordered orientation, enabled the highly efficient strands hybridization and greatly increased target accessibility as well as significantly decreased noise. The proposed assay integrated dual recognition processes and HCR signal amplification processes, achieving the identification of low concentration of CEA as detection limit of 18.2 fg mL-1 (S/N = 3) and wider linearity range of 0.0001 ng mL-1-50 ng mL-1. A new electrochemical sensing method was proposed for CEA detection and used in real clinical samples. The obtained results were good consistency with those of clinical diagnosis.
Collapse
Affiliation(s)
- Zi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Sheng Lei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lingling Xu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
48
|
Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell decorated imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosens Bioelectron 2019; 127:10-18. [DOI: 10.1016/j.bios.2018.11.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 11/18/2022]
|
49
|
Application of hairpin DNA-based biosensors with various signal amplification strategies in clinical diagnosis. Biosens Bioelectron 2019; 129:164-174. [PMID: 30708263 DOI: 10.1016/j.bios.2019.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/09/2018] [Accepted: 01/03/2019] [Indexed: 01/12/2023]
Abstract
Biosensors have been commonly used in biomedical diagnostic tools in recent years, because of a wide range of application, such as point-of-care monitoring of treatment and disease progression, drug discovery, commonly use food control, environmental monitoring and biomedical research. Additionally, development of DNA biosensors has been increased enormously over the past few years as confirmed by the large number of scientific publications in this field. A wide range of techniques can be used for the development of DNA biosensors, such as DNA nano-machines and various signal amplification strategies. This article selectively reviews the recent advances in DNA base biosensors with various signal amplification strategies for detection of cancer DNA and microRNA, infectious microorganisms, and toxic metal ions.
Collapse
|
50
|
Wang YH, He LL, Huang KJ, Chen YX, Wang SY, Liu ZH, Li D. Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. Analyst 2019; 144:2849-2866. [DOI: 10.1039/c9an00081j] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent efforts in the application of nanomaterials as sensing elements in electrochemical and optical miRNAs assays.
Collapse
Affiliation(s)
- Yi-Han Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Liu-Liu He
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ying-Xu Chen
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Shu-Yu Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Zhen-Hua Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Dan Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|