1
|
Lei H, Yu X, Fan D. Nanocomposite Hydrogel for Real-Time Wound Status Monitoring and Comprehensive Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405924. [PMID: 39269428 DOI: 10.1002/advs.202405924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Current skin sensors or wound dressings fall short in addressing the complexities and challenges encountered in real-world scenarios, lacking adequate capability to facilitate wound repair. The advancement of methodologies enabling early diagnosis, real-time monitoring, and active regulation of drug delivery for timely comprehensive treatment holds paramount significance for complex chronic wounds. In this study, a nanocomposite hydrogel is devised for real-time monitoring of wound condition and comprehensive treatment. Tannins and siRNA containing matrix metalloproteinase-9 gene siRNA interference are self-assembled to construct a degradable nanogel and modified with bovine serum albumin. The nanogel and pH indicator are encapsulated within a dual-crosslinking hydrogel synthesized with norbornene dianhydride-modified paramylon. The hydrogel exhibited excellent shape adaptability due to borate bonding, and the click polymerization reaction led to rapid in situ curing of the hydrogel. The system not only monitors pH, temperature, wound exudate alterations, and peristalsis during wound healing but also exhibits hemostatic, antimicrobial, anti-inflammatory, and antioxidant properties, modulates macrophage polarization, and facilitates vascular tissue regeneration. This therapeutic approach, which integrates the monitoring of pathological parameters with comprehensive treatment, is anticipated to address the clinical issues and challenges associated with chronic diabetic wounds and infected wounds, offering broad prospects for application.
Collapse
Affiliation(s)
- Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xueqing Yu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
2
|
Swami P, Anand S, Holani A, Gupta S. Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21907-21930. [PMID: 39385605 DOI: 10.1021/acs.langmuir.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Conventional approaches for bacterial cell analysis are hindered by lengthy processing times and tedious protocols that rely on gene amplification and cell culture. Impedance spectroscopy has emerged as a promising tool for efficient real-time bacterial monitoring, owing to its simple, label-free nature and cost-effectiveness. However, its limited practical applications in real-world scenarios pose a significant challenge. In this review, we provide a comprehensive study of impedance spectroscopy and its practical utilization in bacterial system measurements. We begin by outlining the fundamentals of impedance theory and modeling, specific to bacterial systems. We then offer insights into various strategies for bacterial cell detection and discuss the role of impedance spectroscopy in antimicrobial susceptibility testing (AST) and single-cell analysis. Additionally, we explore key aspects of impedance system design, including the influence of electrodes, media, and cell enrichment techniques on the sensitivity, specificity, detection speed, concentration accuracy, and cost-effectiveness of current impedance biosensors. By combining different biosensor design parameters, impedance theory, and detection principles, we propose that impedance applications can be expanded to point-of-care diagnostics, enhancing their practical utility. This Perspective focuses exclusively on ideally polarizable (fully capacitive) electrodes, excluding any consideration of charge transfer resulting from Faradaic reactions.
Collapse
Affiliation(s)
- Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Anurag Holani
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| |
Collapse
|
3
|
Konaklieva MI, Plotkin BJ. Activity of Organoboron Compounds against Biofilm-Forming Pathogens. Antibiotics (Basel) 2024; 13:929. [PMID: 39452196 PMCID: PMC11504661 DOI: 10.3390/antibiotics13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Bacteria have evolved and continue to change in response to environmental stressors including antibiotics. Antibiotic resistance and the ability to form biofilms are inextricably linked, requiring the continuous search for alternative compounds to antibiotics that affect biofilm formation. One of the latest drug classes is boron-containing compounds. Over the last several decades, boron has emerged as a prominent element in the field of medicinal chemistry, which has led to an increasing number of boron-containing compounds being considered as potential drugs. The focus of this review is on the developments in boron-containing organic compounds (BOCs) as antimicrobial/anti-biofilm probes and agents.
Collapse
Affiliation(s)
- Monika I. Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, USA
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA;
| |
Collapse
|
4
|
Shan M, Chen X, Zhang X, Zhang S, Zhang L, Chen J, Wang X, Liu X. Injectable Conductive Hydrogel with Self-Healing, Motion Monitoring, and Bacteria Theranostics for Bioelectronic Wound Dressing. Adv Healthc Mater 2024; 13:e2303876. [PMID: 38217457 DOI: 10.1002/adhm.202303876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Wounds at joints are difficult to treat and tend to recover more slowly due to the frequent motions. When using traditional hydrogel dressings, they are easy to crack and undergo bacterial infection, difficult to match and monitor the irregular wounds. Integrating multiple functions within a hydrogel dressing to achieve intelligent wound monitoring and healing remains a significant challenge. In this research, a multifunctional hydrogel is developed based on polysaccharide biopolymer, poly(vinyl alcohol), and hydroxylated graphene through dynamic borate ester bonding and supramolecular interaction. The prepared hydrogel not only exhibits rapid self-healing (within 60 s), injectable, conductive and motion monitoring properties, but also realizes in situ bacterial sensing and killing functions. It shows excellent bacterial sensitivity (within 15 min) and killing ability via the changes of electrical signals and photothermal therapy, avoiding the emergence of drug-resistant bacteria. In vivo experiments prove that the hydrogel can promote wound healing effectively. In addition, it displays great electromechanical performance to achieve real-time monitoring and prevent re-tearing of the wound at human joints. The injectable pH-responsive hydrogel with good biocompatibility demonstrates considerable potential as multifunctional bioelectronic dressing for the detection, treatment, management, and healing of infected joint wounds.
Collapse
Affiliation(s)
- Mengyao Shan
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Sinopec Oilfield Equipment Corporation, Wuhan, 430070, China
| | - Xin Chen
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Xiaoyang Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Shike Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Linlin Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinzhou Chen
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Xianghong Wang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Henan Innovation Center for Functional Polymer Membrane Materials, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Liu S, Hu Z, Zhang X, Huang H, Pan J, Ou H. Fabrication of double imprinted anchor points in cellulose nanocrystals-based hierarchical porous polyHIPEs for selective separation of flavoniods under physiological pH. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133230. [PMID: 38134695 DOI: 10.1016/j.jhazmat.2023.133230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Previous research had proved that molecular imprinted polymers can be used as separation material for removing Naringin (NRG) from agricultural pomelo wastes effectively. But the adsorption amounts of NRG molecules from traditional MIPs was quite low by using boronic acid as functional monomer because of single affinity interaction. Therefore, we developed the new combination of bifunctional monomers (i.e. low pKa boronate affinity monomer 2,4-difluoro-3-formylphenylboronic acid and dopamine) based on cellulose nanocrystals (CNCs) mixed with polymerized high internal phase emulsion (polyHIPE, PH) through an double layer surface imprinted method. The introduction of polyethylenimine (PEI) can offer abundant anchor units for the growth of more anchor sites to immobilization template molecules. Importantly, largely improved selective adsorption amounts (50.79 μmol g-1), which may be attribute to the fabrication of the uniform growth of double imprinted layers onto the polydopamine (PDA)/boronic acid-based surfaces. In addition, the resulting double recognition molecular imprinted polymers (MIPs) based on hypercrosslinked PH (DR-HCLPH@MIPs) not only exhibited fast adsorption kinetic of NRG molecule, but also possessed excellent selectivity and high adsorption capacities at physiological pH. Meanwhile, the coarse NRG from pomelo waste can be high selectively extracted to 94.74%. Overall, this study provides a versatile approach for fabrication of the sandwich-biscuit-like double imprinting layer porous MIPs for precise identification and ultrafast transport separation of NRG from complex samples.
Collapse
Affiliation(s)
- Shucheng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhi Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hao Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hongxiang Ou
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
6
|
Yuan Y, Peng X, Weng X, He J, Liao C, Wang Y, Liu L, Zeng S, Song J, Qu J. Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications. Biosens Bioelectron 2023; 241:115672. [PMID: 37716156 DOI: 10.1016/j.bios.2023.115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Both increasing demand for ultrasensitive detection in the scientific community and significant new breakthroughs in materials science field have inspired and promoted the development of new-generation multifunctional plasmonic sensing platforms by adopting promising plasmonic nanomaterials. Recently, high-quality surface plasmon resonance (SPR) sensors, assisted by two dimensional (2D) nanomaterials including 2D van der Waals (vdWs) materials (such as graphene/graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, antimonene, tellurene, MXenes, and metal oxides), 2D metal-organic frameworks (MOFs), 2D hyperbolic metamaterials (HMMs), and 2D optical metasurfaces, have emerged as a class of novel plasmonic sensing platforms that show unprecedented detection sensitivity and impressive performance. This review of recent progress in 2D nanomaterials-enhanced SPR platforms will highlight their compelling plasmonic enhancement features, working mechanisms, and design methodologies, as well as discuss illustrative practical applications. Hence, it is of great importance to describe the latest research progress in 2D nanomaterials-enhanced SPR sensing cases. In this review, we present some concepts of SPR enhanced by 2D nanomaterials, including the basic principles of SPR, signal modulation approaches, and working enhancement mechanisms for various 2D materials-enhanced SPR systems. In addition, we also demonstrate a detailed categorization of 2D nanomaterials-enhanced SPR sensing platforms and comment on their ability to realize ultrasensitive SPR detection. Finally, we conclude with future perspectives for exploring a new generation of 2D nanomaterials-based sensors.
Collapse
Affiliation(s)
- Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000, Troyes, France.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
7
|
Guliy OI, Karavaeva OA, Smirnov AV, Eremin SA, Bunin VD. Optical Sensors for Bacterial Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9391. [PMID: 38067765 PMCID: PMC10708710 DOI: 10.3390/s23239391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.
Collapse
Affiliation(s)
- Olga I. Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Olga A. Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Andrey V. Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;
| | - Sergei A. Eremin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | | |
Collapse
|
8
|
Hu J, Li C, Yang Z, Wu Q, Wang J, Xu Z, Chen Y, Wan Q, Shuai Y, Yang S, Yang M. Hierarchically patterned protein scaffolds with nano-fibrillar and micro-lamellar structures modulate neural stem cell homing and promote neuronal differentiation. Biomater Sci 2023; 11:7663-7677. [PMID: 37855269 DOI: 10.1039/d3bm00801k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Biophysical factors are essential in cell survival and behaviors, but constructing a suitable 3D microenvironment for the recruitment of stem cells and exerting their physiological functions remain a daunting challenge. Here, we present a novel silk fibroin (SF)-based fabrication strategy to develop hierarchical microchannel scaffolds for biomimetic nerve microenvironments in vitro. We first modulated the formation of SF nanofibers (SFNFs) that mimic the nanostructures of the native extracellular matrix (ECM) by using graphene oxide (GO) nanosheets as templates. Then, SFNF-GO systems were shaped into 3D porous scaffolds with aligned micro-lamellar structures by freeze-casting. The interconnected microchannels successfully induced cell infiltration and migration to the SFNF-GO scaffolds' interior. Meanwhile, the nano-fibrillar structures and the GO component significantly induced neural stem cells (NSCs) to differentiate into neurons within a short timeframe of 14 d. Importantly, these 3D hierarchical scaffolds induced a mild inflammatory response, extensive cell recruitment, and effective stimulation of NSC neuronal differentiation when implanted in vivo. Therefore, these SFNF-GO lamellar scaffolds with distinctive nano-/micro-topographies hold promise in the fields of nerve injury repair and regenerative medicine.
Collapse
Affiliation(s)
- Jiaqi Hu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Chenlin Li
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhangze Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qi Wu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Zongpu Xu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yuyin Chen
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Quan Wan
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yajun Shuai
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Hangzhou, 310016, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
9
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
10
|
Bifunctional nanomaterial with antibody-like and electrocatalytic activity to facilitate electrochemical biosensor of Escherichia coli. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Zhang X, Lu M, Cao X, Zhao Y. Functional microneedles for wearable electronics. SMART MEDICINE 2023; 2:e20220023. [PMID: 39188558 PMCID: PMC11235787 DOI: 10.1002/smmd.20220023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 08/28/2024]
Abstract
With an ideal comfort level, sensitivity, reliability, and user-friendliness, wearable sensors are making great contributions to daily health care, nursing care, early disease discovery, and body monitoring. Some wearable sensors are imparted with hierarchical and uneven microstructures, such as microneedle structures, which not only facilitate the access to multiple bio-analysts in the human body but also improve the abilities to detect feeble body signals. In this paper, we present the promising applications and latest progress of functional microneedles in wearable sensors. We begin by discussing the roles of microneedles as sensing units, including how the signals are captured, converted, and transmitted. We also introduce the microneedle-like structures as power units, which depend on triboelectric or piezoelectric effects, etc. Finally, we summarize the cutting-edge applications of microneedle-based wearable sensors in biophysical signal monitoring and biochemical analyte detection, and provide critical thinking on their future perspectives.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minhui Lu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
12
|
Wei Z, Wang P, Tian X, sun W, Pan J. Imprinted polymer beads featuring both predefined multiple-point interaction and accessible binding sites for precise recognition of 2′-deoxyadenosine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Liu J, Zheng Z, Luo J, Wang P, Lu G, Pan J. Engineered Reversible Adhesive Biofoams for Accelerated Dermal Wound Healing: Intriguing Multi-covalent Phenylboronic acid/cis-diol Interaction. Colloids Surf B Biointerfaces 2022; 221:112987. [DOI: 10.1016/j.colsurfb.2022.112987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
14
|
Zhang Y, Hu X, Shang J, Shao W, Jin L, Quan C, Li J. Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 2022; 12:5995-6020. [PMID: 35966582 PMCID: PMC9373825 DOI: 10.7150/thno.73681] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Pathogenic infections have emerged as major threats to global public health. Multidrug resistance induced by the abuse of antibiotics makes the anti-infection therapies to be a global challenge. Thus, it is urgent to develop novel, efficient and biosafe antibiotic alternatives for future antibacterial therapy. Recently, nanozymes have emerged as promising antibiotic alternatives for combating bacterial infections. More significantly, the multimodal synergistic nanozyme-based antibacterial systems open novel disinfection pathways. In this review, we are mainly focusing on the recent research progress of nanozyme-based multimodal synergistic therapies to eliminate bacterial infections. Their antibacterial mechanism, the synergistic antibacterial systems are systematically summarized and discussed according to the combination of mechanisms and the purpose to improve their antibacterial efficiency, biosafety and specificity. Finanly, the current challenges and prospects of the multimodal synergistic antibacterial systems are proposed.
Collapse
Affiliation(s)
- Yanmei Zhang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Xin Hu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jing Shang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Wenhui Shao
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Liming Jin
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Chunshan Quan
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China
| |
Collapse
|
15
|
Combination of DNA walker and Pb2+-specific DNAzyme-based signal amplification with a signal-off electrochemical DNA sensor for Staphylococcus aureus detection. Anal Chim Acta 2022; 1222:340179. [DOI: 10.1016/j.aca.2022.340179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
|
16
|
Wu T, Wang C, Wu M, Wang P, Feng Q. Novel integrating polymethylene blue nanoparticles with dumbbell hybridization chain reaction for electrochemical detection of pathogenic bacteria. Food Chem 2022; 382:132501. [PMID: 35245759 DOI: 10.1016/j.foodchem.2022.132501] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022]
Abstract
Pathogenic bacteria infections pose a major threat to human health which can be found in contaminated food and infected humans. Herein, an electrochemical sensor was developed for pathogenic bacteria assay using a dual amplification strategy of polymethylene blue nanoparticles (pMB NPs) and dumbbell hybridization chain reaction (DHCR). The strong binding ability of aptamer to targets endowed outstanding performance in identifying Staphylococcus aureus (S. aureus) among other typical bacteria. The released T strands were hybridized with capture DNA on electrode surface which triggered DHCR in the presence of two dumbbell-shaped helper DNA, leading to the formation of extended and tight dsDNA polymers. In combination with pMB NPs (redox indicators), S. aureus was quantitatively detected in a range of 10-108 CFU/mL and the detection limit reached 1 CFU/mL. Moreover, this sensor was successfully applied for S. aureus detection in human serum and foods, demonstrating the reliability in practical applications.
Collapse
Affiliation(s)
- Tao Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Chengcheng Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Meisheng Wu
- Department of Chemistry, College of Science, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China.
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
17
|
Zhu S, Liu Y, Gu Z, Zhao Y. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade - A bibliometric analysis. Adv Drug Deliv Rev 2022; 188:114420. [PMID: 35835354 DOI: 10.1016/j.addr.2022.114420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Two-dimensional (2D) nanomaterials with versatile properties have been widely applied in the field of biomedicine. Despite various studies having reviewed the development of biomedical 2D nanomaterials, there is a lack of a study that objectively summarizes and analyzes the research trend of this important field. Here, we employ a series of bibliometric methods to identify the development of the 2D nanomaterial-related biomedical field during the past 10 years from a holistic point of view. First, the annual publication/citation growth, country/institute/author distribution, referenced sources, and research hotspots are identified. Thereafter, based on the objectively identified research hotspots, the contributions of 2D nanomaterials to the various biomedical subfields, including those of biosensing, imaging/therapy, antibacterial treatment, and tissue engineering are carefully explored, by considering the intrinsic properties of the nanomaterials. Finally, prospects and challenges have been discussed to shed light on the future development and clinical translation of 2D nanomaterials. This review provides a novel perspective to identify and further promote the development of 2D nanomaterials in biomedical research.
Collapse
Affiliation(s)
- Shuang Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Yin W, Wang Q, Zhang J, Chen X, Wang Y, Jiang Z, Wang M, Pan G. A dynamic nano-coordination protein hydrogel for photothermal treatment and repair of infected skin injury. J Mater Chem B 2022; 10:8181-8185. [PMID: 35819200 DOI: 10.1039/d2tb01146h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, a dynamic photothermal hydrogel based on copper disulfide nanoparticles and thiolated gelatin was reported. The resultant hydrogel enabled rapid photothermal sterilization and the sterilization rate could reach 99.9% after 10 minutes of near-infrared irradiation. In addition, the hydrogel exhibited typical dynamic properties with self-recovery, injectability and photothermal conversion ability, showing great potential as a highly adaptable and antibacterial wound dressing for infected tissue injuries.
Collapse
Affiliation(s)
- Weiling Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Qiang Wang
- Department of Orthopedics, People's Hospital of Yixing City, the Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, P. R. China.
| | - Jinyi Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Yunlong Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Zhenhuan Jiang
- Department of Orthopedics, People's Hospital of Yixing City, the Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, P. R. China.
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
19
|
Bahadoran A, Baghbadorani NB, De Lile JR, Masudy-Panah S, Sadeghi B, Li J, Ramakrishna S, Liu Q, Janani BJ, Fakhri A. Ag doped Sn 3O 4 nanostructure and immobilized on hyperbranched polypyrrole for visible light sensitized photocatalytic, antibacterial agent and microbial detection process. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112393. [PMID: 35144054 DOI: 10.1016/j.jphotobiol.2022.112393] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022]
Abstract
Ag doped Sn3O4 Nanostructure and immobilized on hyperbranched polypyrrole is investigated in this project. The product was synthesized by the hydrothermal synthesis method. The surface and structural characteristics of the product was studied by different instrumental analysis. The fabricated nanocomposites was utilized as a nano photocatalyst in the removal of methylene blue dye. The crystallography results depicts the triclinic phase of Sn3O4 with the crystallite size 36.3 nm. The band gap of the Ag-Sn3O4/hyperbranched polypyrrole was found 1.50 eV from kubelka-munk measurements. The specific surface area was increased in the presence of the hyperbranched polypyrrole as compared to Ag-Sn3O4 samples. The photo-catalytic activity of composites was found 100.0% degradation of CR in 30 min under visible light irradiation. The catalytic kinetic was followed from the first kinetic model. Moreover, the Ag/Sn3O4/hyperbranched polypyrrole was applied as a bactericidal agent against Streptococcus pneumoniae, and Pseudomonas aeruginosa bacteria. Determination of Streptococcus pyogenes as a pathogenic bacteria was investigated by using aptamer/Ag/Sn3O4/hyperbranched polypyrrole in peroxidase activity. The detection limit of S. pyogenes was 71.0 CFU/mL by using the nano-aptamer.
Collapse
Affiliation(s)
- Ashkan Bahadoran
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Jeffrey Roshan De Lile
- Department of physical engineering, Polytechnique Montreal, Case postal 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Saeid Masudy-Panah
- Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore
| | - Behzad Sadeghi
- Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 84511 Bratislava, Slovak Republic
| | - Jinghan Li
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Seeram Ramakrishna
- Faculty of Mechanical Engineering, National University of Singapore, 117574, Singapore
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | - Ali Fakhri
- Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran
| |
Collapse
|
20
|
He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. EXPLORATION (BEIJING, CHINA) 2022; 2:20210093. [PMID: 37324582 PMCID: PMC10191035 DOI: 10.1002/exp.20210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) provides not only physical support for the tissue structural integrity, but also dynamic biochemical cues capable of regulating diverse cell behaviors and functions. Biomaterial surfaces with dynamic ligand presentation are capable of mimicking the dynamic biochemical cues of ECM, showing ECM-like functions to modulate cell behaviors. This review paper described an overview of present dynamic biomaterial interfaces by focusing on currently developed molecular strategies for dynamic ligand presentation. The paradigmatic examples for each strategy were separately discussed. In addition, the regulation of some typical cell behaviors on these dynamic biointerfaces including cell adhesion, macrophage polarization, and stem cell differentiation, and their potential applications in pathogenic cell isolation, single cell analysis, and tissue engineering are highlighted. We hope it would not only clarify a clear background of this field, but also inspire to exploit novel molecular strategies and more applications to match the increasing demand of manipulating complex cellular processes in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Qinghe Wang
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Xiaohua Tian
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
21
|
Gopal A, Yan L, Kashif S, Munshi T, Roy VAL, Voelcker NH, Chen X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv Healthc Mater 2022; 11:e2101546. [PMID: 34850601 DOI: 10.1002/adhm.202101546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/20/2021] [Indexed: 02/06/2023]
Abstract
With an exponential rise in antimicrobial resistance and stagnant antibiotic development pipeline, there is, more than ever, a crucial need to optimize current infection therapy approaches. One of the most important stages in this process requires rapid and effective identification of pathogenic bacteria responsible for diseases. Current gold standard techniques of bacterial detection include culture methods, polymerase chain reactions, and immunoassays. However, their use is fraught with downsides with high turnaround time and low accuracy being the most prominent. This imposes great limitations on their eventual application as point-of-care devices. Over time, innovative detection techniques have been proposed and developed to curb these drawbacks. In this review, a systematic summary of a range of biosensing platforms is provided with a strong focus on technologies conferring high detection sensitivity and specificity. A thorough analysis is performed and the benefits and drawbacks of each type of biosensor are highlighted, the factors influencing their potential as point-of-care devices are discussed, and the authors' insights for their translation from proof-of-concept systems into commercial medical devices are provided.
Collapse
Affiliation(s)
- Ashna Gopal
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Li Yan
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Saima Kashif
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Tasnim Munshi
- School of Chemistry University of Lincoln, Brayford Pool Lincoln Lincolnshire LN6 7TS UK
| | | | - Nicolas H. Voelcker
- Drug Delivery Disposition and Dynamics Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton Victoria 3168 Australia
| | - Xianfeng Chen
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| |
Collapse
|
22
|
Andryukov BG, Lyapun IN, Matosova EV, Somova LM. Biosensor Technologies in Medicine: from Detection of Biochemical Markers to Research into Molecular Targets (Review). Sovrem Tekhnologii Med 2021; 12:70-83. [PMID: 34796021 PMCID: PMC8596237 DOI: 10.17691/stm2020.12.6.09] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 01/21/2023] Open
Abstract
Infections are a major cause of premature death. Fast and accurate laboratory diagnostics of infectious diseases is a key condition for the timely initiation and success of treatment. Potentially, it can reduce morbidity, as well as prevent the outbreak and spread of dangerous epidemics. The traditional methods of laboratory diagnostics of infectious diseases are quite time- and labour-consuming, require expensive equipment and trained personnel, which is crucial within limited resources. The fast biosensor-based methods that combine the diagnostic capabilities of biomedicine with modern technological advances in microelectronics, optoelectronics, and nanotechnology make an alternative. The modern achievements in the development of label-free biosensors make them promising diagnostic tools that combine rapid detection of specific molecular markers, simplicity, ease-of-use, efficiency, accuracy, and cost-effectiveness with the tendency to the development of portable platforms. These qualities exceed the generally accepted standards of microbiological and immunological diagnostics and open up broad prospects for using these analytical systems in clinical practice directly at the site of medical care provision (point-of-care, POC concept). A wide variety of modern biosensor designs are based on the use of diverse formats of analytical and technological strategies, identification of various regulatory and functional molecular markers associated with infectious pathogens. The solution to the existing problems in biosensing will open up great prospects for these rapidly developing diagnostic biotechnologies.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - E V Matosova
- Junior Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - L M Somova
- Professor, Chief Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
23
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
24
|
Huang Y, Su Z, Li W, Ren J. Recent Progresses on Biosensors for Escherichia coli Detection. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02129-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
van Belkum A, Almeida C, Bardiaux B, Barrass SV, Butcher SJ, Çaykara T, Chowdhury S, Datar R, Eastwood I, Goldman A, Goyal M, Happonen L, Izadi-Pruneyre N, Jacobsen T, Johnson PH, Kempf VAJ, Kiessling A, Bueno JL, Malik A, Malmström J, Meuskens I, Milner PA, Nilges M, Pamme N, Peyman SA, Rodrigues LR, Rodriguez-Mateos P, Sande MG, Silva CJ, Stasiak AC, Stehle T, Thibau A, Vaca DJ, Linke D. Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics (Basel) 2021; 11:diagnostics11071259. [PMID: 34359341 PMCID: PMC8305138 DOI: 10.3390/diagnostics11071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.
Collapse
Affiliation(s)
- Alex van Belkum
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
- Correspondence: (A.v.B.); (D.L.)
| | | | - Benjamin Bardiaux
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Sarah V. Barrass
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Sarah J. Butcher
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Tuğçe Çaykara
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Rucha Datar
- BioMérieux, Microbiology R&D, 38390 La Balme Les Grottes, France;
| | | | - Adrian Goldman
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Manisha Goyal
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Theis Jacobsen
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Pirjo H. Johnson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Andreas Kiessling
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Juan Leva Bueno
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Anchal Malik
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Paul A. Milner
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Michael Nilges
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Nicole Pamme
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Sally A. Peyman
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Pablo Rodriguez-Mateos
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Maria G. Sande
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Carla Joana Silva
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Aleksandra Cecylia Stasiak
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
- Correspondence: (A.v.B.); (D.L.)
| |
Collapse
|
26
|
Chen X, Guo Q, Chen W, Xie W, Wang Y, Wang M, You T, Pan G. Biomimetic design of photonic materials for biomedical applications. Acta Biomater 2021; 121:143-179. [PMID: 33301982 DOI: 10.1016/j.actbio.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Photonic crystal (PC) materials with bio-inspired structure colors have drawn increasing attention as their potentials have been rapidly progressed in the field of biomedicine. After elaborate integration with smart materials or preparations through advanced techniques, PC materials have shown significant advantages in biosensing, bio-probing, bio-screening, tissue engineering, and so forth. In this review, we first introduced the fundamentals of PC materials as well as their fabrication strategies with different dimensional outputs. Based on these diversified PC materials, their biomedical potentials as biosensing elements, cell carriers, drug delivery systems, screening methods, cell scaffolds for tissue engineering, cell imaging probes, as well as the monitoring means for biological processes were then highlighted. In addition to these, we finally listed and discussed some emerging applications of PCs integrated with functional materials and newly developed material engineering technologies. In short, this review will provide a panoramic view of PCs-based biomedicines, and moreover, the progressive discussions from fundamentals to advanced applications in this review may also encourage researchers to innovate PC materials or devices for broader biomedical applications.
Collapse
|
27
|
Mohamed HI, Abd-Elsalam KA, Tmam AM, Sofy MR. Silver-based nanomaterials for plant diseases management: Today and future perspectives. SILVER NANOMATERIALS FOR AGRI-FOOD APPLICATIONS 2021:495-526. [DOI: 10.1016/b978-0-12-823528-7.00031-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
28
|
Zhou X, Hu Z, Yang D, Xie S, Jiang Z, Niessner R, Haisch C, Zhou H, Sun P. Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001739. [PMID: 33304748 PMCID: PMC7710000 DOI: 10.1002/advs.202001739] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Indexed: 05/13/2023]
Abstract
The rapid, highly sensitive, and accurate detection of bacteria is the focus of various fields, especially food safety and public health. Surface-enhanced Raman spectroscopy (SERS), with the advantages of being fast, sensitive, and nondestructive, can be used to directly obtain molecular fingerprint information, as well as for the on-line qualitative analysis of multicomponent samples. It has therefore become an effective technique for bacterial detection. Within this progress report, advances in the detection of bacteria using SERS and other compatible techniques are discussed in order to summarize its development in recent years. First, the enhancement principle and mechanism of SERS technology are briefly overviewed. The second part is devoted to a label-free strategy for the detection of bacterial cells and bacterial metabolites. In this section, important considerations that must be made to improve bacterial SERS signals are discussed. Then, the label-based SERS strategy involves the design strategy of SERS tags, the immunomagnetic separation of SERS tags, and the capture of bacteria from solution and dye-labeled SERS primers. In the third part, several novel SERS compatible technologies and applications in clinical and food safety are introduced. In the final part, the results achieved are summarized and future perspectives are proposed.
Collapse
Affiliation(s)
- Xia Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| | - Ziwei Hu
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological TechnologyMedical School of Ningbo UniversityNingboZhejiang315211China
| | - Shouxia Xie
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Zhengjin Jiang
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Christoph Haisch
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Pinghua Sun
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| |
Collapse
|
29
|
Lee T, Lim J, Park K, Lim EK, Lee JJ. Peptidoglycan-Binding Protein Metamaterials Mediated Enhanced and Selective Capturing of Gram-Positive Bacteria and Their Specific, Ultra-Sensitive, and Reproducible Detection via Surface-Enhanced Raman Scattering. ACS Sens 2020; 5:3099-3108. [PMID: 32786378 DOI: 10.1021/acssensors.0c01139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological metamaterials with a specific size and spacing are necessary for developing highly sensitive and selective sensing systems to detect hazardous bacteria in complex solutions. Herein, the construction of peptidoglycan-binding protein (PGBP)-based metamaterials to selectively capture Gram-positive cells with high efficacy is reported. Nanoimprint lithography was used to generate a nanohole pattern as a template, the inside of which was modified with nickel(II)-nitrilotriacetic acid (Ni-NTA). Then, PGBP metamaterials were fabricated by immobilizing PGBP via chelation between Ni-NTA and six histidines on PGBP. Compared to the flat and spread PGBP-covered bare substrates, the PGBP-based metamaterials enabled selective capturing of Gram-positive bacteria with high efficacy, owing to enhanced interactions between the metamaterials and bacterial surface not shown in bulk materials. Thereafter, the specific strain and quantitative information of the captured bacteria was obtained by surface-enhanced Raman scattering mapping analysis in the 1 to 1 × 106 cfu/mL range within 30 min. It should be noted that no additional signal amplification process was required for lowly abundant bacteria, even at the single-bacterium level. The PGBP-based metamaterials could be regenerated multiple times with preserved sensing efficiency. Finally, this assay can detect specific Gram-positive bacteria, such as Staphylococcus aureus, in human plasma.
Collapse
Affiliation(s)
- Taeksu Lee
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| | - Jaewoo Lim
- Bionano Technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kyoungsook Park
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of General Education, Daejeon Health Institute of Technology, 21 Chungjeong-ro, Dong-gu, Daejeon 34504, Korea
| | - Eun-Kyung Lim
- Bionano Technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jae-Jong Lee
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| |
Collapse
|
30
|
Han D, Yan Y, Bian X, Wang J, Zhao M, Duan X, Kong L, Cheng W, Ding S. A novel electrochemical biosensor based on peptidoglycan and platinum-nickel-copper nano-cube for rapid detection of Gram-positive bacteria. Mikrochim Acta 2020; 187:607. [PMID: 33052497 DOI: 10.1007/s00604-020-04581-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
A novel non-enzyme electrochemical biosensor for the rapid detection of Gram-positive bacteria has been constructed that relys on a stable and efficient combination between the peptidoglycan layer and platinum-nickel-copper nanocubes (Pt-Ni-Cu NCs). Briefly, bacteria were first captured by a specific antibody. Then, the electrochemical signal materials (Pt-Ni-Cu NCs) were bound to the bacteria peptidoglycan layer using specific structural and surface features. The rapid and sensitive bacterial detection was then achieved using intrinsic electrochemical characteristics and superoxidase-like activity of the Pt-Ni-Cu NCs. Moreover, the nature of peptidoglycan covering the whole bacteria provided the premise for signal amplification. Under optimal conditions, the electrochemical signal variation was proportional to the concentration of bacteria ranging from 1.5 × 102 to 1.5 × 108 CFU/mL with a detection limit of 42 CFU/mL using a working potential of - 0.4 V. This electrochemical biosensor has been successfully applied to detect bacteria concentrations in urine samples, and the recoveries range from 90.4 to 107%. The proposed biosensor could be applied for broad-spectrum detection of Gram-positive bacteria since most Gram-positive bacteria possess a thick peptidoglycan layer. The developed electrochemical biosensing strategy might be used as a potential tool for clinical pathogenic bacteria detection and point-of-care testing (POCT).
Collapse
Affiliation(s)
- Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianmin Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Liangsheng Kong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
31
|
Alafeef M, Moitra P, Pan D. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens Bioelectron 2020; 165:112276. [PMID: 32729465 DOI: 10.1016/j.bios.2020.112276] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023]
Abstract
Infectious diseases caused by pathogenic bacteria, especially antibiotic-resistant bacteria, are one of the biggest threats to global health. To date, bacterial contamination is detected using conventional culturing techniques, which are highly dependent on expert users, limited by the processing time and on-site availability. Hence, real-time and continuous monitoring of pathogen levels is required to obtain valuable information that could assist health agencies in guiding prevention and containment of pathogen-related outbreaks. Nanotechnology-based smart sensors are opening new avenues for early and rapid detection of such pathogens at the patient's point-of-care. Nanomaterials can play an essential role in bacterial sensing owing to their unique optical, magnetic, and electrical properties. Carbon nanoparticles, metallic nanoparticles, metal oxide nanoparticles, and various types of nanocomposites are examples of smart nanomaterials that have drawn intense attention in the field of microbial detection. These approaches, together with the advent of modern technologies and coupled with machine learning and wireless communication, represent the future trend in the diagnosis of infectious diseases. This review provides an overview of the recent advancements in the successful harnessing of different nanoparticles for bacterial detection. In the beginning, we have introduced the fundamental concepts and mechanisms behind the design and strategies of the nanoparticles-based diagnostic platform. Representative research efforts are highlighted for in vitro and in vivo detection of bacteria. A comprehensive discussion is then presented to cover the most commonly adopted techniques for bacterial identification, including some seminal studies to detect bacteria at the single-cell level. Finally, we discuss the current challenges and a prospective outlook on the field, together with the recommended solutions.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Parikshit Moitra
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Dipanjan Pan
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hiltop Circle, Baltimore, MD, 21250, United States.
| |
Collapse
|
32
|
Yang E, Liao W, Lin Q, An H, Li D, Wei F, Duan Y. Quantitative Analysis of Salmonella typhimurium Based on Elemental-Tags Laser-Induced Breakdown Spectroscopy. Anal Chem 2020; 92:8090-8096. [PMID: 32431153 DOI: 10.1021/acs.analchem.9b05608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current rapid bacterial detection methods are dedicated to the classification and identification of bacteria. However, there is still a lack of a method for specific quantitative analysis of certain bacteria. In this work, a method based on elemental-tags laser-induced breakdown spectroscopy (ETLIBS) was developed for the rapid and specific quantitative analysis of Salmonella typhimurium (S. ty). Elemental tags were first synthesized by assembling copper nanoparticles (CuNPs) with poly(thymine) (poly-T) template that linked with the aptamer sequence. Under the specific recognition of the aptamer, S. ty can be fully combined with the elemental tags within 30 min to achieve labeling. Afterward, the silicon nanowires (SiNWs) array modified with Au@Ag nanoparticles (SiNWs-Au@Ag) was employed to capture S. ty in 30 min. Attributed to the rapid analysis superiority of ETLIBS mapping, 100 spectra of SiNWs-Au@Ag/S. ty/CuNPs can be obtained in 5 min. It was found that the peak area of the Cu(I) atomic emission line at 324.75 nm fitted by the Voigt profile was linearly related to the bacterial concentration in the range of 102-106 CFU/mL(R2 = 0.978). Furthermore, ETLIBS mapping achieved a low limit of detection (LOD) of 61 CFU/mL and showed good selectivity to S. ty compared with other bacteria. Besides, the method exhibited preeminent detection performance in spiked samples with the recoveries of 87-113%. With the advantages of rapidity, high efficiency, and specificity, the proposed method is expected to be a powerful tool for bacterial detection.
Collapse
Affiliation(s)
- Enlai Yang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Wenlong Liao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, People's Republic of China
| | - Qingyu Lin
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Huifang An
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Dan Li
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|
33
|
Siavash Moakhar R, AbdelFatah T, Sanati A, Jalali M, Flynn SE, Mahshid SS, Mahshid S. A Nanostructured Gold/Graphene Microfluidic Device for Direct and Plasmonic-Assisted Impedimetric Detection of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23298-23310. [PMID: 32302093 DOI: 10.1021/acsami.0c02654] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical 3D gold nano-/microislands (NMIs) are favorably structured for direct and probe-free capture of bacteria in optical and electrochemical sensors. Moreover, their unique plasmonic properties make them a suitable candidate for plasmonic-assisted electrochemical sensors, yet the charge transfer needs to be improved. In the present study, we propose a novel plasmonic-assisted electrochemical impedimetric detection platform based on hybrid structures of 3D gold NMIs and graphene (Gr) nanosheets for probe-free capture and label-free detection of bacteria. The inclusion of Gr nanosheets significantly improves the charge transfer, addressing the central issue of using 3D gold NMIs. Notably, the 3D gold NMIs/Gr detection platform successfully distinguishes between various types of bacteria including Escherichia coli (E. coli) K12, Pseudomonas putida (P. putida), and Staphylococcus epidermidis (S. epidermidis) when electrochemical impedance spectroscopy is applied under visible light. We show that distinguishable and label-free impedimetric detection is due to dissimilar electron charge transfer caused by various sizes, morphologies, and compositions of the cells. In addition, the finite-difference time-domain (FDTD) simulation of the electric field indicates the intensity of charge distribution at the edge of the NMI structures. Furthermore, the wettability studies demonstrated that contact angle is a characteristic feature of each type of captured bacteria on the 3D gold NMIs, which strongly depends on the shape, morphology, and size of the cells. Ultimately, exposing the platform to various dilutions of the three bacteria strains revealed the ability to detect dilutions as low as ∼20 CFU/mL in a wide linear range of detection of 2 × 101-105, 2 × 101-104, and 1 × 102-1 × 105 CFU/mL for E. coli, P. putida, and S. epidermidis, respectively. The proposed hybrid structure of 3D gold NMIs and Gr, combined by novel plasmonic and conventional impedance spectroscopy techniques, opens interesting avenues in ultrasensitive label-free detection of bacteria with low cost and high stability.
Collapse
Affiliation(s)
| | - Tamer AbdelFatah
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Alireza Sanati
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Sahar Sadat Mahshid
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
34
|
You SM, Luo K, Jung JY, Jeong KB, Lee ES, Oh MH, Kim YR. Gold Nanoparticle-Coated Starch Magnetic Beads for the Separation, Concentration, and SERS-Based Detection of E. coli O157:H7. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18292-18300. [PMID: 32242418 DOI: 10.1021/acsami.0c00418] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Here, we report gold nanoparticle-coated starch magnetic beads (AuNP@SMBs) that were prepared by in situ synthesis of AuNPs on the surface of SMBs. Upon functionalization of the surface with a specific antibody, the immuno-AuNP@SMBs were found to be effective in separating and concentrating the target pathogenic bacteria, Escherichia coli O157:H7, from an aqueous sample as well as providing a hotspot for surface-enhanced Raman scattering (SERS)-based detection. We employed a bifunctional linker protein, 4× gold-binding peptide-tagged Streptococcal protein G (4GS), to immobilize antibodies on AuNP@SMBs and AuNPs in an oriented form. The linker protein also served as a Raman reporter, exhibiting a strong and unique fingerprint signal during the SERS measurement. The amplitude of the SERS signal was shown to have a good correlation with the concentration of target bacteria ranging from 100 to 105 CFU/mL. The detection limit was determined to be as low as a single cell, and the background signals derived from nontarget bacteria were negligible due to the excellent specificity and colloidal stability of the immuno-AuNP@SMBs and SERS tags. The highly sensitive nature of the SERS-based detection system will provide a promising means to detect the pathogenic microorganisms in food or clinical specimen.
Collapse
Affiliation(s)
- Sang-Mook You
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Ke Luo
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Jong-Yun Jung
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Ki-Baek Jeong
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Eun-Seon Lee
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Young-Rok Kim
- Graduate School of Biotechnology & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
35
|
Wang H, Zhao X, Yang H, Cao L, Deng W, Tan Y, Xie Q. Three-dimensional macroporous gold electrodes superior to conventional gold disk electrodes in the construction of an electrochemical immunobiosensor for Staphylococcus aureus detection. Analyst 2020; 145:2988-2994. [PMID: 32129334 DOI: 10.1039/c9an02392e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, a three-dimensional macroporous gold (3DMG) electrode is demonstrated to be a better choice than a conventional gold disk electrode in the construction of an electrochemical immunobiosensor for Staphylococcus aureus (S. aureus) detection. The 3DMG electrode was prepared on a gold disk electrode by one-step electrodeposition using hydrogen bubbles as dynamic templates. The 3DMG electrode has a high electrochemically active surface area with pore sizes ranging from 20 to 50 μm, and these unique features are conducive to the immobilization of primary antibodies and the capture of S. aureus. Secondary antibodies (Ab2) and alkaline phosphatase (ALP) were immobilized on mesoporous silica nanospheres (MSNs), and the resulting ALP-MSNs-Ab2 composites were utilized as signal tags to construct a sandwich-type electrochemical immunobiosensor. S. aureus was measured based on alkaline phosphatase-catalyzed silver deposition and differential pulse voltammetric detection. The linear range is from 5 to 109 CFU mL-1, and the detection limit is 2 CFU mL-1 for S. aureus detection. Due to the signal amplification of the 3DMG electrode, the sensitivity of the immunobiosensor constructed on the 3DMG electrode is 9 times that of an immunobiosensor constructed on a gold disc electrode. The proposed biosensor was successfully applied for detecting S. aureus in milk samples.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Xiao Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Hui Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Lin Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
36
|
Alzate D, Cajigas S, Robledo S, Muskus C, Orozco J. Genosensors for differential detection of Zika virus. Talanta 2020; 210:120648. [DOI: 10.1016/j.talanta.2019.120648] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/26/2023]
|
37
|
Gao X, Wu H, Hao Z, Ji X, Lin X, Wang S, Liu Y. A multifunctional plasmonic chip for bacteria capture, imaging, detection, and in situ elimination for wound therapy. NANOSCALE 2020; 12:6489-6497. [PMID: 32154542 DOI: 10.1039/d0nr00638f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A multifunctional plasmonic gold chip has been constructed for early diagnosis and highly effective killing of bacteria, which is critical for human health. The chip features high bacterial capture efficiency, plasmon-enhanced fluorescence (PEF) and surface-enhanced Raman scattering (SERS) and can act as a highly sensitive sensor for dual-mode bacteria imaging and detection (down to 102 CFU mL-1) with good reliability and accuracy. The developed assay can distinguish Gram-positive S. aureus bacteria from Gram-negative E. coli bacteria, providing valuable information for therapy. Importantly, the chip presents excellent photothermal antibacterial activity (98%) and can inactivate both Gram-positive and Gram-negative bacteria in situ. Furthermore, the chip was used to effectively promote the wound healing process in bacteria infected mice in vivo, showing great potential for antibacterial applications.
Collapse
Affiliation(s)
- Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiangyi Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
38
|
Cairós C, González-Sálamo J, Hernández-Borges J. The current binomial Sonochemistry-Analytical Chemistry. J Chromatogr A 2020; 1614:460511. [DOI: 10.1016/j.chroma.2019.460511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
|
39
|
Label-Free Biosensors for Laboratory-Based Diagnostics of Infections: Current Achievements and New Trends. BIOSENSORS-BASEL 2020; 10:bios10020011. [PMID: 32059538 PMCID: PMC7169461 DOI: 10.3390/bios10020011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/30/2020] [Accepted: 02/08/2020] [Indexed: 01/16/2023]
Abstract
Infections pose a serious global public health problem and are a major cause of premature mortality worldwide. One of the most challenging objectives faced by modern medicine is timely and accurate laboratory-based diagnostics of infectious diseases. Being a key factor of timely initiation and success of treatment, it may potentially provide reduction in incidence of a disease, as well as prevent outbreak and spread of dangerous epidemics. The traditional methods of laboratory-based diagnostics of infectious diseases are quite time- and labor-consuming, require expensive equipment and qualified personnel, which restricts their use in case of limited resources. Over the past six decades, diagnostic technologies based on lateral flow immunoassay (LFIA) have been and remain true alternatives to modern laboratory analyzers and have been successfully used to quickly detect molecular ligands in biosubstrates to diagnose many infectious diseases and septic conditions. These devices are considered as simplified formats of modern biosensors. Recent advances in the development of label-free biosensor technologies have made them promising diagnostic tools that combine rapid pathogen indication, simplicity, user-friendliness, operational efficiency, accuracy, and cost effectiveness, with a trend towards creation of portable platforms. These qualities exceed the generally accepted standards of microbiological and immunological diagnostics and open up a broad range of applications of these analytical systems in clinical practice immediately at the site of medical care (point-of-care concept, POC). A great variety of modern nanoarchitectonics of biosensors are based on the use of a broad range of analytical and constructive strategies and identification of various regulatory and functional molecular markers associated with infectious bacterial pathogens. Resolution of the existing biosensing issues will provide rapid development of diagnostic biotechnologies.
Collapse
|
40
|
Sande MG, Çaykara T, Silva CJ, Rodrigues LR. New solutions to capture and enrich bacteria from complex samples. Med Microbiol Immunol 2020; 209:335-341. [PMID: 32025887 PMCID: PMC7248023 DOI: 10.1007/s00430-020-00659-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Current solutions to diagnose bacterial infections though reliable are often time-consuming, laborious and need a specific laboratory setting. There is an unmet need for bedside accurate diagnosis of infectious diseases with a short turnaround time. Moreover, low-cost diagnostics will greatly benefit regions with poor resources. Immunoassays and molecular techniques have been used to develop highly sensitive diagnosis solutions but retaining many of the abovementioned limitations. The detection of bacteria in a biological sample can be enhanced by a previous step of capture and enrichment. This will ease the following process enabling a more sensitive detection and increasing the possibility of a conclusive identification in the downstream diagnosis. This review explores the latest developments regarding the initial steps of capture and enrichment of bacteria from complex samples with the ultimate goal of designing low cost and reliable diagnostics for bacterial infections. Some solutions use specific ligands tethered to magnetic constructs for separation under magnetic fields, microfluidic platforms and engineered nano-patterned surfaces to trap bacteria. Bulk acoustics, advection and nano-filters comprise some of the most innovative solutions for bacteria enrichment.
Collapse
Affiliation(s)
- Maria G Sande
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tugçe Çaykara
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CENTI-Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 278, 4760-034, Vila Nova de Famalicão, Portugal
| | - Carla Joana Silva
- CENTI-Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 278, 4760-034, Vila Nova de Famalicão, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
41
|
Yang C, Yan Z, Lian Y, Wang J, Zhang K. Graphene oxide coated shell-core structured chitosan/PLLA nanofibrous scaffolds for wound dressing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:622-641. [PMID: 31852372 DOI: 10.1080/09205063.2019.1706149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Graphite oxide (GO) and chitosan (CS) nanofibers have aroused intense interest as wound dressing due to their physicochemical, antimicrobial properties and nanotopography. In this study, GO nanosheets were coated on shell (chitosan, CS)-core (L-polylactic acid, PLLA) structured nanofibrous scaffolds to create a synergistic microenvironment for wound healing. Through scanning electron microscopy (SEM) and atomic force microscopy (AFM) tests, results showed that the surface of GO-coated CS/PLLA nanofibers presented corrugated wrinkles and rougher than that of CS/PLLA nanofibers, and the GO nanosheets did not destroy the structure of nanofibers. X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) demonstrated that GO nanosheets were successfully coated on CS/PLLA nanofibrous scaffolds. Furthermore, the coatings of GO nanosheets significantly improved the hydrophilicity of CS/PLLA nanofibrous scaffolds. GO-coated CS/PLLA nanofibrous scaffolds revealed more excellent antimicrobial activity to Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) than that of CS/PLLA nanofibrous scaffolds, meanwhile, they promoted the proliferation of pig iliac endothelial cells (PIECs). Rats wounds covered by GO-coated CS/PLLA nanofibrous scaffolds were healed better than other groups on pathological section. This type of nanofibrous scaffolds with GO nanosheets would possess an excellent potential in wound healing process.
Collapse
Affiliation(s)
- Chengwei Yang
- Department of Spinal Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Zhiyong Yan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Yuan Lian
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Jiayan Wang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Kuihua Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
42
|
FRET-based fluorescent nanoprobe platform for sorting of active microorganisms by functional properties. Biosens Bioelectron 2019; 148:111832. [PMID: 31706173 DOI: 10.1016/j.bios.2019.111832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
Fluorescence-activated cell sorting (FACS) has rarely been applied to screening of microorganisms because of poor detection resolution, which is compromised by poor stability, toxicity, or interference from background fluorescence of the fluorescence sensors used. Here, a fluorescence-based rapid high-throughput cell sorting method was first developed using a fluorescence resonance energy transfer (FRET) fluorescent nanoprobe NP-RA, which was constructed by coating a silica nanoparticle with Rhodamine B and methyl-red (an azo dye). Rhodamine B (inner layer) is the FRET donor and methyl-red (outer layer) is the acceptor. This ready-to-use NP-RA is non-fluorescent, but fluoresces once the outer layer is degraded by microorganisms. In our experiment, NP-RA was ultrasensitive to model strain Shewanella decolorationis S12, showing a broad detection range from 8.0 cfu/mL to 8.7 × 108 cfu/mL under confocal laser scanning microscopy, and from 1.1 × 107 to 9.36 × 108 cfu/mL under a fluorometer. In addition, NP-RA bioimaging can clearly identify other azo-respiring cells in the microbial community, including Bosea thiooxidans DSM 9653 and Lysinibacillus pakistanensis NCCP-54. Furthermore, the fluorescent probe NP-RA is compatible with downstream FACS so that azo-respiring cells can be rapidly sorted out directly from an artificial microbial community. To our knowledge, no fluorescent nanoprobe has yet been designed for tracking and sorting azo-respiration functional microorganisms.
Collapse
|
43
|
Singh S, Moudgil A, Mishra N, Das S, Mishra P. Vancomycin functionalized WO3 thin film-based impedance sensor for efficient capture and highly selective detection of Gram-positive bacteria. Biosens Bioelectron 2019; 136:23-30. [DOI: 10.1016/j.bios.2019.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
|
44
|
Sun J, Huang J, Li Y, Lv J, Ding X. A simple and rapid colorimetric bacteria detection method based on bacterial inhibition of glucose oxidase-catalyzed reaction. Talanta 2019; 197:304-309. [DOI: 10.1016/j.talanta.2019.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
|
45
|
Liu W, Zhang M, Bhandari B. Nanotechnology – A shelf life extension strategy for fruits and vegetables. Crit Rev Food Sci Nutr 2019; 60:1706-1721. [DOI: 10.1080/10408398.2019.1589415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Liao W, Lin Q, Xu Y, Yang E, Duan Y. Preparation of Au@Ag core-shell nanoparticle decorated silicon nanowires for bacterial capture and sensing combined with laser induced breakdown spectroscopy and surface-enhanced Raman spectroscopy. NANOSCALE 2019; 11:5346-5354. [PMID: 30848272 DOI: 10.1039/c9nr00019d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Three-dimensional nano-biointerfaces, emerging as significant cell-guiding platforms, have attracted great attention. Nevertheless, complicated chemical modifications and instability of bio-ligands limit their widespread application. In this study, a novel biointerface, based on silicon nanowires (SiNWs) array, was prepared for bacterial capture and sensing. Vertically aligned SiNWs were fabricated via metal assisted chemical etching and decorated with uniform Au@Ag core-shell nanoparticles (Au@Ag NPs). These deposited Au@Ag NPs formed multi-scale topographic structures with nanowires, which provided effective attachment sites for bacterial adhesins. In addition, the Au cores of Au@Ag NPs enhanced the activity of the surface silver atoms and promoted the binding of Au@Ag NPs to bacteria. Thus, the Au@Ag NPs decorated SiNWs (SiNWs-Au@Ag) substrate exhibited high capture capacity for bacteria in drinking water (8.6 and 5.5 × 106 cells per cm2 for E. coli and S. aureus in 40 min, respectively) via physical and chemical effects. Bacteria in drinking water can be sensitively detected by using a combination of laser induced breakdown spectroscopy (LIBS) and label based surface-enhanced Raman spectroscopy (SERS) techniques. Due to the antibacterial activity of Au@Ag NPs and the physical stress exerted on SiNWs, the prepared biointerface also showed high antibacterial rates towards both Gram-positive and Gram-negative bacteria strains. With these excellent properties, the flexible sensing platform might open a new avenue for the prevention and control of microbial hazards in water.
Collapse
Affiliation(s)
- Wenlong Liao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | | | | | | | | |
Collapse
|
47
|
Feng Y, Chen Q, Yin Q, Pan G, Tu Z, Liu L. Reduced Graphene Oxide Functionalized with Gold Nanostar Nanocomposites for Synergistically Killing Bacteria through Intrinsic Antimicrobial Activity and Photothermal Ablation. ACS APPLIED BIO MATERIALS 2019; 2:747-756. [DOI: 10.1021/acsabm.8b00608] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingyu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qing Yin
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhigang Tu
- Institute of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
48
|
Wang X, Chen X, Peng Y, Pan J. Silver-modified porous polystyrene sulfonate derived from Pickering high internal phase emulsions for capturing lithium-ion. RSC Adv 2019; 9:7228-7237. [PMID: 35519969 PMCID: PMC9061111 DOI: 10.1039/c8ra09740b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/23/2019] [Indexed: 11/21/2022] Open
Abstract
Adsorption separation based on porous polystyrene sulfonate is an important method of extracting lithium ion (Li+). In this work, silver-modified porous polystyrene sulfonate (PHIPEs-SS-Ag) derived from Pickering high internal phase emulsions was fabricated for the selective binding of Li+. PHIPEs-SS-Ag possessed porous polymer matrix, sufficient sulfonic acid functional groups, and uniformly immobilized silver particles, which were beneficial for improving mass transfer, binding amount and antifouling performance. In batch mode experiments, the adsorption capacity reached a maximum value (i.e. 14.09 mg g−1) under alkaline conditions, and the adsorption mechanism between PHIPEs-SS-Ag and Li+ was electrostatic attraction. PHIPEs-SS-Ag exhibited fast binding kinetics at 25 °C (i.e. 300 min), and the maximum monolayer adsorption amount from the Langmuir model for Li+ are 59.85 mg g−1, 35.06 mg g−1, and 27.09 mg g−1 at 15 °C, 25 °C, and 35 °C, respectively. Moreover, PHIPEs-SS-Ag displayed excellent selectivity for Li+ in the presence of K+, Mg2+, and Na+, and maintained 80.71% of the initial adsorption capacity after seven sequential cycles of adsorption–regeneration. Therefore, this work opened up a universal route for the development of composite adsorbents for the specific separation of Li+. Adsorption separation based on porous polystyrene sulfonate is an important method of extracting lithium ion (Li+).![]()
Collapse
Affiliation(s)
- Xiaojing Wang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Xueping Chen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yinxian Peng
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
49
|
A novel strategy for rapid detection of bacteria in water by the combination of three-dimensional surface-enhanced Raman scattering (3D SERS) and laser induced breakdown spectroscopy (LIBS). Anal Chim Acta 2018; 1043:64-71. [DOI: 10.1016/j.aca.2018.06.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
|
50
|
Yuan K, Mei Q, Guo X, Xu Y, Yang D, Sánchez BJ, Sheng B, Liu C, Hu Z, Yu G, Ma H, Gao H, Haisch C, Niessner R, Jiang Z, Jiang Z, Zhou H. Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chem Sci 2018; 9:8781-8795. [PMID: 30746114 PMCID: PMC6338054 DOI: 10.1039/c8sc04637a] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
Abstract
A SERS based biosensor has been developed for isolation, detection and killing of multiple bacterial pathogens.
In this study, a new biosensor based on a sandwich structure has been developed for the isolation and detection of multiple bacterial pathogens via magnetic separation and SERS tags. This novel assay relies on antimicrobial peptide (AMP) functionalized magnetic nanoparticles as “capturing” probes for bacteria isolation and gold coated silver decorated graphene oxide (Au@Ag-GO) nanocomposites modified with 4-mercaptophenylboronic acid (4-MPBA) as SERS tags. When different kinds of bacterial pathogens are combined with the SERS tags, the “fingerprints” of 4-MPBA show corresponding changes due to the recognition interaction between 4-MPBA and different kinds of bacterial cell wall. Compared with the label-free SERS detection of bacteria, 4-MPBA here can be used as an internal standard (IS) to correct the SERS intensities with high reproducibility, as well as a Raman signal reporter to enhance the sensitivity and amplify the differences among the bacterial “fingerprints”. Thus, three bacterial pathogens (Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa) were successfully isolated and detected, with the lowest concentration for each of the strains detected at just 101 colony forming units per mL (CFU mL–1). According to the changes in the “fingerprints” of 4-MPBA, three bacterial strains were successfully discriminated using discriminant analysis (DA). In addition, the AMP modified Fe3O4NPs feature high antibacterial activities, and can act as antibacterial agents with low cellular toxicology in the long-term storage of blood for future safe blood transfusion applications. More importantly, this novel method can be applied in the detection of bacteria from clinical patients who are infected with bacteria. In the validation analysis, 97.3% of the real blood samples (39 patients) could be classified effectively (only one patient infected with E. coli was misclassified). The multifunctional biosensor presented here allows for the simultaneous isolation, discrimination and killing of bacteria, suggesting its high potential for clinical diagnosis and safe blood transfusions.
Collapse
Affiliation(s)
- Kaisong Yuan
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ; .,Department of Analytical Chemistry , Physical Chemistry and Chemical Engineering , University of Alcala , Alcala de Henares E-28871 , Madrid , Spain
| | - Qingsong Mei
- School of Medical Engineering , Hefei University of Technology , Tunxi road 193 , Hefei 230009 , China
| | - Xinjie Guo
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Youwei Xu
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , Shanghai 201210 , China
| | - Danting Yang
- Department of Preventative Medicine , Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology , Medical School of Ningbo University , Ningbo , Zhejiang 315211 , China
| | - Beatriz Jurado Sánchez
- Department of Analytical Chemistry , Physical Chemistry and Chemical Engineering , University of Alcala , Alcala de Henares E-28871 , Madrid , Spain
| | - Bingbing Sheng
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Chusheng Liu
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Ziwei Hu
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Guangchao Yu
- The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong 510632 , China
| | - Hongming Ma
- The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong 510632 , China
| | - Hao Gao
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Christoph Haisch
- Institute of Hydrochemistry and Chair for Analytical Chemistry , Technical University of Munich , Marchioninistr. 17, D-81377 , Munich , Germany
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical Chemistry , Technical University of Munich , Marchioninistr. 17, D-81377 , Munich , Germany
| | | | - Zhengjing Jiang
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| |
Collapse
|