1
|
Yang X, Li C, Xia J, Zhang F, Wang Z. Self-assembly of a AuNPs/Ti 3C 2 MXene hydrogel for cascade amplification of microRNA-122 biosensing. Mikrochim Acta 2024; 191:259. [PMID: 38605266 DOI: 10.1007/s00604-024-06337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
A three-dimensional (3D) self-assembled AuNPs/Ti3C2 MXene hydrogel (AuNPs/Ti3C2 MXH) nanocomposite was prepared for the fabrication of a novel microRNA-122 electrochemical biosensor. The 3D hydrogel structure was gelated from two-dimensional MXene nanosheets with the assistance of graphite oxide and ethylenediamine. MXene hydrogels supported the in situ formation of Au nanoparticles (AuNPs) that predominantly exploring the (111) facet, and these AuNPs are utilized as carriers for hairpin DNA (hpDNA) probes, facilitating DNA hybridization. MXene acted as both a reductant and stabilizer, significantly improving the electrochemical signal. In addition, the conjugation of PAMAM dendrimer-encapsulated AuNPs and H-DNA worked as an ideal bridge to connect targets and efficient electrochemical tags, providing a high amplification efficiency for the sensing of microRNA-122. A linear relationship between the peak currents and the logarithm of the concentrations of microRNA-122 from 1.0 × 10-2 to 1.0 × 102 fM (I = 1.642 + 0.312 lgc, R2 = 0.9891), is obtained. The detection limit is 0.8 × 10-2 fM (S/N = 3). The average recovery for human serum detection ranged from 97.32 to 101.4% (RSD < 5%).
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
- Bloomage Biotechnology Corporation Limited, Jinan, 250101, Shandong, China
| | - Chunguang Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Fernandes T, Daniel-da-Silva AL, Trindade T. Metal-dendrimer hybrid nanomaterials for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Cascade i-motifs-dependent reversible electrochemical impedance strategy-oriented pH and terminal deoxynucleotidyl transferase biosensing. Bioelectrochemistry 2022; 145:108085. [DOI: 10.1016/j.bioelechem.2022.108085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 01/21/2023]
|
5
|
Hao N, Wang Z, Liu P, Becker R, Yang S, Yang K, Pei Z, Zhang P, Xia J, Shen L, Wang L, Welsh-Bohmer KA, Sanders L, Lee LP, Huang TJ. Acoustofluidic multimodal diagnostic system for Alzheimer's disease. Biosens Bioelectron 2022; 196:113730. [PMID: 34736099 PMCID: PMC8643320 DOI: 10.1016/j.bios.2021.113730] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative brain disorder that affects tens of millions of older adults worldwide and has significant economic and societal impacts. Despite its prevalence and severity, early diagnosis of AD remains a considerable challenge. Here we report an integrated acoustofluidics-based diagnostic system (ADx), which combines triple functions of acoustics, microfluidics, and orthogonal biosensors for clinically accurate, sensitive, and rapid detection of AD biomarkers from human plasma. We design and fabricate a surface acoustic wave-based acoustofluidic separation device to isolate and purify AD biomarkers to increase the signal-to-noise ratio. Multimodal biosensors within the integrated ADx are fabricated by in-situ patterning of the ZnO nanorod array and deposition of Ag nanoparticles onto the ZnO nanorods for surface-enhanced Raman scattering (SERS) and electrochemical immunosensors. We obtain the label-free detections of SERS and electrochemical immunoassay of clinical plasma samples from AD patients and healthy controls with high sensitivity and specificity. We believe that this efficient integration provides promising solutions for the early diagnosis of AD.
Collapse
Affiliation(s)
- Nanjing Hao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zeyu Wang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Pengzhan Liu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhichao Pei
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Peiran Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Liang Shen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Lin Wang
- Ascent Bio-Nano Technologies, Inc., Morrisville, NC, 27560, USA
| | | | - Laurie Sanders
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA; Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
6
|
Surucu O, Öztürk E, Kuralay F. Nucleic Acid Integrated Technologies for Electrochemical Point‐of‐Care Diagnostics: A Comprehensive Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ozge Surucu
- Department of Chemistry Faculty of Science Ege University 35040 Izmir Turkey
| | - Elif Öztürk
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| | - Filiz Kuralay
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| |
Collapse
|
7
|
Hadian-Ghazvini S, Dashtestani F, Hakimian F, Ghourchian H. An electrochemical genosensor for differentiation of fully methylated from fully unmethylated states of BMP3 gene. Bioelectrochemistry 2021; 142:107924. [PMID: 34474202 DOI: 10.1016/j.bioelechem.2021.107924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The methylation state of a part of the BMP3 gene was detected by our genosensor. This epigenetic biomarker is involved in the biomarker panel of the sDNA test, which is an FDA approved test for colorectal cancer screening. In the present genosensor, polyethyleneimine-stabilized silver nanoparticles (PEI-AgNPs) were used as a non-specific nanolabel for signal generation/amplification and lowering the limit of detection. After immobilization of capture probes and mercaptoethanol molecules on the gold electrode, a thermally treated mixture of the BMP3 targets and reporter probes was introduced to the electrode. Because of the specificity of the reporter probes for fully methylated targets, complete sandwich-like complexes are formed only with them. Therefore, such full-length double-stranded hybrids compared to fully unmethylated targets have more negative charges and can more attract positively charged PEI-AgNPs. For discrimination between methylated and unmethylated targets, electroimpedance spectroscopy and cyclic voltammetry were used for electrode modification monitoring and signal measurement. The sharp and narrow anodic peaks of cyclic voltammograms, which resulted from silver oxidation, were utilized for calibration plot analysis. The genosensor showed a linear response for the target concentration range from 1fM to 100 nM, while the detection limit for methylated and unmethylated target discrimination was 1 fM.
Collapse
Affiliation(s)
- Samaneh Hadian-Ghazvini
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Fariba Dashtestani
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Fatemeh Hakimian
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Hedayatolah Ghourchian
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran.
| |
Collapse
|
8
|
Al-Madhagi S, O'Sullivan CK, Prodromidis MI, Katakis I. Combination of ferrocene decorated gold nanoparticles and engineered primers for the direct reagentless determination of isothermally amplified DNA. Mikrochim Acta 2021; 188:117. [PMID: 33687553 DOI: 10.1007/s00604-021-04771-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 11/30/2022]
Abstract
A reagent-less DNA sensor has been developed exploiting a combination of gold nanoparticles, modified primers, and isothermal amplification. It is applied to the determination ofKarlodinium armiger, a toxic microalgae, as a model analyte to demonstrate this generic platform. Colloidal gold nanoparticles with an average diameter of 14 ± 0.87 nm were modified with a mixed self-assembled monolayer of thiolated 33-mer DNA probes and (6-mercaptohexyl) ferrocene. Modified primers, exploiting a C3 spacer between the primer-binding site and an engineered single-stranded tail, were used in an isothermal recombinase polymerase amplification reaction to produce an amplicon by two single-stranded tails. These tails were designed to be complementary to a gold electrode tethered capture oligo probe, and an oligo probe immobilized on the gold nanoparticles, respectively. The time required for hybridization of the target tailed DNA with the surface immobilized probe and reporter probe immobilized on AuNPs was optimized and reduced to 10 min, in both cases. Amplification time was further optimized to be 40 min to ensure the maximum signal. Under optimal conditions, the limit of detection was found to be 1.6 fM of target dsDNA. Finally, the developed biosensor was successfully applied to the detection of genomic DNA extracted from a seawater sample that had been spiked with K. armiger cells. The demonstrated generic electrochemical genosensor can be exploited for the detection of any DNA sequence and ongoing work is moving towards an integrated system for use at the point-of-need.
Collapse
Affiliation(s)
- Sallam Al-Madhagi
- Interfibio Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Ciara K O'Sullivan
- Interfibio Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain. .,Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| | | | - Ioanis Katakis
- Interfibio Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain.
| |
Collapse
|
9
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
10
|
|
11
|
Peng Y, Li R, Yu M, Yi X, Zhu H, Li Z, Yang Y. Electrochemical biosensor for detection of MON89788 gene fragments with spiny trisoctahedron gold nanocrystal and target DNA recycling amplification. Mikrochim Acta 2020; 187:494. [PMID: 32778963 DOI: 10.1007/s00604-020-04467-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
The shape-controlled synthesis of gold nanocrystals via shape induction of hexadecyltrimethylammonium chloride, potassium bromide, and potassium iodide and enantioselective direction of L-cysteine is reported. The resulting gold nanocrystals (STO-Au) offer spiny trisoctahedron nanostructures with good monodispersity and enhanced exposed high-index facets and high catalytic activity. Construction of the electrochemical sensing platform for MON89788 gene involves the modification of STO-Au, thionine (Thi), and labeled bipedal DNA probe 1 or 2 (P1 or P2) for target DNA-induced recycling amplification. In the detection, two surface DNA probes were immobilized on gold electrode via the Au-S bond. Then, hairpin DNA 1 (H1), Thi-STO-Au-P1, and Thi-STO-Au-P2 self-assemble into two-dimensional DNA nanopores (DNPs) on the electrode surface. Target DNA hybridizes with hairpin DNA 2 (H2) to open hairpin structure of H2. The opened H2 binds with H1 in the DNPs to release Thi-STO-Au-P1, Thi-STO-Au-P2, and target DNA by toehold-mediated strand-displacement. The utilization of target DNA-induced recycling allows one target DNA to release 2N STO-Au-labeled DNA strands, promoting significant signal amplification. The detection signal is further enhanced by the catalyzed redox reaction of Thi with STO-Au. The differential pulse voltammetric signal, best measured at - 0.18 V vs. Ag/AgCl, decreases linearly with increasing concentration of MON89788 in the range 0.02-8 × 104 fM, and the detection limit is 0.0048 fM (S/N = 3). The proposed method was successfully applied for electrochemical detection of MON89788 gene fragments in the PCR products from genetically modified soybean. Graphical Abstract We develop l-cysteine controlled synthesis of spiny trisoctahedron gold nanocrystals with good monodispersity and highly exposed high-index facets. The architecture achieves to ultrahigh catalytic activity. The electrochemical biosensor based on gold nanocrystals and target DNA recycling amplification provides advantage of sensitivity, repeatability, and regeneration-free.
Collapse
Affiliation(s)
- Yuanfeng Peng
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ruiyi Li
- , Lihu Road 1800, Wuxi, 214122, Jiangsu, China
| | - Minyi Yu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaowen Yi
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haiyan Zhu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zaijun Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yongqiang Yang
- National Graphene Product Quality Supervision and Inspection Center, Jiangsu Province Special Equipment Safety Supervision and Inspection Institute Branch, Wuxi, 214071, China.
| |
Collapse
|
12
|
Liu G, Hong J, Ma K, Wan Y, Zhang X, Huang Y, Kang K, Yang M, Chen J, Deng S. Porphyrin Trio−Pendant fullerene guest as an In situ universal probe of high ECL efficiency for sensitive miRNA detection. Biosens Bioelectron 2020; 150:111963. [DOI: 10.1016/j.bios.2019.111963] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023]
|
13
|
Han Y, An F, Liu J, Kong J, Zhang X. Highly sensitive determination of DNA via a new type of electrochemical zirconium signaling probe. NEW J CHEM 2020. [DOI: 10.1039/d0nj04405a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Exploiting Zr(iv) as a redox probe for the detection of DNA has great potential in clinical analysis.
Collapse
Affiliation(s)
- Yan Han
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Fengxia An
- State Power Protection Research Institute Co., Ltd
- Nanjing
- P. R. China
| | - Jingliang Liu
- School of Environmental Science
- Nanjing XiaoZhuang University
- Nanjing
- P. R. China
| | - Jinming Kong
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering
- Shenzhen University Health Science Center
- Shenzhen
- P. R. China
| |
Collapse
|
14
|
Hu D, Hu Y, Zhan T, Zheng Y, Ran P, Liu X, Guo Z, Wei W, Wang S. Coenzyme A-aptamer-facilitated label-free electrochemical stripping strategy for sensitive detection of histone acetyltransferase activity. Biosens Bioelectron 2019; 150:111934. [PMID: 31818759 DOI: 10.1016/j.bios.2019.111934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Abnormal histone acetyltransferases (HAT) activity gives rise to all kinds of cellular diseases. Herein, we first report a coenzyme A (CoA)-aptamer-facilitated label-free electrochemical stripping biosensor for sensitive detection of HAT activity via square wave voltammetry (SWV) technique. The presence of HAT can lead to the transfer of the acetyl group from acetyl coenzyme A (Ac-CoA) to lysine residues of substrate peptide, thus generating CoA molecule. Later, CoA, which acts as an initiator, can embrace its aptamer via the typical target-aptamer interaction, then arousing deoxynucleotide terminal transferase (TdT)-induced silver nanoclusters (AgNCs) as signal output. Under optimized conditions, the resultant aptasensor shows obvious electrochemical stripping signal and is employed for HAT p300 analysis in a wide concentration range from 0.01 to 100 nM with a very low detection limit of 0.0028 nM (3δ/slope). The good analytical performances of the biosensor depend on the strong interaction of CoA and its aptamer and abundant stripping resource rooted from AgNCs. Next, the proposed biosensor is used for screening HAT's inhibitors and the practical HAT detection with satisfactory results. Therefore, the new, simple and sensitive HAT biosensor presents a promising direction for HAT-targeted drug discovery and epigenetic research.
Collapse
Affiliation(s)
- Dandan Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Tianyu Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yudi Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Pingjian Ran
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Xinda Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Wenting Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| |
Collapse
|
15
|
Label-free and ultrasensitive electrochemical biosensor for the detection of EBV-related DNA based on AgDNCs@DNA/AgNCs nanocomposites and lambda exonuclease-assisted target recycling. Biosens Bioelectron 2019; 143:111610. [DOI: 10.1016/j.bios.2019.111610] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 11/18/2022]
|
16
|
Electroactive polyglycine coatings for nanobiosensing applications: Label-free DNA hybridization, DNA-Antitumor agent interaction and antitumor agent determination. Anal Chim Acta 2019; 1072:15-24. [DOI: 10.1016/j.aca.2019.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
|
17
|
Sun Y, Peng Z, Li H, Wang Z, Mu Y, Zhang G, Chen S, Liu S, Wang G, Liu C, Sun L, Man B, Yang C. Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. Biosens Bioelectron 2019; 137:255-262. [DOI: 10.1016/j.bios.2019.04.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
|
18
|
Makelane H, Waryo T, Feleni U, Iwuoha E. Dendritic copolymer electrode for second harmonic alternating current voltammetric signalling of pyrene in oil-polluted wastewater. Talanta 2019; 196:204-210. [DOI: 10.1016/j.talanta.2018.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/25/2023]
|
19
|
Li J, Kong C, Liu Q, Chen Z. Colorimetric ultrasensitive detection of DNA based on the intensity of gold nanoparticles with dark-field microscopy. Analyst 2019; 143:4051-4056. [PMID: 30059077 DOI: 10.1039/c8an00825f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present an ultrasensitive colorimetric nucleic acid assay based on the intensity of gold nanoparticles (Au NPs) using dark field microscopy. In the absence of target DNA, two hairpin-like DNA strands with protruding single-stranded DNA (ssDNA) can be absorbed onto the Au NP surface via non-covalent interactions between the exposed nitrogen bases of ssDNA and Au NPs, which inhibits Au NPs from aggregating in a high concentration of salt media, while in the presence of target DNA, two hairpin DNA strands hybridize with target DNA to form double-stranded DNA (dsDNA). After hybridization chain reaction (HCR) amplification, rigid dsDNA polymers are formed, which results in serious Au NP aggregation in the salt environment. By measuring the intensity change of yellow and red dots on a dark-field image, the concentration of target DNA can be accurately quantified with a limit of detection (LOD) of 66 fM.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | | | | | | |
Collapse
|
20
|
Yang D, Zhang R, Zhao T, Sun T, Chu X, Liu S, Tang E, Xu X. Efficient reduction of 4-nitrophenol catalyzed by 4-carbo-methoxypyrrolidone modified PAMAM dendrimer–silver nanocomposites. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01655d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ag–PPDNCs prepared with 4-carbomethoxypyrrolidone modified PAMAM showed very high activity in the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Desheng Yang
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Rui Zhang
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Ting Zhao
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Tingting Sun
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Xiaomeng Chu
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Shaojie Liu
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Erjun Tang
- College of Chemical & Pharmaceutical Engineering
- Hebei University of Science & Technology
- Shijiazhuang 050018
- P. R. China
| | - Xiaodong Xu
- Hebei Provincial Key Laboratory of Waterborne Coatings
- Hebei Chenyang Industrial & Trade Group Co., Ltd
- Baoding 072550
- P. R. China
| |
Collapse
|
21
|
A silver(I) doped bud-like DNA nanostructure as a dual-functional nanolabel for voltammetric discrimination of methylated from unmethylated genes. Mikrochim Acta 2018; 186:38. [PMID: 30569246 DOI: 10.1007/s00604-018-3121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
A small DNA structure, referred to as DNA nanobud (NB), was used for the first time to design a dual-functional nanolabel in order to recognize a particular oligonucleotide sequence, generate and amplify the electrochemical analytical signal. NBs containing numerous repetitive desired sequences were prepared through self-assembly of 8-h rolling circle amplification. Then, redox-active silver ions were loaded onto the NBs by over-night incubation with a solution of AgNO3. The incorporation of Ag+ into NBs was confirmed by field emission scanning electron microscopy, dynamic light scattering, UV-Vis spectroscopy, zeta potential measurements, and energy-dispersive X-ray spectroscopy. A DNA sandwich complex was created after hybridization of Ag+-NB with target sequence, which was captured by immobilized probe on a gold electrode. Cyclic voltammetry was applied to measure the redox signal of silver ions produced typically at a potential around 0.02 V vs. Ag/AgCl. The label can specifically discriminate fully methylated BMP3 gene from fully unmethylated bisulfate-converted part of the gene. The electrochemical signal produced by DNA sandwich complex of gold/probe/BMP3/Ag+-NB was linear toward BMP3 concentration from 100 pM to 100 nM. The method has a 100 pM BMP3 detection limit. Conceivably, this nanolabel can be designed and modified such that it may also be used to detect other sequences with lower detection limits. Graphical abstract Ag+-NB as a new nanolabel for genosensing was formed by loading Ag+ on a spherical DNA nanostructure, nanobud (NB), synthesized by rolling circle amplification process. By using a gold electrode (AuE), Ag+-NB with numerous electroactive cations and binding sites can detect targets and generate amplified electrochemical signals.
Collapse
|
22
|
Yan T, Zhu L, Ju H, Lei J. DNA-Walker-Induced Allosteric Switch for Tandem Signal Amplification with Palladium Nanoparticles/Metal-Organic Framework Tags in Electrochemical Biosensing. Anal Chem 2018; 90:14493-14499. [PMID: 30472833 DOI: 10.1021/acs.analchem.8b04338] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A DNA walker as a new molecular machine can walk on defined tracks to directly generate signal indicators in biosensing and biomedical applications. In this work, a tandem signal amplification strategy was developed on the basis of the DNA-walker-induced conformation switch for bridging palladium nanoparticles/metal-organic framework tags in ultrasensitive electrochemical DNA biosensing. The signal tags were synthesized by in situ reduction of Pd nanocrystals on porphyrinic metal-organic frameworks (PCN-224), followed by conjugation with streptavidin (SA). The as-prepared Pd/PCN-224-SA tag could electrocatalyze the oxidation of NaBH4 with high efficiency for signal readout. The presence of target DNA released swing arms that were each silenced by a blocker, and then the activated swing arms could hybridize with hairpin DNA. The movement of swing arms was powered by enzymatic cleavage of conjugated oligonucleotides, inducing the allosteric switch from hairpin to SA aptamer. Therefore, Pd/PCN-224-SA tags were brought onto the electrode surface via SA-aptamer biorecognition to generate the enhanced electrochemical signal. The DNA walker-based electrochemical biosensor demonstrated good performance such as 6 orders of magnitude linear range, femtomolar detection limit, and single mismatch differentiation ability. Moreover, the feasibility of the biosensor was identified in serum matrixes. The tandem signal amplification of metal-organic frameworks and DNA walkers provided a new avenue in trace electrochemical biosensing.
Collapse
Affiliation(s)
- Tingting Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
23
|
Gong P, Wang F, Guo F, Liu J, Wang B, Ge X, Li S, You J, Liu Z. Fluorescence turn-off Ag/fluorinated graphene composites with high NIR absorption for effective killing of cancer cells and bacteria. J Mater Chem B 2018; 6:7926-7935. [DOI: 10.1039/c8tb02211a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study establishes FGO–Ag as a novel fluorescence “turn-off” nanocarrier with good targeting efficiency and high NIR absorption and drug loading; it also demonstrates its application in antibacterial and cancer chemo-photothermal treatments.
Collapse
Affiliation(s)
- Peiwei Gong
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Fei Wang
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Feifei Guo
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Jinfeng Liu
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Bin Wang
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Xingxing Ge
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Shuohan Li
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| |
Collapse
|