1
|
Liang B, Wang S, Zheng J, Li B, Cheng N, Gan N. All-in-one microfluidic immunosensing device for rapid and end-to-end determination of salivary biomarkers of cardiovascular diseases. Biosens Bioelectron 2025; 271:117077. [PMID: 39731821 DOI: 10.1016/j.bios.2024.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Routine screening for cardiovascular diseases (CVDs) through point-of-care assays for at-home or community-based testing of salivary biomarkers can significantly improve patient outcomes. However, its translatability has been hindered by a dearth of biosensing devices that streamline assay procedures for rapid biomarker quantitation. To address this challenge through end-to-end engineering, we developed an in-house, all-in-one microfluidic immunosensing device that integrates on-chip vibration-enhanced incubation, magnetic-assisted separation using immune magnetic bead probes, and colorimetric readout via absorbance measurements. This device enables probe preparation and one-pot immunoassay procedures on a reusable microfluidic chip. By engaging the vibrator with the reaction chamber, the vibration-enhanced incubation module significantly accelerates immune complex formation, drastically reducing the sample-to-answer timeline of approximately 1 h required for room temperature enzyme-linked immunosorbent assay (ELISA) to just under 15 min. We showcase the utility of the device with an on-demand assay for a biomarker panel comprising C-reactive protein (CRP), interleukin 6 (IL-6), and procalcitonin (PCT). The device achieved a linear detection range of 1.75-28 ng mL-1 for CRP and 1.56-100 ng mL-1 for IL-6 and PCT with an R2 > 0.98 for all three biomarkers. The limits of detection were 0.295, 0.400, and 0.947 ng mL-1, respectively. Results from real saliva samples were consistent with standard ELISA (R2 = 0.952). This fully integrated, modular immunosensing device opens up opportunities for household CVD screening and could be adapted for rapid, affordable multiplexed biosensing for other major chronic diseases at the point of care.
Collapse
Affiliation(s)
- Baihui Liang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Shan Wang
- Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Junmei Zheng
- Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Bin Li
- Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Ningtao Cheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
| | - Ning Gan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315200, China.
| |
Collapse
|
2
|
Khan A, Anwar M, Rehman AU, Shokouhimehr M, Reis NM, Kalhoro KA, Zhang C, Liu Z. Biorecognition-based electrochemical sensors for highly sensitive C-reactive protein detection: A review. Int J Biol Macromol 2025; 304:140829. [PMID: 39938854 DOI: 10.1016/j.ijbiomac.2025.140829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Highly sensitive C-reactive protein (hsCRP) is a widely recognized biomarker for inflammation and cardiovascular diseases and plays a critical role in early diagnosis, risk assessment, and treatment monitoring. The development of sensitive and selective techniques for hsCRP detection is of paramount importance for clinical diagnostics. Electrochemical sensors have emerged as promising alternatives to traditional methods, offering rapid, cost-effective, and portable solutions for hsCRP analysis. This review comprehensively discusses advancements in biorecognition-based electrochemical sensors for hsCRP detection, focusing on label- and label-free approaches. This review highlights the sensor principles, designs, and performance, and emphasizes their advantages as well as limitations in various target applications. Recent studies have shown the potential of both label- and label-free-based sensors to achieve low detection limits and wide linear ranges comparable to traditional methods. In addition, we discuss the mechanisms, challenges, and future directions of biorecognition-based electrochemical sensors for hsCRP detection. This innovation can potentially revolutionize the diagnosis and treatment of cardiovascular and inflammatory diseases by enhancing the detection sensitivity and specificity. Ultimately, these advancements aim to improve patient outcomes by enabling earlier diagnosis, cost-effectiveness, and more precise monitoring, contributing to more effective management of cardiovascular health globally.
Collapse
Affiliation(s)
- Adil Khan
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China
| | - Muhammad Anwar
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China
| | - Atiq Ur Rehman
- School of Physics, Central South University, Changsha 410083, China
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea; Institute of Nanosensor Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kashif Ali Kalhoro
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China; Sukkur IBA University, Sukkur 65200, Pakistan
| | - Chi Zhang
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China
| | - Zhengchun Liu
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Wang L, Li N, Zhang X, Bobrinetskiy I, Gadjanski I, Fu W. Sensing with Molecularly Imprinted Membranes on Two-Dimensional Solid-Supported Substrates. SENSORS (BASEL, SWITZERLAND) 2024; 24:5119. [PMID: 39204816 PMCID: PMC11358988 DOI: 10.3390/s24165119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Molecularly imprinted membranes (MIMs) have been a focal research interest since 1990, representing a breakthrough in the integration of target molecules into membrane structures for cutting-edge sensing applications. This paper traces the developmental history of MIMs, elucidating the diverse methodologies employed in their preparation and characterization on two-dimensional solid-supported substrates. We then explore the principles and diverse applications of MIMs, particularly in the context of emerging technologies encompassing electrochemistry, surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), and the quartz crystal microbalance (QCM). Furthermore, we shed light on the unique features of ion-sensitive field-effect transistor (ISFET) biosensors that rely on MIMs, with the notable advancements and challenges of point-of-care biochemical sensors highlighted. By providing a comprehensive overview of the latest innovations and future trajectories, this paper aims to inspire further exploration and progress in the field of MIM-driven sensing technologies.
Collapse
Affiliation(s)
- Lishuang Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Nan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Xiaoyan Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Wangyang Fu
- School of Materials Science and Engineering, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing 100084, China
| |
Collapse
|
4
|
Yuan L, Li M, Li J, Zhu TF, Dong M, Liu L. Aggregation-induced signal amplification strategy based on peptide self-assembly for ultrasensitive electrochemical detection of melanoma biomarker. Anal Chim Acta 2024; 1289:342214. [PMID: 38245208 DOI: 10.1016/j.aca.2024.342214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
The detection of melanoma circulating biomarker in liquid biopsies is current under evaluation for being potentially utilized for earlier cancer diagnosis and its metastasis. Herein, we developed a non-invasive electrochemical approach for ultrasensitive detection of the S100B, serving as a potential promising blood circulating biomarker of melanoma, based on an aggregation-induced signal amplification (AISA) strategy via in-situ peptide self-assembly. The fundamental principle of this assay is that the designed amphiphilic peptides (C16-Pep-Fc), fulfilling multiple functions, feature both a recognition region for specific binding to S100B and an aggregation (self-assembly) region for the formation of peptide nanomicelles under mild conditions. The C16 tails were encapsulated within the hydrophobic core of the aggregates, while the relatively hydrophilic recognition fragment Pep and Fc tag were exposed on the outer surface for subsequent recognition of S100B and signal output. AISA provided remarkable accumulation of electroactive Fc moieties that enabled ultrasensitive S100B detection of as low as 0.02 nM, which was 10-fold lower than un-amplified approach and better than previously reported assays. As a proof-of-concept study, further experiments also highlighted the good reproducibility and stability of AISA and demonstrated its usability when applied to simulated serum samples. Hence, this work not only presented a valuable assay tool for ultrasensitive detecting protein biomarker, but also advocated for the utilization of aggregation-induced signal amplification in electrochemical biosensing system, given its considerable potential for future practical applications.
Collapse
Affiliation(s)
- Liang Yuan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mengfei Li
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiaying Li
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, PR China
| | - Tao-Feng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, PR China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
5
|
Cheng YH, Chande C, Li Z, Haridas Menon N, Kaaliveetil S, Basuray S. Optimization of Electrolytes with Redox Reagents to Improve the Impedimetric Signal for Use with a Low-Cost Analyzer. BIOSENSORS 2023; 13:999. [PMID: 38131759 PMCID: PMC10741443 DOI: 10.3390/bios13120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The most well-known criterion for POC devices is ASSURED, and affordability, i.e., using low-cost instrumentation, is the most challenging one. This manuscript provides a pathway for transitioning ESSENCE, an impedance-based biosensor platform, from using an expensive benchtop analyzer-KeySight 4294A (~$50k)-to using a significantly portable and cheaper USB oscilloscope-Analog Discovery 2 (~$200) -with similar sensitivity (around 100 times price difference). To achieve this, we carried out a fundamental study of the interplay between an electrolyte like potassium chloride (KCl), and an electrolyte buffer like phosphate buffered saline (PBS) in the presence and absence of a redox buffer like ferro/ferricyanide system and ([Ru(bpy)3]2+). Redox molecules in the electrolyte caused a significant change in the Nyquist curve of the impedance depending on the redox molecule type. The redox species and the background electrolyte have their own RC semicircles in the Nyquist curve, whose overlap depends on the redox concentration and electrolyte ionic strength. We found that by increasing the electrolyte ionic strength or the redox concentration, the RC semicircle moves to higher frequencies and vice versa. Importantly, the use of the buffer electrolyte, instead of KCl, led to a lower standard deviation and overall signal (lesser sensitivity). However, to achieve the best results from the biorecognition signal, we chose a buffered electrolyte like PBS with high ionic strength and lowered the redox probe concentrations to minimize the standard deviation and reduce any noise from migrating to the low-cost analyzer. Comparing the two analyzers shows similar results, with a lowered detection limit from the low-cost analyzer.
Collapse
Affiliation(s)
| | | | | | | | | | - Sagnik Basuray
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| |
Collapse
|
6
|
Wang WB, Li JJ, Weng GJ, Zhu J, Guo YB, Zhao JW. An anisotropic nanobox based core-shell-satellite nanoassembly of multiple SERS enhancement with heterogeneous interface for stroke marker determination. J Colloid Interface Sci 2023; 647:81-92. [PMID: 37245272 DOI: 10.1016/j.jcis.2023.05.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Herein, A novel gold-silver alloy nanobox (AuAgNB)@SiO2-gold nanosphere (AuNP) nanoassembly based on core-shell-satellite structure is fabricated and applied to the surface-enhanced Raman scattering (SERS) detection of S100 calcium-binding protein B protein (S100B). It contains an anisotropic hollow porous AuAgNB core with rough surface, an ultrathin silica interlayer labeled with reporter molecules, and AuNP satellites. The nanoassemblies were systematically optimized by tuning the reporter molecules concentration, silica layer thickness, AuAgNB size, and the size and number of AuNP satellite size. Remarkably, AuNP satellites are adjacent to AuAgNB@SiO2, developing AuAg-SiO2-Au heterogeneous interface. With the strong plasmon coupling between AuAgNB and AuNP satellites, chemical enhancement from heterogeneous interface, and the tip "hot spots" of AuAgNB, the SERS activity of the nanoassemblies was multiply enhanced. Additionally, the stability of nanostructure and Raman signal was significantly improved by the silica interlayer and AuNP satellites. Eventually, the nanoassemblies were applied for S100B detection. It demonstrated satisfactory sensitivity and reproducibility with a wide detection range of 10 fg/mL-10 ng/mL and a limit of detection (LOD) of 1.7 fg/mL. This work based on the AuAgNB@SiO2-AuNP nanoassemblies with multiple SERS enhancements and favorable stability demonstrates the promising application in stroke diagnosis.
Collapse
Affiliation(s)
- Wei-Bin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu-Bo Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
7
|
Real-time, Economical Identification of Microplastics Using Impedance-based Interdigital Array Microelectrodes and k-Nearest Neighbor Model. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Kosri E, Ibrahim F, Thiha A, Madou M. Micro and Nano Interdigitated Electrode Array (IDEA)-Based MEMS/NEMS as Electrochemical Transducers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234171. [PMID: 36500794 PMCID: PMC9741053 DOI: 10.3390/nano12234171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/28/2023]
Abstract
Micro and nano interdigitated electrode array (µ/n-IDEA) configurations are prominent working electrodes in the fabrication of electrochemical sensors/biosensors, as their design benefits sensor achievement. This paper reviews µ/n-IDEA as working electrodes in four-electrode electrochemical sensors in terms of two-dimensional (2D) planar IDEA and three-dimensional (3D) IDEA configurations using carbon or metal as the starting materials. In this regard, the enhancement of IDEAs-based biosensors focuses on controlling the width and gap measurements between the adjacent fingers and increases the IDEA's height. Several distinctive methods used to expand the surface area of 3D IDEAs, such as a unique 3D IDEA design, integration of mesh, microchannel, vertically aligned carbon nanotubes (VACNT), and nanoparticles, are demonstrated and discussed. More notably, the conventional four-electrode system, consisting of reference and counter electrodes will be compared to the highly novel two-electrode system that adopts IDEA's shape. Compared to the 2D planar IDEA, the expansion of the surface area in 3D IDEAs demonstrated significant changes in the performance of electrochemical sensors. Furthermore, the challenges faced by current IDEAs-based electrochemical biosensors and their potential solutions for future directions are presented herein.
Collapse
Affiliation(s)
- Elyana Kosri
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre of Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Marc Madou
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
- Academia Mexicana de Ciencias, Ciudad de México 14400, CDMX, Mexico
| |
Collapse
|
9
|
Sheen HJ, Panigrahi B, Kuo TR, Hsu WC, Chung PS, Xie QZ, Lin CY, Chang YS, Lin CT, Fan YJ. Electrochemical biosensor with electrokinetics-assisted molecular trapping for enhancing C-reactive protein detection. Biosens Bioelectron 2022; 210:114338. [PMID: 35550939 DOI: 10.1016/j.bios.2022.114338] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022]
Abstract
C-Reactive protein (CRP) is an essential biomarker relevant to various disease prognoses. Current biosensors require a significant amount of time for detecting CRP. To address this issue, this work proposes electrokinetic flow-assisted molecule trapping integrated with an impedance biosensor, where a driving signal in terms of a gated sine wave is provided to circularly arranged electrodes which detect proteins. To verify the biosensor's efficacy, protein aggregation on the electrode surface was evaluated through a fluorescence analysis and measurement of the electrochemical impedance spectrum (EIS). The fluorescence analysis with avidin showed that target samples largely accumulated on the electrode surface upon provision of the driving signal. The EIS measurement of CRP accumulation on the electrode surface further confirmed a significant electrokinetic phenomenon at the electrode/electrolyte interface. Even at the low CRP concentration of 10 pg/ml, the proposed device's sensitivity and reliability were as high as 3.92 pg/ml with a signal-to noise ratio (SNR) of ≥3, respectively. In addition, the protein detection time (without considering the preparation time) was minimized to as low as 90 s with the proposed device. This device's advantage is its minimal time consumption, and simple drop-analysis process flow; hence, it was used for monitoring clinical serum samples.
Collapse
Affiliation(s)
- Horn-Jiunn Sheen
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Bivas Panigrahi
- Department of Refrigeration, Air Conditioning and Energy Engineering, National Chin-Yi University of Science and Technology, Taiping Dist., Taichung City, 41170, Taiwan.
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, International Ph.D. Program in Biomedical Engineering, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan
| | - Wei-Chen Hsu
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Pei-Shan Chung
- Department of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Qiu-Zhe Xie
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ching-Yu Lin
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Shuang Ho Hospital, 291 Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan, Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chih-Ting Lin
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, International PhD Program in Biomedical Engineering, International PhD Program for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan.
| |
Collapse
|
10
|
A New Biorecognition-Element-Free IDμE Sensor for the Identification and Quantification of E. coli. BIOSENSORS 2022; 12:bios12080561. [PMID: 35892458 PMCID: PMC9331394 DOI: 10.3390/bios12080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
The label-free biosensor has emerged as an effective tool for the purpose of early detection of causative pathogens such as Escherichia coli as a preventive measure. In this study, a biorecognition-element-free interdigitated microelectrode (IDμE) sensor is designed and developed with this in mind, with good reliability and affordability. Results show that the designed sensor can identify E. coli with good selectivity using an impedance and capacitance of 7.69 MHz. At its optimum impedance of 1.3 kHz, the IDμE sensor can reliably quantify E. coli in a range of measurement (103.2~106 cfu/mL), linearity (R2 = 0.97), sensitivity (18.15 kΩ/log (cfu/mL)), and limit of detection (103.2 cfu/mL). In summary, the IDμE sensor developed possesses high potential for industrial and clinical applications.
Collapse
|
11
|
Cho H, Shim S, Cho WW, Cho S, Baek H, Lee SM, Shin DS. Electrochemical Impedance-Based Biosensors for the Label-Free Detection of the Nucleocapsid Protein from SARS-CoV-2. ACS Sens 2022; 7:1676-1684. [PMID: 35653260 PMCID: PMC9211059 DOI: 10.1021/acssensors.2c00317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023]
Abstract
Diagnosis of coronavirus disease (COVID-19) is important because of the emergence and global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Real-time polymerase chain reaction (PCR) is widely used to diagnose COVID-19, but it is time-consuming and requires sending samples to test centers. Thus, the need to detect antigens for rapid on-site diagnosis rather than PCR is increasing. We quantified the nucleocapsid (N) protein in SARS-CoV-2 using an electro-immunosorbent assay (El-ISA) and a multichannel impedance analyzer with a 96-interdigitated microelectrode sensor (ToAD). The El-ISA measures impedance signals from residual detection antibodies after sandwich assays and thus offers highly specific, label-free detection of the N protein with low cross-reactivity. The ToAD sensor enables the real-time electrochemical detection of multiple samples in conventional 96-well plates. The limit of detection for the N protein was 0.1 ng/mL with a detection range up to 10 ng/mL. This system did not detect signals for the S protein. While this study focused on detecting the N protein in SARS-CoV-2, our system can also be widely applicable to detecting various biomolecules involved in antigen-antibody interactions.
Collapse
Affiliation(s)
- Hana Cho
- Department
of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Republic of Korea
- Industry
Collaboration Center, Sookmyung Women’s
University, Yongsan-gu, Seoul 04310, Republic
of Korea
| | - Suhyun Shim
- Department
of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Won Woo Cho
- Cantis
Inc., Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Sungbo Cho
- Department
of Electronics Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Hanseung Baek
- Comprehensive
Dental Care Center, Purme Nexon Children
Rehabilitation Hospital, Mapo-gu, Seoul 03918, Republic
of Korea
| | - Sang-Myung Lee
- Cantis
Inc., Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Dong-Sik Shin
- Department
of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Republic of Korea
- Industry
Collaboration Center, Sookmyung Women’s
University, Yongsan-gu, Seoul 04310, Republic
of Korea
| |
Collapse
|
12
|
Song L, Zhuge Y, Zuo X, Li M, Wang F. DNA Walkers for Biosensing Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200327. [PMID: 35460209 PMCID: PMC9366574 DOI: 10.1002/advs.202200327] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Indexed: 05/07/2023]
Abstract
The ability to design nanostructures with arbitrary shapes and controllable motions has made DNA nanomaterials used widely to construct diverse nanomachines with various structures and functions. The DNA nanostructures exhibit excellent properties, including programmability, stability, biocompatibility, and can be modified with different functional groups. Among these nanoscale architectures, DNA walker is one of the most popular nanodevices with ingenious design and flexible function. In the past several years, DNA walkers have made amazing progress ranging from structural design to biological applications including constructing biosensors for the detection of cancer-associated biomarkers. In this review, the key driving forces of DNA walkers are first summarized. Then, the DNA walkers with different numbers of legs are introduced. Furthermore, the biosensing applications of DNA walkers including the detection- of nucleic acids, proteins, ions, and bacteria are summarized. Finally, the new frontiers and opportunities for developing DNA walker-based biosensors are discussed.
Collapse
Affiliation(s)
- Lu Song
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Zhuge
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| | - Xiaolei Zuo
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Min Li
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fang Wang
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| |
Collapse
|
13
|
Lin CW, Tsai YH, Lu YP, Yang JT, Chen MY, Huang TJ, Weng RC, Tung CW. Application of a Novel Biosensor for Salivary Conductivity in Detecting Chronic Kidney Disease. BIOSENSORS 2022; 12:178. [PMID: 35323448 PMCID: PMC8946539 DOI: 10.3390/bios12030178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/12/2023]
Abstract
The prevalence of chronic kidney disease (CKD) is increasing, and it brings an enormous healthcare burden. The traditional measurement of kidney function needs invasive blood tests, which hinders the early detection and causes low awareness of CKD. We recently designed a device with miniaturized coplanar biosensing probes for measuring salivary conductivity at an extremely low volume (50 μL). Our preliminary data discovered that the salivary conductivity was significantly higher in the CKD patients. This cross-sectional study aims to validate the relationship between salivary conductivity and kidney function, represented by the estimated glomerular filtration rate (eGFR). We enrolled 214 adult participants with a mean age of 63.96 ± 13.53 years, of whom 33.2% were male. The prevalence rate of CKD, defined as eGFR < 60 mL/min/1.73 m2, is 11.2% in our study. By multivariate linear regression analyses, we found that salivary conductivity was positively related to age and fasting glucose but negatively associated with eGFR. We further divided subjects into low, medium, and high groups according to the tertials of salivary conductivity levels. There was a significant trend for an increment of CKD patients from low to high salivary conductivity groups (4.2% vs. 12.5% vs. 16.9%, p for trend: 0.016). The receiver operating characteristic (ROC) curves disclosed an excellent performance by using salivary conductivity combined with age, gender, and body weight to diagnose CKD (AUC equal to 0.8). The adjusted odds ratio of CKD is 2.66 (95% CI, 1.10−6.46) in subjects with high salivary conductivity levels. Overall, salivary conductivity can serve as a good surrogate marker of kidney function; this real-time, non-invasive, and easy-to-use portable biosensing device may be a reliable tool for screening CKD.
Collapse
Affiliation(s)
- Chen-Wei Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Medical Education, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yuan-Hsiung Tsai
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-T.Y.); (T.-J.H.)
| | - Yen-Pei Lu
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30261, Taiwan; (Y.-P.L.); (R.-C.W.)
| | - Jen-Tsung Yang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-T.Y.); (T.-J.H.)
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Mei-Yen Chen
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan;
| | - Tung-Jung Huang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (J.-T.Y.); (T.-J.H.)
- Department of Internal Medicine, Chang Gung Memorial Hospital, Yunlin 63862, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Rui-Cian Weng
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30261, Taiwan; (Y.-P.L.); (R.-C.W.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan
| | - Chun-Wu Tung
- Department of Medical Education, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
14
|
Jović M, Prim D, Saini E, Pfeifer ME. Towards a Point-of-Care (POC) Diagnostic Platform for the Multiplex Electrochemiluminescent (ECL) Sensing of Mild Traumatic Brain Injury (mTBI) Biomarkers. BIOSENSORS 2022; 12:172. [PMID: 35323442 PMCID: PMC8946848 DOI: 10.3390/bios12030172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Globally, 70 million people are annually affected by TBI. A significant proportion of all TBI cases are actually mild TBI (concussion, 70-85%), which is considerably more difficult to diagnose due to the absence of apparent symptoms. Current clinical practice of diagnosing mTBI largely resides on the patients' history, clinical aspects, and CT and MRI neuroimaging observations. The latter methods are costly, time-consuming, and not amenable for decentralized or accident site measurements. As an alternative (and/or complementary), mTBI diagnostics can be performed by detection of mTBI biomarkers from patients' blood. Herein, we proposed two strategies for the detection of three mTBI-relevant biomarkers (GFAP, h-FABP, and S100β), in standard solutions and in human serum samples by using an electrochemiluminescence (ECL) immunoassay on (i) a commercial ECL platform in 96-well plate format, and (ii) a "POC-friendly" platform with disposable screen-printed carbon electrodes (SPCE) and a portable ECL reader. We further demonstrated a proof-of-concept for integrating three individually developed mTBI assays ("singleplex") into a three-plex ("multiplex") assay on a single SPCE using a spatially resolved ECL approach. The presented methodology demonstrates feasibility and a first step towards the development of a rapid POC multiplex diagnostic system for the detection of a mTBI biomarker panel on a single SPCE.
Collapse
Affiliation(s)
| | | | | | - Marc Emil Pfeifer
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), 1950 Sion, Switzerland; (M.J.); (D.P.); (E.S.)
| |
Collapse
|
15
|
TBISTAT: An open-source, wireless portable, electrochemical impedance spectroscopy capable potentiostat for the point-of-care detection of S100B in plasma samples. PLoS One 2022; 17:e0263738. [PMID: 35130295 PMCID: PMC8820642 DOI: 10.1371/journal.pone.0263738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
Point-of-Care (POC) testing for biomarker detection demands techniques that are easy to use, readily available, low-cost, and with rapid response times. This paper describes the development of a fully open-source, modular, wireless, battery-powered, smartphone-controlled, low-cost potentiostat capable of conducting electrochemical impedance spectroscopy for the electrochemical detection of the S100B protein captured in an ANTI-S100B functionalized thin-film gold interdigitated electrode platform to support traumatic brain injury diagnosis and treatment. EIS results from the developed potentiostat were validated with a commercial benchtop potentiostat by comparing impedance magnitude and phase values along the EIS frequency range. In addition, an experimental design was performed for detecting S100B in spiked human plasma samples with S100B concentrations of clinical utility, and a calibration curve was found for quantifying S100B detection. No statistically significant differences were found between EIS results from the developed potentiostat and the commercial potentiostat. Statistically significant differences in the changes in charge transfer resistance signal between each tested S100B concentration (p < 0.05) were found, with a limit of detection of 35.73 pg/mL. The modularity of the proposed potentiostat allows easier component changes according to the application demands in power, frequency excitation ranges, wireless communication protocol, signal amplification and transduction, precision, and sampling frequency of ADC, among others, when compared to state-of-the-art open-source EIS potentiostats. In addition, the use of minimal, easy acquirable open-source hardware and software, high-level filtering, accurate ADC, Fast Fourier Transform with low spectral leakage, wireless communication, and the simple user interface provides a framework for facilitating EIS analysis and developing new affordable instrumentation for POC biosensors integrated systems.
Collapse
|
16
|
Firoozbakhtian A, Rezayan AH, Hajghassem H, Rahimi F, Ghazani MF, Kalantar M, Mohamadsharifi A. Buried-Gate MWCNT FET-Based Nanobiosensing Device for Real-Time Detection of CRP. ACS OMEGA 2022; 7:7341-7349. [PMID: 35252724 PMCID: PMC8892644 DOI: 10.1021/acsomega.1c07271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
C-reactive protein (CRP), an acute-phase protein synthesized in the liver in response to inflammation, is one of the biomarkers used for the detection of several diseases. Sepsis and cardiovascular diseases are two of the most important diseases for which detection of CRP at very early stages in the clinical range can help avert serious consequences. Here, a CNT-based nanobiosensing system, which is portable and reproducible, is used for label-free, online detection of CRP. The system consists of an aptameric CNT-based field-effect transistor benefiting from a buried gate geometry with Al2O3 as a high dielectric layer and can reflect the pro-cytokine concentration. Test results show that the device responds to CRP changes within 8 min, with a limit of detection as low as 150 pM (0.017 mg L-1). The device was found to have a linear behavior in the range of 0.43-42.86 nM (0.05-5 mg L-1). The selectivity of the device was tested with TNF-α, IL-6, and BSA, to which the nanosensing system showed no significant response compared with CRP. The device showed good stability for 14 days and was completely reproducible during this period. These findings indicate that the proposed portable system is a potential candidate for CRP measurements in the clinical range.
Collapse
Affiliation(s)
- Ali Firoozbakhtian
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Ali Hossein Rezayan
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Hassan Hajghassem
- MEMS
& NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Fereshteh Rahimi
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Masoud Faraghi Ghazani
- MEMS
& NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mahsa Kalantar
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Amir Mohamadsharifi
- MEMS
& NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
17
|
Alba-Patiño A, Vaquer A, Barón E, Russell SM, Borges M, de la Rica R. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Mikrochim Acta 2022; 189:74. [PMID: 35080669 PMCID: PMC8790942 DOI: 10.1007/s00604-022-05171-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022]
Abstract
Severe infections can cause a dysregulated response leading to organ dysfunction known as sepsis. Sepsis can be lethal if not identified and treated right away. This requires measuring biomarkers and pathogens rapidly at the different points where sepsis care is provided. Current commercial approaches for sepsis diagnosis are not fast, sensitive, and/or specific enough for meeting this medical challenge. In this article, we review recent advances in the development of diagnostic tools for sepsis management based on micro- and nanostructured materials. We start with a brief introduction to the most popular biomarkers for sepsis diagnosis (lactate, procalcitonin, cytokines, C-reactive protein, and other emerging protein and non-protein biomarkers including miRNAs and cell-based assays) and methods for detecting bacteremia. We then highlight the role of nano- and microstructured materials in developing biosensors for detecting them taking into consideration the particular needs of every point of sepsis care (e.g., ultrafast detection of multiple protein biomarkers for diagnosing in triage, emergency room, ward, and intensive care unit; quantitative detection to de-escalate treatment; ultrasensitive and culture-independent detection of blood pathogens for personalized antimicrobial therapies; robust, portable, and web-connected biomarker tests outside the hospital). We conclude with an overview of the most utilized nano- and microstructured materials used thus far for solving issues related to sepsis diagnosis and point to new challenges for future development.
Collapse
Affiliation(s)
- Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Enrique Barón
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Steven M Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
18
|
Zhang H, Qu H, Cui J, Duan L. A simple electrochemical immunosensor based on a chitosan/reduced graphene oxide nanocomposite for sensitive detection of biomarkers of malignant melanoma. RSC Adv 2022; 12:25844-25851. [PMID: 36199606 PMCID: PMC9465697 DOI: 10.1039/d2ra04208h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
The sensitive and specific detection of tumor biomarkers is crucial for early diagnosis and treatment of malignant melanoma. Immunoassay with a simple sensing interface and high sensitivity is highly desirable. In this work, a simple electrochemical immunosensor based on a chitosan/reduced graphene oxide (CS–rGO) nanocomposite was developed for sensitive determination of an S-100B protein, a tumor marker of malignant melanoma. CS–rGO nanocomposite were prepared by chemical reduction of graphene oxide in the presence of chitosan and modified on glassy carbon electrode (GCE) to provide a biofriendly, conductive, and easily chemically modified matrix for further immobilization of antibodies. Anti-S-100B antibodies were grafted onto the chitosan molecules to fabricate the immunorecognition interface by a simple glutaraldehyde cross-linking method. Electrochemical determination of S-100B was achieved by measuring the decreased current signal of solution phase electrochemical probes, which originated from the increased steric hindrance and insulation caused by the formation of antigen–antibody complexes at the electrode interface. Due to the good conductivity, high surface area, excellent biocompatibility, and good film-forming ability of CS–rGO, the constructed immunosensor exhibited good stability, high selectivity and sensitivity, a wide dynamic range from 10 fg mL−1 to 1 ng mL−1 and a low limit of detection of 1.9 pg mL−1 (S/N = 3). Moreover, the sensor was also applicable for the sensitive detection of S-100B protein in real human serum samples. Simple electrochemical immunosensor is easily fabricated based on chitosan/reduce graphene oxide nanocomposite for sensitive determination of a tumor marker of malignant melanoma.![]()
Collapse
Affiliation(s)
- Huihua Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Qu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingbo Cui
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linxia Duan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
19
|
Dias A, Silva I, Pinto IM, Maia LF. Timely and Blood-Based Multiplex Molecular Profiling of Acute Stroke. Life (Basel) 2021; 11:816. [PMID: 34440560 PMCID: PMC8398526 DOI: 10.3390/life11080816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of death and disability in the world. To address such a problem, early diagnosis and tailored acute treatment represent one of the major priorities in acute stroke care. Since the efficacy of reperfusion treatments is highly time-dependent, there is a critical need to optimize procedures for faster and more precise diagnosis. We provide a concise review of the most relevant and well-documented blood-protein biomarkers that exhibit greater potential for translational to clinical practice in stroke differential diagnosis and to differentiate ischemic stroke from hemorrhagic stroke, followed by an overview of the most recent point-of-care technological approaches to address this problem. The integration of fluid-based biomarker profiling, using point-of-care biosensors with demographic, clinical, and neuroimaging parameters in multi-dimensional clinical decision-making algorithms, will be the next step in personalized stroke care.
Collapse
Affiliation(s)
- Alexandre Dias
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel Silva
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Molecular Neurobiology, IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Luís F. Maia
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Molecular Neurobiology, IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
20
|
Pankratova N, Jović M, Pfeifer ME. Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application. RSC Adv 2021; 11:17301-17319. [PMID: 34094508 PMCID: PMC8114542 DOI: 10.1039/d1ra00589h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic Brain Injury (TBI) being one of the principal causes of death and acquired disability in the world imposes a large burden on the global economy. Mild TBI (mTBI) is particularly challenging to assess due to the frequent lack of well-pronounced post-injury symptoms. However, if left untreated mTBI (especially when repetitive) can lead to serious long-term implications such as cognitive and neuropathological disorders. Computer tomography and magnetic resonance imaging commonly used for TBI diagnostics require well-trained personnel, are costly, difficult to adapt for on-site measurements and are not always reliable in identifying small brain lesions. Thus, there is an increasing demand for sensitive point-of-care (POC) testing tools in order to aid mTBI diagnostics and prediction of long-term effects. Biomarker quantification in body fluids is a promising basis for POC measurements, even though establishing a clinically relevant mTBI biomarker panel remains a challenge. Actually, a minimally invasive, rapid and reliable multianalyte detection device would allow the efficient determination of injury biomarker release kinetics and thus support the preclinical evaluation and clinical validation of a proposed biomarker panel for future decentralized in vitro diagnostics. In this respect electrochemical biosensors have recently attracted great attention and the present article provides a critical study on the electrochemical protocols suggested in the literature for detection of mTBI-relevant protein biomarkers. The authors give an overview of the analytical approaches for transduction element functionalization, review recent technological advances and highlight the key challenges remaining in view of an eventual integration of the proposed concepts into POC diagnostic solutions.
Collapse
Affiliation(s)
- Nadezda Pankratova
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Milica Jović
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Marc E Pfeifer
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| |
Collapse
|
21
|
Zhou X, Pu Q, Yu H, Peng Y, Li J, Yang Y, Chen H, Weng Y, Xie G. An electrochemical biosensor based on hemin/G-quadruplex DNAzyme and PdRu/Pt heterostructures as signal amplifier for circulating tumor cells detection. J Colloid Interface Sci 2021; 599:752-761. [PMID: 33989928 DOI: 10.1016/j.jcis.2021.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/21/2022]
Abstract
Metastasis due to circulating tumor cells (CTCs) shed from the original tumor accounts for the majority of cancer-related death. Efficient CTCs detection is pivotal to the diagnosis of early cancer metastasis. In this work, Platinum nanoparticles (PtNPs) decorated hyperbranched PdRu nanospines (PdRu/Pt) hierarchical structures were firstly synthesized to detect CTCs with the assistance of DNAzyme. Meanwhile, Super P and gold nanoparticles (AuNPs) acted as sensing medium to improve electrical conductivity and immobilization of anti-EpCAM antibody to specifically capture model CTCs. After immune-conjugation of anti-EpCAM-MCF-7-signal probes on the gold electrode, PtNPs, PdRu nanospines (PdRuNSs) and hemin/G-quadruplex co-catalyzed substrate H2O2 to realize multiplexed signal amplification, which significantly improves the analytical performance of the electrochemical biosensor. As-proposed biosensor reached a limit of detection (LOD) down to 2 cells mL-1 and showed a wide detection range of 2 to 106 cells mL-1. Application of the biosensor to detect MCF-7 cells spiked human blood samples further demonstrated the feasibility for early cancer evaluation in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Qinli Pu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Yang Peng
- Clinical Laboratory Medicine Center, Chongqing University Cancer Hospital, Chongqing 400030, PR China
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Huajian Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China; Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yaguang Weng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China.
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China.
| |
Collapse
|
22
|
Letchumanan I, Arshad MKM, Gopinath SCB. Nanodiagnostic Attainments and Clinical Perspectives on C-Reactive Protein: Cardiovascular Disease Risks Assessment. Curr Med Chem 2021; 28:986-1002. [PMID: 31971105 DOI: 10.2174/0929867327666200123092648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/12/2019] [Accepted: 10/18/2019] [Indexed: 01/08/2023]
Abstract
Cardiovascular disease (CVD) has become one of the leading causes of morbidity and mortality in both men and women. According to the World Health Organization (WHO), ischemic heart disease is the major issue due to the narrowing of the coronary artery by plaque formation on the artery wall, which causes an inadequate flow of oxygen and blood to the heart and is called 'coronary artery disease'. The CVD death rate increased by up to 15% in 2016 (~17.6 million) compared to the past decade. This tremendous increment urges the development of a suitable biomarker for rapid and early diagnosis. Currently, C-reactive protein (CRP) is considered an outstanding biomarker for quick and accurate outcomes in clinical analyses. Various techniques have also been used to diagnose CVD, including surface plasmon resonance (SPR), colorimetric assay, enzyme-linked immunosorbent assay (ELISA), fluoro-immunoassays, chemiluminescent assays, and electrical measurements. This review discusses such diagnostic strategies and how current, cutting-edge technologies have enabled the development of high-performance detection methodologies. Concluding remarks have been made concerning the clinical significance and the use of nanomaterial in medical diagnostics towards nanotheranostics.
Collapse
Affiliation(s)
- Iswary Letchumanan
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - M K Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| |
Collapse
|
23
|
Rodríguez A, Burgos-Flórez F, Posada JD, Cervera E, Zucolotto V, Sanjuán H, Sanjuán M, Villalba PJ. Electrochemical Immunosensor for the Quantification of S100B at Clinically Relevant Levels Using a Cysteamine Modified Surface. SENSORS 2021; 21:s21061929. [PMID: 33801798 PMCID: PMC8001999 DOI: 10.3390/s21061929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023]
Abstract
Neuronal damage secondary to traumatic brain injury (TBI) is a rapidly evolving condition, which requires therapeutic decisions based on the timely identification of clinical deterioration. Changes in S100B biomarker levels are associated with TBI severity and patient outcome. The S100B quantification is often difficult since standard immunoassays are time-consuming, costly, and require extensive expertise. A zero-length cross-linking approach on a cysteamine self-assembled monolayer (SAM) was performed to immobilize anti-S100B monoclonal antibodies onto both planar (AuEs) and interdigitated (AuIDEs) gold electrodes via carbonyl-bond. Surface characterization was performed by atomic force microscopy (AFM) and specular-reflectance FTIR for each functionalization step. Biosensor response was studied using the change in charge-transfer resistance (Rct) from electrochemical impedance spectroscopy (EIS) in potassium ferrocyanide, with [S100B] ranging 10–1000 pg/mL. A single-frequency analysis for capacitances was also performed in AuIDEs. Full factorial designs were applied to assess biosensor sensitivity, specificity, and limit-of-detection (LOD). Higher Rct values were found with increased S100B concentration in both platforms. LODs were 18 pg/mL(AuES) and 6 pg/mL(AuIDEs). AuIDEs provide a simpler manufacturing protocol, with reduced fabrication time and possibly costs, simpler electrochemical response analysis, and could be used for single-frequency analysis for monitoring capacitance changes related to S100B levels.
Collapse
Affiliation(s)
- Alexander Rodríguez
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
| | - Francisco Burgos-Flórez
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
- Rational Use of Energy and Preservation of the Environment Group (UREMA), Universidad del Norte, Barranquilla 081007, Colombia;
| | - José D. Posada
- School of Medicine, Stanford University, Redwood City, CA 94063, USA;
| | - Eliana Cervera
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
| | - Valtencir Zucolotto
- Gnano—Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil;
| | - Homero Sanjuán
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
| | - Marco Sanjuán
- Rational Use of Energy and Preservation of the Environment Group (UREMA), Universidad del Norte, Barranquilla 081007, Colombia;
| | - Pedro J. Villalba
- Biotechnology Research Group, Universidad del Norte, Barranquilla 081007, Colombia; (A.R.); (F.B.-F.); (E.C.); (H.S.)
- Correspondence:
| |
Collapse
|
24
|
Fadillah G, Triana S, Chasanah U, Saleh TA. Titania-nanorods modified carbon paste electrode for the sensitive voltammetric determination of BPA in exposed bottled water. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Interdigitated and Wave-Shaped Electrode-Based Capacitance Sensor for Monitoring Antibiotic Effects. SENSORS 2020; 20:s20185237. [PMID: 32937982 PMCID: PMC7570453 DOI: 10.3390/s20185237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022]
Abstract
Label-free and real-time monitoring of the bacterial viability is essential for the accurate and sensitive characterization of the antibiotic effects. In the present study, we investigated the feasibility of the interdigitated and wave-shaped electrode (IWE) for monitoring the effect of tetracycline or kanamycin on Staphylococcus aureus (S. aureus) and methicillin-resistant S.aureus (MRSA). The electrical impedance spectra of the IWE immersed in the culture media for bacterial growth were characterized in a frequency range of 10 Hz to 1 kHz. The capacitance index (CI) (capacitance change relevant with the bacterial viability) was used to monitor the antibiotic effects on the S. aureus and MRSA in comparison to the traditional methods (disk diffusion test and optical density (OD) measurement). The experimental results showed that the percentage of change in CI (PCI) for the antibiotic effect on MRSA was increased by 51.58% and 57.83% in kanamycin and control, respectively. In contrast, the PCI value decreased by 0.25% for tetracycline, decreased by 52.63% and 37.66% in the cases of tetracycline and kanamycin-treated S. aureus, and increased 2.79% in the control, respectively. This study demonstrated the feasibility of the IWE-based capacitance sensor for the label-free and real-time monitoring of the antibiotic effects on S. aureus and MRSA.
Collapse
|
26
|
|
27
|
Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104857] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Yagati AK, Behrent A, Beck S, Rink S, Goepferich AM, Min J, Lee MH, Baeumner AJ. Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive aptamer-based biosensors. Biosens Bioelectron 2020; 164:112272. [PMID: 32553348 DOI: 10.1016/j.bios.2020.112272] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
Highly porous laser-induced graphene (LIG) is easily generated in complex electrode configurations such as interdigitated electrodes (IDEs). Here, we demonstrate that their superior capacitive response at low frequencies can be exploited in affinity biosensors using thrombin aptamers as model biorecognition elements. Of specific interest was the effect of electrode surface area on capacitance detection, and the comparison between a label-free format and enhancement strategies afforded by carboxy group bearing polymeric nanoparticles or liposomes. Electrochemical impedance spectroscopy (EIS) was used to investigate the LIG performance and optimize the biosensor design. Interestingly, the label-free strategy performed extremely well and additional labels decreased the limit of detection or increased the sensitivity only minimally. It is assumed that the highly porous nature of the LIG structures dominates the capacitive response so that labels removed from the surface have only limited influence Also, while slight performance changes can be observed for smaller vs. larger electrode structures, the performance of a LIG IDE is reasonably independent of its size. In the end, a dynamic range of 5 orders of magnitude was obtained (0.01 nM-1000 nM) with a limit of detection as low as 0.12 pM. When measured in serum, this increased to 1.3 pM. The good reproducibility (relative standard deviation (RSD), 4.90%) and repeatability (RSD, 2.59%) and good long-term stability (>7 weeks at 4 °C) prove that a LIG-based capacitance sensor is an excellent choice for affinity-based biosensor. The ease-of-production, the simplicity of modification and the superior performance even in a label-free format indicate that LIG-based biosensors should be considered in point-of-care diagnostics in the future.
Collapse
Affiliation(s)
- Ajay Kumar Yagati
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany; School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Arne Behrent
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Sebastian Beck
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Simone Rink
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea.
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany.
| |
Collapse
|
29
|
Liu R, Ye X, Cui T. Recent Progress of Biomarker Detection Sensors. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7949037. [PMID: 33123683 PMCID: PMC7585038 DOI: 10.34133/2020/7949037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Early cancer diagnosis and treatment are crucial research fields of human health. One method that has proven efficient is biomarker detection which can provide real-time and accurate biological information for early diagnosis. This review presents several biomarker sensors based on electrochemistry, surface plasmon resonance (SPR), nanowires, other nanostructures, and, most recently, metamaterials which have also shown their mechanisms and prospects in application in recent years. Compared with previous reviews, electrochemistry-based biomarker sensors have been classified into three strategies according to their optimizing methods in this review. This makes it more convenient for researchers to find a specific fabrication method to improve the performance of their sensors. Besides that, as microfabrication technologies have improved and novel materials are explored, some novel biomarker sensors-such as nanowire-based and metamaterial-based biomarker sensors-have also been investigated and summarized in this review, which can exhibit ultrahigh resolution, sensitivity, and limit of detection (LoD) in a more complex detection environment. The purpose of this review is to understand the present by reviewing the past. Researchers can break through bottlenecks of existing biomarker sensors by reviewing previous works and finally meet the various complex detection needs for the early diagnosis of human cancer.
Collapse
Affiliation(s)
- Ruitao Liu
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Xiongying Ye
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
30
|
Ma Y, Yang J, Yang T, Deng Y, Gu M, Wang M, Hu R, Yang Y. Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Adv 2020; 10:9723-9729. [PMID: 35497247 PMCID: PMC9050126 DOI: 10.1039/c9ra10386d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 11/21/2022] Open
Abstract
C-reactive protein (CRP) has become a recognized indicator of inflammation. CRP concentration in serum is an important indicator for monitoring early heart damage, and it is also a newly discovered coronary heart disease-associated inflammatory factor. A conductive nano-hybrid material composed of Au NPs and ionic liquid functionalized molybdenum disulfide (Au NPs/IL-MoS2) was prepared and utilized to immobilize primary CRP antibodies. Subsequently, 1,5-diaminonaphthalene (DN) was adsorbed onto graphene oxide (GO) through π–π stacking, which was used to load iridium nanoparticles (Ir NPs) as a tag to label secondary CRP antibodies. The large surface area of Au NPs/IL-MoS2 and the excellent electrocatalytic properties of Ir NPs/GO-DN toward the reduction of H2O2 resulted in a highly sensitive assay for CRP antigens. This immunosensor exhibited wide linear ranges from 0.01 to 100 ng mL−1 and a lower detection of limit of 3.3 pg mL−1 (S/N = 3). This CRP immunosensor can be applied in real serum sample analysis with satisfactory results, indicating that the immunosensor has potential applications in biomedical detection. Ir NPs@GO-DN was used as a tag to label CRP antibody to construct a sandwich CRP immunosensor.![]()
Collapse
Affiliation(s)
- Yuchan Ma
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Jiao Yang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Tong Yang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Yan Deng
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Mengqiao Gu
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Min Wang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| |
Collapse
|
31
|
Yi H, Li M, Huo X, Zeng G, Lai C, Huang D, An Z, Qin L, Liu X, Li B, Liu S, Fu Y, Zhang M. Recent development of advanced biotechnology for wastewater treatment. Crit Rev Biotechnol 2019; 40:99-118. [PMID: 31690134 DOI: 10.1080/07388551.2019.1682964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of highly efficient wastewater treatment is evident from aggravated water crises. With the development of green technology, wastewater treatment is required in an eco-friendly manner. Biotechnology is a promising solution to address this problem, including treatment and monitoring processes. The main directions and differences in biotreatment process are related to the surrounding environmental conditions, biological processes, and the type of microorganisms. It is significant to find suitable biotreatment methods to meet the specific requirements for practical situations. In this review, we first provide a comprehensive overview of optimized biotreatment processes for treating wastewater during different conditions. Both the advantages and disadvantages of these biotechnologies are discussed at length, along with their application scope. Then, we elaborated on recent developments of advanced biosensors (i.e. optical, electrochemical, and other biosensors) for monitoring processes. Finally, we discuss the limitations and perspectives of biological methods and biosensors applied in wastewater treatment. Overall, this review aims to project a rapid developmental path showing a broad vision of recent biotechnologies, applications, challenges, and opportunities for scholars in biotechnological fields for "green" wastewater treatment.
Collapse
Affiliation(s)
- Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Minfang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Ziwen An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
32
|
A Portable System to Monitor Saliva Conductivity for Dehydration Diagnosis and Kidney Healthcare. Sci Rep 2019; 9:14771. [PMID: 31611585 PMCID: PMC6791883 DOI: 10.1038/s41598-019-51463-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has become a major issue in long-term healthcare. It is caused by recurrent kidney injury, which is possible induced by dehydration and heat stress. Therefore, it is important to access the dehydration diagnosis on fields. Conventional instruments for assessing dehydration from blood and urine samples are expensive and time-consuming. These disadvantages limit their applications in high-risk groups susceptible to kidney disease. To address this unmet need, this study presents a portable miniaturized device for dehydration diagnosis with clinical saliva samples. With co-plane coating-free gold electrodes, the dehydration diagnosis was achieved with a saliva specimen at low volumes (50–500 μL). To examine the characteristics, the developed device was assessed by using standard conductivity solutions and the examined variation was <5%. To validate the use for field applications, saliva samples were measured by the developed device and the measured results were compared with standard markers of serum osmolality (N = 30). These data indicate that the measured saliva conductivity is consistent with serum osmolality. And it shows significant difference between healthy adults and healthy farmers (p < 0.05), who typically suffer high risks of CKD. Based on this work, the proposed device and measurement offer a useful method to diagnosis dehydrations and indicate possible potential for CKD.
Collapse
|
33
|
Li MJ, Wang HJ, Yuan R, Chai YQ. A zirconium-based metal-organic framework sensitized by thioflavin-T for sensitive photoelectrochemical detection of C-reactive protein. Chem Commun (Camb) 2019; 55:10772-10775. [PMID: 31432820 DOI: 10.1039/c9cc05086h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, a novel photoelectrochemical (PEC) assay was developed for the sensitive detection of C-reactive protein (CRP) based on a zirconium-based metal-organic framework (PCN-777) as the photoelectric material and thioflavin-T (Th-T) as the effective signal sensitizer coupled with rolling circle amplification (RCA).
Collapse
Affiliation(s)
- Meng-Jie Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | |
Collapse
|
34
|
Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Aydın EB, Aydın M, Sezgintürk MK. Ultrasensitive determination of cadherin-like protein 22 with a label-free electrochemical immunosensor using brush type poly(thiophene-g-glycidylmethacrylate) modified disposable ITO electrode. Talanta 2019; 200:387-397. [DOI: 10.1016/j.talanta.2019.03.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
|
36
|
Vilian ATE, Kim W, Park B, Oh SY, Kim T, Huh YS, Hwangbo CK, Han YK. Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: A predictive strategy for heart failure. Biosens Bioelectron 2019; 142:111549. [PMID: 31400725 DOI: 10.1016/j.bios.2019.111549] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 11/18/2022]
Abstract
C-reactive protein (CRP) is considered a promising biomarker for the rapid and high-throughput real-time monitoring of cardiovascular disease and inflammation in unprocessed clinical samples. Implementation of this monitoring would enable various transformative biomedical applications. We have fabricated a highly specific sensor chip to detect CRP with a detection limit of 2.25 fg/mL. The protein was immobilized on top of a gold (Au) wire/polycarbonate (PC) substrate using 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide hydrochloride/N-hydroxy succinimide-activated 3-mercaptoproponic acid (MPA) as a self-assembled monolayer agent and bovine serum albumin (BSA) as a blocking agent. In contrast to the bare PC substrate, the CRP/BSA/anti-CRP/MPA/Au substrate exhibited a considerably high electrochemical signal toward CRP. The influence of the experimental parameters on CRP detection was assessed via various analysis methods, and these parameters were then optimized. The linear dynamic range of the CRP was 5-220 fg/mL for voltammetric and impedance analysis. Morever, the strategy exhibited high selectivity against various potential interfering species and was capable of directly probing trace amounts of the target CRP in human serum with excellent selectivity. The analytical assay based on the CRP/BSA/anti-CRP/MPA/Au substrate could be exploited as a potentially useful tool for detecting CRP in clinical samples.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100-715, Republic of Korea
| | - Wonyoung Kim
- Department of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Bumjun Park
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Seo Yeong Oh
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - TaeYoung Kim
- Department of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| | - Chang Kwon Hwangbo
- Department of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100-715, Republic of Korea.
| |
Collapse
|
37
|
Letchumanan I, Md Arshad M, Balakrishnan S, Gopinath SC. Gold-nanorod enhances dielectric voltammetry detection of c-reactive protein: A predictive strategy for cardiac failure. Biosens Bioelectron 2019; 130:40-47. [DOI: 10.1016/j.bios.2019.01.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
|
38
|
Meng F, Ni M, Chen F, Song J, Wei D. Nanoscale fracture of defective popgraphene monolayers. Phys Chem Chem Phys 2019; 21:1242-1253. [PMID: 30566135 DOI: 10.1039/c8cp06577b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new carbon allotrope, namely popgraphene, has been recently demonstrated to possess high potentials for nanodevice applications. Herein, the fracture of defective popgraphene was studied using molecular dynamics simulations and continuum modeling. Three scenarios of defects were considered, including an individual point defect, distributed point defects, and nanocracks. It was found that the fracture stress of popgraphene with an individual point defect was governed by both the geometry of the defect and the critical bond where fracture initiates. Moreover, the fracture stress of popgraphene with distributed point defects was discovered to be inversely proportional to the defect density, showing a nice linear trend. Furthermore, for popgraphene with a nanocrack, it failed in a brittle fashion and exhibited a negligible lattice trapping effect. The Griffith criterion was subsequently employed with the consideration of crack deflection to accurately predict the dependence of fracture stress on crack size. The present study lays a mechanistic foundation for nanoscale applications of popgraphene and offers a better understanding of the roles of defects in fracture of low-dimensional materials.
Collapse
|
39
|
Vukojević V, Djurdjić S, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković DM. RuO 2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing. Biosens Bioelectron 2018; 117:392-397. [PMID: 29960271 DOI: 10.1016/j.bios.2018.06.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 12/24/2022]
Abstract
In this work, we aimed to propose a newly synthesized composite material with enhanced electrocatalytic properties as a novel screen-printed sensor for the quantification of NADH. Additionally, the surface was modified with alcohol dehydrogenase for the preparation of an amperometric biosensor for analysis of ethanol. Synthesized material was characterized using several microstructural (FE-SEM, HR-TEM, XRD) and electrochemical (CV, EIS) techniques. The electrochemical response of the tested analytes was investigated as a function of important parameters. Under optimal conditions, the working linear range and limit of detection for ethanol sensing was 1-1800 µM and 0.19 µM, respectively. For NADH, the linear range was from 1 to 1300 µM with limit of detection of 0.52 µM. Moreover, effects of some possible interfering compounds were investigated and the developed procedure was applied to commercial alcoholic beverages. The results obtained showed satisfactory precision and accuracy of the developed method and confirm the proposed approach could be a possible replacement for the currently used techniques for ethanol and NADH quantification.
Collapse
Affiliation(s)
- Vesna Vukojević
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| | - Sladjana Djurdjić
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Miloš Ognjanović
- The Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia
| | - Bratislav Antić
- The Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia
| | - Kurt Kalcher
- Institute of Chemistry-Analytical Chemistry, Karl-Franzens University Graz, A-8010 Graz, Austria
| | - Jelena Mutić
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Dalibor M Stanković
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia; The Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia.
| |
Collapse
|
40
|
Data on a new sensitivity-improved miniaturized label-free electrochemical biosensor. Data Brief 2018; 17:1288-1294. [PMID: 29845100 PMCID: PMC5966522 DOI: 10.1016/j.dib.2018.01.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
This article presents a new sensitivity-improved electrochemical measurement architecture for cardiovascular disease (CVD) diagnosis by detecting CVD biomarkers, S100 beta protein and C-reactive protein (CRP). The new architecture includes a design for a new electrochemical measurement set-up, which improves the reaction conditions of chemical and biological molecules and incorporates a newly biochip design. With the new architecture, electrochemical measurement experiments were undertaken. The results obtained are related to the research article entitled “Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes” [1].
Collapse
|