1
|
Azuaje-Hualde E, Alonso-Cabrera JA, de Pancorbo MM, Benito-Lopez F, Basabe-Desmonts L. Integration of secreted signaling molecule sensing on cell monitoring platforms: a critical review. Anal Bioanal Chem 2024; 416:7249-7266. [PMID: 39048740 PMCID: PMC11584473 DOI: 10.1007/s00216-024-05435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Monitoring cell secretion in complex microenvironments is crucial for understanding cellular behavior and advancing physiological and pathological research. While traditional cell culture methods, including organoids and spheroids, provide valuable models, real-time monitoring of cell secretion of signaling molecules remains challenging. Integrating advanced monitoring technologies into these systems often disrupts the delicate balance of the microenvironment, making it difficult to achieve sensitivity and specificity. This review explored recent strategies for integrating the monitoring of cell secretion of signaling molecules, crucial for understanding and replicating cell microenvironments, within cell culture platforms, addressing challenges such as non-adherent cell models and the focus on single-cell methodologies. We highlight advancements in biosensors, microfluidics, and three-dimensional culture methods, and discuss their potential to enhance real-time, multiplexed cell monitoring. By examining the advantages, limitations, and future prospects of these technologies, we aim to contribute to the development of integrated systems that facilitate comprehensive cell monitoring, ultimately advancing biological research and pharmaceutical development.
Collapse
Affiliation(s)
- Enrique Azuaje-Hualde
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juncal A Alonso-Cabrera
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Leioa, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
- Microfluidics Cluster UPV/EHU, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain.
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| |
Collapse
|
2
|
Shiohara A, Wojnilowicz M, Lyu Q, Pei Y, Easton CD, Chen Y, White JF, McAuley A, Prieto‐Simon B, Thissen H, Voelcker NH. SARS-CoV-2 Virus Detection Via a Polymeric Nanochannel-Based Electrochemical Biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205281. [PMID: 36585382 PMCID: PMC9880620 DOI: 10.1002/smll.202205281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The development of simple, cost-effective, rapid, and quantitative diagnostic tools remains critical to monitor infectious COVID-19 disease. Although numerous diagnostic platforms, including rapid antigen tests, are developed and used, they suffer from limited accuracy, especially when tested with asymptomatic patients. Here, a unique approach to fabricate a nanochannel-based electrochemical biosensor that can detect the entire virion instead of virus fragments, is demonstrated. The sensing platform has uniform nanoscale channels created by the convective assembly of polystyrene (PS) beads on gold electrodes. The PS beads are then functionalized with bioreceptors while the gold surface is endowed with anti-fouling properties. When added to the biosensor, SARS-CoV-2 virus particles block the nanochannels by specific binding to the bioreceptors. The nanochannel blockage hinders the diffusion of a redox probe; and thus, allows quantification of the viral load by measuring the changes in the oxidation current before and after virus incubation. The biosensor shows a low limit of detection of ≈1.0 viral particle mL-1 with a wide detection range up to 108 particles mL-1 in cell culture media. Moreover, the biosensor is able to differentiate saliva samples with SARS-CoV-2 from those without, demonstrating the potential of this technology for translation into a point-of-care biosensor product.
Collapse
Affiliation(s)
- Amane Shiohara
- Drug Delivery, Deposition,and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
- Melbourne Centre of NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
| | - Marcin Wojnilowicz
- Drug Delivery, Deposition,and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Quanxia Lyu
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Yi Pei
- Drug Delivery, Deposition,and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Christopher D. Easton
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Yu Chen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Jacinta F White
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Alexander McAuley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Beatriz Prieto‐Simon
- Department of Electronic EngineeringUniversitat Rovira i VirgiliTarragona43007Spain
- ICREAPg. Lluís Companys 23Barcelona08010Spain
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Nicolas H Voelcker
- Drug Delivery, Deposition,and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
- Melbourne Centre of NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
| |
Collapse
|
3
|
Bourgeat L, Pacini L, Serghei A, Lesieur C. A protocol to measure slow protein dynamics of the cholera toxin B pentamers using broadband dielectric spectroscopy. STAR Protoc 2022; 3:101561. [PMID: 35874473 PMCID: PMC9304676 DOI: 10.1016/j.xpro.2022.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The present protocol describes how to measure experimentally the slow protein dynamics that take place upon the thermal unfolding of the B subunit cholera toxin pentamers using broadband dielectric spectroscopy (BDS) in weakly hydrated and nanoconfined conditions. Transient unfolding intermediates, rarely identified otherwise, are revealed thanks to the B subunit's remarkable heat resistance up to 180°C and distinct molecular dynamics. The frequencies detected experimentally are consistent with the spatiotemporal scales of motions of molecular dynamics simulation. For complete details on the use and execution of this protocol, please refer to Bourgeat et al. (2021, 2019). Measure protein dynamics experimentally using BDS in nanoconfined conditions Identify rare cholera toxin B subunit assembly and unfolding intermediates Detect cholera toxin B subunits in temperatures up to 180°C Match between protein molecular dynamics from experiments and simulations
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
4
|
Shiohara A, Easton CD, Prieto-Simon B, Voelcker NH. Electrochemical Biosensors Based on Convectively Assembled Colloidal Crystals. BIOSENSORS 2022; 12:480. [PMID: 35884283 PMCID: PMC9312794 DOI: 10.3390/bios12070480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Rapid, sensitive, selective and portable virus detection is in high demand globally. However, differentiating non-infectious viral particles from intact/infectious viruses is still a rarely satisfied sensing requirement. Using the negative space within monolayers of polystyrene (PS) spheres deposited directly on gold electrodes, we fabricated tuneable nanochannels decorated with target-selective bioreceptors that facilitate the size-selective detection of intact viruses. Detection occurred through selective nanochannel blockage of diffusion of a redox probe, [Fe(CN)6]3/4-, allowing a quantifiable change in the oxidation current before and after analyte binding to the bioreceptor immobilised on the spheres. Our model system involved partial surface passivation of the mono-assembled PS spheres, by silica glancing angle deposition, to confine bioreceptor immobilisation specifically to the channels and improve particle detection sensitivity. Virus detection was first optimised and modelled with biotinylated gold nanoparticles, recognised by streptavidin immobilised on the PS layer, reaching a low limit of detection of 37 particles/mL. Intact, label-free virus detection was demonstrated using MS2 bacteriophage (~23-28 nm), a marker of microbiological contamination, showing an excellent limit of detection of ~1.0 pfu/mL. Tuneable nanochannel geometries constructed directly on sensing electrodes offer label-free, sensitive, and cost-efficient point-of-care biosensing platforms that could be applied for a wide range of viruses.
Collapse
Affiliation(s)
- Amane Shiohara
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3168, Australia;
- Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Melbourne, VIC 3168, Australia
| | - Christopher D. Easton
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3168, Australia;
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Nicolas H. Voelcker
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3168, Australia;
- Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
5
|
Electrical monitoring of infection biomarkers in chronic wounds using nanochannels. Biosens Bioelectron 2022; 209:114243. [PMID: 35421671 DOI: 10.1016/j.bios.2022.114243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Chronic wounds represent an important healthcare challenge in developed countries, being wound infection a serious complication with significant impact on patients' life conditions. However, there is a lack of methods allowing an early diagnosis of infection and a right decision making for a correct treatment. In this context, we propose a novel methodology for the electrical monitoring of infection biomarkers in chronic wound exudates, using nanoporous alumina membranes. Lysozyme, an enzyme produced by the human immune system indicating wound infection, is selected as a model compound to prove the concept. Peptidoglycan, a component of the bacterial layer and the native substrate of lysozyme, is immobilized on the inner walls of the nanochannels, blocking them both sterically and electrostatically. The steric blocking is dependent on the pore size (20-100 nm) and the peptidoglycan concentration, whereas the electrostatic blocking depends on the pH. The proposed analytical method is based on the electrical monitoring of the steric/electrostatic nanochannels unblocking upon the specific degradation of peptidoglycan by lysozyme, allowing to detect the infection biomarker at 280 ng/mL levels, which are below those expected in wounds. The low protein adsorption rate and thus outstanding filtering properties of the nanoporous alumina membranes allowed us to discriminate wound exudates from patients with both sterile and infected ulcers without any sample pre-treatment usually indispensable in most diagnostic devices for analysis of physiological fluids. Although size and charge effects in nanochannels have been previously approached for biosensing purposes, as far as we know, the use of nanoporous membranes for monitoring enzymatic cleavage processes, leading to analytical systems for the specific detection of the enzymes has not been deeply explored so far. Compared with previously reported methods, our methodology presents the advantages of no need of neither bioreceptors (antibodies or aptamers) nor competitive assays, low matrix effects and quantitative and rapid analysis at the point-of-care, being also of potential application for the determination of other protease biomarkers.
Collapse
|
6
|
Ferrofluids transport in bioinspired nanochannels: Application to electrochemical biosensing with magnetic-controlled detection. Biosens Bioelectron 2022; 201:113963. [PMID: 35007994 DOI: 10.1016/j.bios.2022.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/28/2021] [Accepted: 01/02/2022] [Indexed: 11/21/2022]
Abstract
Controllable transport of ions, molecules or fluids in bioinspired nanochannels is crucial to study biointeraction occurred in confined space and also develop biosensing platforms or devices. Herein, ferrofluids transport in biofunctionalized nanochannels was investigated and a novel electrochemical biosensing platform with the characteristic of label-free, high sensitivity and rapid response was constructed. The hydrophilic ferrofluids can flux swiftly through the antibody-immobilized nanochannels with the assistance of a permanent magnet. It was initially found that the presence of ferrofluids would depress the redox current of the electrochemical probe [Fe(CN)6]3-. The mechanism of the depressing effect was ascribed to the constrained diffusion of [Fe(CN)6]3- which lowered the concentration of it at the electrode surface and the weak adsorption of the ferrofluids which increased the charge transfer resistance of the interface. Therefore, redox current of the probe was applied to indicate the amount of the ferrofluids fluxing through the bioinspired nanochannels. The steric hindrance of the bioinspired nanochannels changed with the amount of the corresponding target being incubated, resulting in quantitative variation of the redox current. In this way, electrochemical biosensing platform based on ferrofluids transport was constructed. Using carbohydrate antigen 153 (CA153) as a model target, a low detection limit of 0.0013 U·mL-1 was acquired. This magnetic-controlled bioelectrochemical platform was expected to be expanded to other applications such as genetic testing, drug analysis, and molecular identification.
Collapse
|
7
|
Qiao Z, Jiang Z, Luo Q, Zhang H, Zheng J. A label-free ratiometric immunoassay using bioinspired nanochannels and a smart modified electrode. Anal Chim Acta 2021; 1162:338476. [PMID: 33926698 DOI: 10.1016/j.aca.2021.338476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Labeling with redox reporter is often required in developing electrochemical bioassay for most proteins or nucleic acid biomarkers. Herein, a label-free ratiometric immunosensing platform is firstly developed by integrating the antibody-conjugated nanochannels with a smart modified electrode. The electrode modifier is the composite of C60, tetraoctylammonium bromide (TOA+) and Prussian blue (PB). Cyclic voltammograms of the ultimate C60-TOA+/PB modified electrode exhibited two pairs of peaks at 0.15 V and -0.13 V, ascribing to the redox of PB and C60, respectively. With the addition of K3[Fe(CN)6] in the electrolyte solution, the peaks of PB decreased due to the adsorption of [Fe(CN)6]3- while the peaks of C60 increased because of the formation of the ternary complex (TC) C60-TOA+-[Fe(CN)6]3-. As a result, the peak current ratio IPB/ITC decreased gradually with the increment of the concentration of [Fe(CN)6]3-. For the nanochannels-based immunosensing platform, the steric hindrance of the bioconjugated nanochannels varied with the loading amount of the target CA125, and thus [Fe(CN)6]3- passing through the channels was quantitatively affected. And the higher CA125 level was, the less [Fe(CN)6]3- concentration was. And thus, the ratio IPB/ITC monitored at the C60-TOA+/PB modified electrode increased with the increase of the concentration of CA125. The ratiometric immunoassay featured a linear calibration range from 1.0 U mL-1 to 100 U mL-1 with a low detection limit of 0.86 U mL-1. In addition, the ratiometric immunosensing platform demonstrated good specificity and stability as well as acceptable accuracy in overcoming the effect of electrode passivation which was an inherent problem of electroanalysis.
Collapse
Affiliation(s)
- Zhe Qiao
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Zilian Jiang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Qiufen Luo
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Hongfang Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| | - Jianbin Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Shanxi Provincial Key Laboratory of Electroanalytical Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
8
|
Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Sci Rep 2021; 11:5496. [PMID: 33750814 PMCID: PMC7943580 DOI: 10.1038/s41598-021-84185-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.
Collapse
|
9
|
Domagalski JT, Xifre-Perez E, Marsal LF. Recent Advances in Nanoporous Anodic Alumina: Principles, Engineering, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:430. [PMID: 33567787 PMCID: PMC7914664 DOI: 10.3390/nano11020430] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
The development of aluminum anodization technology features many stages. With the story stretching for almost a century, rather straightforward-from current perspective-technology, raised into an iconic nanofabrication technique. The intrinsic properties of alumina porous structures constitute the vast utility in distinct fields. Nanoporous anodic alumina can be a starting point for: Templates, photonic structures, membranes, drug delivery platforms or nanoparticles, and more. Current state of the art would not be possible without decades of consecutive findings, during which, step by step, the technique was more understood. This review aims at providing an update regarding recent discoveries-improvements in the fabrication technology, a deeper understanding of the process, and a practical application of the material-providing a narrative supported with a proper background.
Collapse
Affiliation(s)
| | | | - Lluis F. Marsal
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain; (J.T.D.); (E.X.-P.)
| |
Collapse
|
10
|
Wu X, Lv D, Cai C, Zhao Z, Wang M, Chen W, Liu Y. A TP53-Associated Immune Prognostic Signature for the Prediction of Overall Survival and Therapeutic Responses in Muscle-Invasive Bladder Cancer. Front Immunol 2020; 11:590618. [PMID: 33391264 PMCID: PMC7774015 DOI: 10.3389/fimmu.2020.590618] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background TP53 gene mutation is one of the most common mutations in human bladder cancer (BC) and has been implicated in the progression and prognosis of BC. Methods RNA sequencing data and TP53 mutation data in different populations and platforms were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database to determine and validate a TP53-associated immune prognostic signature (TIPS) based on differentially expressed immune-related genes (DEIGs) between muscle-invasive bladder cancer (MIBC) patients with and without TP53 mutations. Results A total of 99 DEIGs were identified based on TP53 mutation status. TIPS including ORM1, PTHLH, and CTSE were developed and validated to identify high-risk prognostic group who had a poorer prognosis than low-risk prognostic group in TCGA and GEO database. The high-risk prognostic group were characterized by a higher abundance of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages than the low-risk prognostic group. Moreover, they exhibited a lower abundance of CD56bright NK cells, higher expression of CTLA4, LAG3, PDCD1, TIGIT, and HAVCR2, as well as being more likely to respond to anti–PD-1, and neoadjuvant chemotherapy than the low-risk prognostic group. Based on TIPS and other clinical characteristics, a nomogram was constructed for clinical use. Conclusion TIPS derived from TP53 mutation status is a potential prognostic signature or therapeutic target but additional prospective studies are necessary to confirm this potential.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Daojun Lv
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Ming Wang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Wenzhe Chen
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Yongda Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| |
Collapse
|
11
|
Nie Y, Li J, Liu Y, Zhang Q, Ma Q. A Visual FRET Immunofluorescent Biosensor for Ratiometric Parathyroid Hormone (1-84) Antigen Point-of-Care Detection. J Fluoresc 2020; 30:329-334. [PMID: 32020436 DOI: 10.1007/s10895-020-02502-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 01/28/2023]
Abstract
Excessive secretion of PTH leads to disturbance of calcium and phosphorus metabolism in the body, which promotes bone, kidney, digestive system and nervous system diseases. Due to the short half-life of PTH, it becomes a difficult issue for PTH detection in the clinical diagnosis field. We explored a competitive immunofluorescent sensing mode based on FRET of two-color CdTe QDs for ratiometric PTH 1-84 antigen detection. The FRET effect and ratiometric fluorescence between the two-color CdTe QDs motivated accurate quantification of PTH 1-84 antigen concentration from 0.01 ng mL-1 to 0.08 ng mL-1 with a limit of detection of 3 pg mL-1. More importantly, under UV irradiation, samples with different concentrations of PTH 1-84 antigen achieved fluorescence visualization, which provides huge possibility for the practical application of PTH 1-84 antigen point-of-care detection.
Collapse
Affiliation(s)
- Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, 130012, China
| | - Jingting Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, 130012, China
| | - Yang Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, 130012, China
| | - Qian Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China. .,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, 130012, China.
| |
Collapse
|
12
|
Nanoparticles as Emerging Labels in Electrochemical Immunosensors. SENSORS 2019; 19:s19235137. [PMID: 31771201 PMCID: PMC6928605 DOI: 10.3390/s19235137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
This review shows recent trends in the use of nanoparticles as labels for electrochemical immunosensing applications. Some general considerations on the principles of both the direct detection based on redox properties and indirect detection through electrocatalytic properties, before focusing on the applications for mainly proteins detection, are given. Emerging use as blocking tags in nanochannels-based immunosensing systems is also covered in this review. Finally, aspects related to the analytical performance of the developed devices together with prospects for future improvements and applications are discussed.
Collapse
|
13
|
Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Rajeev G, Cowin AJ, Voelcker NH, Prieto Simon B. Magnetic Nanoparticles Enhance Pore Blockage-Based Electrochemical Detection of a Wound Biomarker. Front Chem 2019; 7:438. [PMID: 31245362 PMCID: PMC6582131 DOI: 10.3389/fchem.2019.00438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/28/2019] [Indexed: 11/29/2022] Open
Abstract
A novel pore blockage-based electrochemical immunosensor based on the combination of 100 nm-magnetic nanoparticles (MNPs), as signal enhancers, and 200 nm-pore diameter nanoporous anodic alumina (NAA) membranes, as sensing platform, is reported. A peptide conjugate mimicking flightless I (Flii), a wound healing biomarker, was chosen as target analyte. The sensing platform consists of an anti-Flii antibody (Ab1)-modified NAA membrane attached onto a gold electrode. Anti-KLH antibody (Ab2)-modified MNPs (MNP-Ab2) were used to selectively capture the Flii peptide conjugate in solution. Sensing was based on pore blockage of the Ab1-modified NAA membrane caused upon specific binding of the MNP-Ab2-analyte complex. The degree of pore blockage, and thus the concentration of the Flii peptide conjugate in the sample, was measured as a reduction in the oxidation current of a redox species ([Fe(CN)6]4-) added in solution. We demonstrated that pore blockage is drastically enhanced by applying an external magnetic field at the membrane backside to facilitate access of the MNP-Ab2-analyte complex into the pores, and thus ensure its availability to bind to the Ab1-modified NAA membrane. Combining the pore blockage-based electrochemical magnetoimmunosensor with an externally applied magnetic field, a limit of detection (LOD) of 0.5 ng/ml of Flii peptide conjugate was achieved, while sensing in the absence of magnetic field could only attain a LOD of 1.2 μg/ml. The developed sensing strategy is envisaged as a powerful solution for the ultra-sensitive detection of an analyte of interest present in a complex matrix.
Collapse
Affiliation(s)
- Gayathri Rajeev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, NSW, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, Australia
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Beatriz Prieto Simon
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, Australia
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| |
Collapse
|
15
|
Li S, Liu Y, Ma Q. A novel polydopamine electrochemiluminescence organic nanoparticle-based biosensor for parathyroid hormone detection. Talanta 2019; 202:540-545. [PMID: 31171219 DOI: 10.1016/j.talanta.2019.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 01/06/2023]
Abstract
In this work, polydopamine electrochemiluminescence (ECL)-organic nanoparticles (EONs) based immunosensing strategy was designed for parathyroid hormone (PTH) detection. Dopamine is oxidized and polymerized to form polydopamine organic nanoparticle via self-polymerization process. Unlike the low photoluminescent efficiency and unsatisfactory fluorescence characters of the fluorescent organic nanoparticles (FONs), the polydopamine EONs do not only show unique physicochemical properties and excellent biocompatibility, but also provide ideal electrochemical properties and bright ECL signals, which can be employed as high-quality ECL luminophores. The ECL-related properties and performance of the EONs are further discussed in this paper. The sensing method has a linear response in the range of 0.05-8 ng/mL with a detection limit of 17 pg/mL. The applicability of this method is evaluated through the determination of PTH in human plasma samples with satisfactory results. To our best knowledge, this was the first time about the exploration of polydopamine organic nanoparticles as ECL luminophores in the biosensing application.
Collapse
Affiliation(s)
- Shijie Li
- Department of Thyroid Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130021, China
| | - Yang Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Qianwei Road 10, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Qianwei Road 10, Changchun, 130012, China.
| |
Collapse
|
16
|
Escosura-Muñiz ADL, Ivanova K, Tzanov T. Electrical Evaluation of Bacterial Virulence Factors Using Nanopores. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13140-13146. [PMID: 30888786 DOI: 10.1021/acsami.9b02382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, we propose a novel methodology for electrical monitoring using nanoporous alumina membranes of virulence factors secreted by bacterial pathogens. Bacterial hyaluronidase (HYAL), which is produced by a number of invasive Gram-positive bacteria, is selected as a model compound to prove the concept. Our electrochemical setup takes advantage of the flat surface of indium tin oxide/poly(ethylene terephthalate) (ITO/PET) electrodes for their assembly with the nanoporous membrane. The proposed analytical method, based on the electrical monitoring of the steric/electrostatic nanochannels blocked upon formation of an antibody-HYAL immunocomplex, reached detection limits as low as 64 UI/mL (17.3 U/mg) HYAL. The inert surface of the ITO/PET electrodes together with the anti-biofilm properties of the 20 nm pore-sized alumina membranes allows for culturing the bacteria, capturing the secreted enzymes inside the nanochannels, and removing the cells before the electrochemical measurement. Secreted HYAL at levels of 1000 UI/mL (270 U/mg) are estimated in Gram-positive Staphylococcus aureus cultures, whereas low levels are detected for Gram-negative Pseudomonas aeruginosa (used as a negative control). Finally, HYAL secretion inhibition by RNAIII-inhibiting peptide (YSPWTNF-NH2) is also monitored, opening the way for further applications of the developed monitoring system for evaluation of the antivirulence potential of different compounds. This label-free method is rapid and cheap, avoiding the use of the time-consuming sandwich assays. We envisage future applications for monitoring of bacterial virulence/invasion as well as for testing of novel antimicrobial/antivirulence agents.
Collapse
Affiliation(s)
- Alfredo de la Escosura-Muñiz
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering , Universitat Politècnica de Catalunya , Terrassa 08227 , Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering , Universitat Politècnica de Catalunya , Terrassa 08227 , Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering , Universitat Politècnica de Catalunya , Terrassa 08227 , Spain
| |
Collapse
|
17
|
|
18
|
Law CS, Lim SY, Abell AD, Voelcker NH, Santos A. Nanoporous Anodic Alumina Photonic Crystals for Optical Chemo- and Biosensing: Fundamentals, Advances, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E788. [PMID: 30287772 PMCID: PMC6215225 DOI: 10.3390/nano8100788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
Optical sensors are a class of devices that enable the identification and/or quantification of analyte molecules across multiple fields and disciplines such as environmental protection, medical diagnosis, security, food technology, biotechnology, and animal welfare. Nanoporous photonic crystal (PC) structures provide excellent platforms to develop such systems for a plethora of applications since these engineered materials enable precise and versatile control of light⁻matter interactions at the nanoscale. Nanoporous PCs provide both high sensitivity to monitor in real-time molecular binding events and a nanoporous matrix for selective immobilization of molecules of interest over increased surface areas. Nanoporous anodic alumina (NAA), a nanomaterial long envisaged as a PC, is an outstanding platform material to develop optical sensing systems in combination with multiple photonic technologies. Nanoporous anodic alumina photonic crystals (NAA-PCs) provide a versatile nanoporous structure that can be engineered in a multidimensional fashion to create unique PC sensing platforms such as Fabry⁻Pérot interferometers, distributed Bragg reflectors, gradient-index filters, optical microcavities, and others. The effective medium of NAA-PCs undergoes changes upon interactions with analyte molecules. These changes modify the NAA-PCs' spectral fingerprints, which can be readily quantified to develop different sensing systems. This review introduces the fundamental development of NAA-PCs, compiling the most significant advances in the use of these optical materials for chemo- and biosensing applications, with a final prospective outlook about this exciting and dynamic field.
Collapse
Affiliation(s)
- Cheryl Suwen Law
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide SA 5005, Australia.
| | - Siew Yee Lim
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide SA 5005, Australia.
| | - Andrew D Abell
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide SA 5005, Australia.
- Department of Chemistry, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Nicolas H Voelcker
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Melbourne 3168, Australia.
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3168, Australia.
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
| | - Abel Santos
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide SA 5005, Australia.
| |
Collapse
|