1
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Sani A, Idrees Khan M, Shah S, Tian Y, Zha G, Fan L, Zhang Q, Cao C. Diagnosis and screening of abnormal hemoglobins. Clin Chim Acta 2024; 552:117685. [PMID: 38030031 DOI: 10.1016/j.cca.2023.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Hemoglobin (Hb) abnormalities, such as thalassemia and structural Hb variants, are among the most prevalent inherited diseases and are associated with significant mortality and morbidity worldwide. However, there were not comprehensive reviews focusing on different clinical analytical techniques, research methods and artificial intelligence (AI) used in clinical screening and research on hemoglobinopathies. Hence the review offers a comprehensive summary of recent advancements and breakthroughs in the detection of aberrant Hbs, research methods and AI uses as well as the present restrictions anddifficulties in hemoglobinopathies. Recent advances in cation exchange high performance liquid chromatography (HPLC), capillary zone electrophoresis (CZE), isoelectric focusing (IEF), flow cytometry, mass spectrometry (MS) and polymerase chain reaction (PCR) etc have allowed for the definitive detection by using advanced AIand portable point of care tests (POCT) integrating with smartphone microscopic classification, machine learning (ML) model, complete blood counts (CBC), imaging-based method, speedy immunoassay, and electrochemical-, microfluidic- and sensing-related platforms. In addition, to confirm and validate unidentified and novel Hbs, highly specialized genetic based techniques like PCR, reverse transcribed (RT)-PCR, DNA microarray, sequencing of genomic DNA, and sequencing of RT-PCR amplified globin cDNA of the gene of interest have been used. Hence, adequate utilization and improvement of available diagnostic and screening technologies are important for the control and management of hemoglobinopathies.
Collapse
Affiliation(s)
- Ali Sani
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Idrees Khan
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saud Shah
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Boonprasert K, Tharavanij T, Pechyen C, Ponsanti K, Tangnorawich B, Viyanant V, Na-Bangchang K. Validation of an electrochemical sensor based on gold nanoparticles as a point-of-care test for quantitative determination of glycated hemoglobin. PLoS One 2023; 18:e0276949. [PMID: 37384652 PMCID: PMC10309628 DOI: 10.1371/journal.pone.0276949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Monitoring the level of glycated hemoglobin (HbA1c) has become the gold standard measure for diabetes mellitus (DM) diagnosis and control, used in conjunction with fasting blood glucose (FBG) and oral glucose tolerance test. This study aimed to investigate the applicability of a newly developed nanoparticle-based electrochemical sensor-multiwalled nanotubes incorporated with gold nanoparticles (POCT-HbA1cMWCNTs/AuNPs)-used as a routine point-of-care test (POCT) for detection of HbA1c for the diagnosis of DM. Finger-prick and venous blood samples were collected from 108 DM and 98 non-DM subjects to determine HbA1c and total hemoglobin by POCT-HbA1cMWCNTs/AuNPs compared with the standard HPLC method. The performance of the POCT-HbA1cMWCNTs/AuNPs was evaluated using the standard cut-off HbA1c level of >6.5%. The test's sensitivity, specificity, positive predictive value, and negative predictive value were 100.00%, 90.32%, 87.23%, and 100.00%, respectively. The probability of DM diagnosis in a subject with HbA1c >6.5% (positive predictive value) was 87.23% (82/94). The accuracy of the POCT-HbA1cMWCNTs/AuNPs was 94.18%, with a %DMV (deviation from the mean value) of 0.25%. The results indicate satisfactory assay performance and applicability of the POCT-HbA1cMWCNTs/AuNPs for diagnosis of DM using the cut-off criteria of HbA1c >6.5.
Collapse
Affiliation(s)
- Kanyarat Boonprasert
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Thipaporn Tharavanij
- Department of Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chiravoot Pechyen
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Khanittha Ponsanti
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Benchamaporn Tangnorawich
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Vithoon Viyanant
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
4
|
Mandali PK, Prabakaran A, Annadurai K, Krishnan UM. Trends in Quantification of HbA1c Using Electrochemical and Point-of-Care Analyzers. SENSORS (BASEL, SWITZERLAND) 2023; 23:1901. [PMID: 36850502 PMCID: PMC9965793 DOI: 10.3390/s23041901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Glycated hemoglobin (HbA1c), one of the many variants of hemoglobin (Hb), serves as a standard biomarker of diabetes, as it assesses the long-term glycemic status of the individual for the previous 90-120 days. HbA1c levels in blood are stable and do not fluctuate when compared to the random blood glucose levels. The normal level of HbA1c is 4-6.0%, while concentrations > 6.5% denote diabetes. Conventionally, HbA1c is measured using techniques such as chromatography, spectroscopy, immunoassays, capillary electrophoresis, fluorometry, etc., that are time-consuming, expensive, and involve complex procedures and skilled personnel. These limitations have spurred development of sensors incorporating nanostructured materials that can aid in specific and accurate quantification of HbA1c. Various chemical and biological sensing elements with and without nanoparticle interfaces have been explored for HbA1c detection. Attempts are underway to improve the detection speed, increase accuracy, and reduce sample volumes and detection costs through different combinations of nanomaterials, interfaces, capture elements, and measurement techniques. This review elaborates on the recent advances in the realm of electrochemical detection for HbA1c detection. It also discusses the emerging trends and challenges in the fabrication of effective, accurate, and cost-effective point-of-care (PoC) devices for HbA1c and the potential way forward.
Collapse
Affiliation(s)
- Pavan Kumar Mandali
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Amrish Prabakaran
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Kasthuri Annadurai
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology& Advanced Biomaterials, SASTRA Deemed University, Thanjavur 613 401, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
5
|
Li D, Fang C, Li H, Tu Y. Fluorescence/electrochemiluminescence approach for instant detection of glycated hemoglobin index. Anal Biochem 2022; 659:114958. [PMID: 36273622 DOI: 10.1016/j.ab.2022.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
The percentage of glycated hemoglobin (HbA1c) in total hemoglobin (Hb) is an important index for the diagnosis of Type II diabetes (T2D) because it reflects the long-term glucose level in blood. Herein, employing a one-pot co-reduction approach using glutathione (GSH) as structure-directing agent, a cluster-like AuAg nanoparticle (AuAg NPs) material was synthesized, therefore an electrochemiluminescence (ECL) aptamer-sensor for HbA1c detection was developed based on functionalized electrode with this material. Meanwhile, the quantitative determination of total Hb was realized based on the quenching effect of Hb on the fluorescence (FL) of luminol. Under compatible conditions, the results of both indexes can be satisfactorily acquired. This multimodal detection system has a good linear response toward Hb from 0.1 to 2.5 μM and HbA1c from 0.005 to 0.5 μM. The blood test proves this strategy is capable of accurate Hb and HbA1c detection, thus to obtain the percentage of HbA1c in total Hb (HbA1c%), which has the potential application for clinical diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
- Dongning Li
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Huiling Li
- The First Affiliated Hospital, Nursing College, Soochow University, Suzhou, 215006, PR China.
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
6
|
Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin towards precise diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 209:114251. [DOI: 10.1016/j.bios.2022.114251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
|
7
|
Ye X, Zhang D, Zeng Y, Wang Y, Qi P. Facile fabrication of highly sensitive and non-label aptasensors based on antifouling amyloid-like protein aggregates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2350-2356. [PMID: 35647934 DOI: 10.1039/d2ay00416j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we present a robust and versatile method for developing non-label aptasensors with high sensitivity. Amyloid-like protein aggregates were facilely synthesized with the commonly used passivating agent bovine serum albumin (BSA) in developing biosensors, and the produced amyloid-like phase-transited BSA (PTB) exhibited excellent antifouling performances and robust interfacial adhesion with the electrode surface. In order to improve the detection sensitivity of electrochemical measurements, reduced graphene oxide was electrochemically deposited onto the electrode surface. Moreover, gold nanoparticles were introduced to enhance the conductivity of the PTB film and facilitate subsequent aptamer modification. Two common biological species, adenosine triphosphate (ATP) and cytochrome c (cyt c), were chosen as detection targets, and their corresponding aptasensors were successfully constructed and systematically evaluated. The proposed aptasensors based on the PTB-Au antifouling composite exhibited high sensitivity and specificity towards ATP and cyt c detection, and the detection limits were calculated to be 0.26 nM and 0.64 nM for ATP and cyt c, respectively. Hence, this work provides a simple approach to develop highly sensitive aptasensors without any labeling process, and thus promises its great application in biological analysis.
Collapse
Affiliation(s)
- Xiangyi Ye
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China.
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China.
| | - Yan Zeng
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China.
| | - Yingwen Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China.
| | - Peng Qi
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
8
|
Zhan Z, Li Y, Zhao Y, Zhang H, Wang Z, Fu B, Li WJ. A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin. BIOSENSORS 2022; 12:bios12040221. [PMID: 35448281 PMCID: PMC9024622 DOI: 10.3390/bios12040221] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 05/17/2023]
Abstract
Glycated hemoglobin (HbA1c) is the gold standard for measuring glucose levels in the diagnosis of diabetes due to the excellent stability and reliability of this biomarker. HbA1c is a stable glycated protein formed by the reaction of glucose with hemoglobin (Hb) in red blood cells, which reflects average glucose levels over a period of two to three months without suffering from the disturbance of the outside environment. A number of simple, high-efficiency, and sensitive electrochemical sensors have been developed for the detection of HbA1c. This review aims to highlight current methods and trends in electrochemistry for HbA1c monitoring. The target analytes of electrochemical HbA1c sensors are usually HbA1c or fructosyl valine/fructosyl valine histidine (FV/FVH, the hydrolyzed product of HbA1c). When HbA1c is the target analyte, a sensor works to selectively bind to specific HbA1c regions and then determines the concentration of HbA1c through the quantitative transformation of weak electrical signals such as current, potential, and impedance. When FV/FVH is the target analyte, a sensor is used to indirectly determine HbA1c by detecting FV/FVH when it is hydrolyzed by fructosyl amino acid oxidase (FAO), fructosyl peptide oxidase (FPOX), or a molecularly imprinted catalyst (MIC). Then, a current proportional to the concentration of HbA1c can be produced. In this paper, we review a variety of representative electrochemical HbA1c sensors developed in recent years and elaborate on their operational principles, performance, and promising future clinical applications.
Collapse
Affiliation(s)
- Zhikun Zhan
- School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yang Li
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
- Correspondence: (Y.Z.); (W.J.L.)
| | - Hongyu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
| | - Zhen Wang
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Boya Fu
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
- Correspondence: (Y.Z.); (W.J.L.)
| |
Collapse
|
9
|
Zhao H, Qiu X, Su E, Huang L, Zai Y, Liu Y, Chen H, Wang Z, Chen Z, Li S, Jin L, Deng Y, He N. Multiple chemiluminescence immunoassay detection of the concentration ratio of glycosylated hemoglobin A1c to total hemoglobin in whole blood samples. Anal Chim Acta 2022; 1192:339379. [DOI: 10.1016/j.aca.2021.339379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
|
10
|
Lyu L, Yu J, Liu Y, He S, Zhao Y, Qi M, Ping F, Xu L, Li W, Zhang H, Li Y. High Hemoglobin Glycation Index Is Associated With Telomere Attrition Independent of HbA1c, Mediated by TNFα. J Clin Endocrinol Metab 2022; 107:462-473. [PMID: 34562085 DOI: 10.1210/clinem/dgab703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The hemoglobin glycation index (HGI) is correlated with metabolic diseases and inflammation. Whether the HGI is associated with the aging process and how inflammation and oxidative stress affect the relationship remain unclear. OBJECTIVE We aimed to analyze links between the HGI and aging biomarkers, and to explore a potential role of inflammation and oxidative stress in the correlations. METHODS A cross-sectional study of 434 subjects with different glucose intolerances in a rural community was enrolled. The HGI was calculated as the difference between the measured and predicted hemoglobin A1c (HbA1c). The population was categorized into tertiles of the HGI. Telomere length (LTL) and mitochondrial DNA copy number (mtDNAcn) determined by polymerase chain reaction assay. Tumor necrosis factor (TNF) α and interleukin (IL) 6, 8-oxo-2'-deoxyguanosine (8-oxo-dG), superoxide dismutase (SOD) activities, and glutathione reductase (GR) were measured. RESULTS Participants in the high HGI group were older and reported a shorter LTL, higher levels of TNFα, SOD activities, and HbA1c. Correlation analyses demonstrated that HGI was correlated with LTL (r = -0.25, P < .001) and TNFα (r = 0.19, P < .001) regardless of HbA1c levels. No relationship was found between HGI and mtDNAcn. HGI (β = -0.238, 95% CI -0.430, -0.046, P = .015) and TNFα (β = -0.02, 95% CI -0.030, -0.014, P < .001) were proved to be correlated with LTL independently, using multiple linear regression analysis. Ordinal logistic regression models showed that compared with subjects the high HGI group, the possibilities of a higher-level LTL was 5.29-fold in the low HGI group (OR 5.29, 95% CI (2.45, 11.41), P < .001), 2.41-fold in the moderate HGI group (OR 2.41, 95% CI 1.35, 4.30, P = .003) after controlling for confounding variables. Mediation analyses indicated that TNFα accounted for 30.39% of the effects of the HGI on LTL. CONCLUSION HGI was negatively related to telomere attrition, independent of HbA1c. TNFα acted as a mediator of the relationship between HGI and LTL.
Collapse
Affiliation(s)
- Lu Lyu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Yu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yiwen Liu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shuli He
- Department of Nutrition, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zhao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengya Qi
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fan Ping
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lingling Xu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huabing Zhang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuxiu Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
11
|
FENG Y, WANG Q, HUA J, CAO H, LIU Y, ZHONG X, XIA Y, ZHANG F. A practical “low-carbohydrate dietary care” model for elderly patients with type 2 diabetes mellitus. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.77222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuwei FENG
- Jiangnan University, China; Jiangnan University, China
| | - Qinyue WANG
- Jiangnan University, China; Jiangnan University, China
| | - Jiao HUA
- Jiangnan University, China; Jiangnan University, China
| | - Hong CAO
- Jiangnan University, China; Jiangnan University, China; Jiangnan University, China; Jiangnan University, China
| | - Yiran LIU
- Jiangnan University, China; Jiangnan University, China
| | - Xiaohui ZHONG
- Jiangnan University, China; Jiangnan University, China
| | - Yanping XIA
- Jiangnan University, China; Jiangnan University, China
| | - Feng ZHANG
- Jiangnan University, China; Jiangnan University, China; Jiangnan University, China
| |
Collapse
|
12
|
Jiang C, Fu Y, Liu G, Shu B, Davis J, Tofaris GK. Multiplexed Profiling of Extracellular Vesicles for Biomarker Development. NANO-MICRO LETTERS 2021; 14:3. [PMID: 34855021 PMCID: PMC8638654 DOI: 10.1007/s40820-021-00753-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency.
Collapse
Affiliation(s)
- Cheng Jiang
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Jason Davis
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Olvera Cano LI, Villanueva Lopez GC, Mateos ER, Orea AC. Photoacoustic Spectroscopy and Hyperglycemia in Experimental Type 1 Diabetes. APPLIED SPECTROSCOPY 2021; 75:1465-1474. [PMID: 34596452 DOI: 10.1177/00037028211047257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
According to the World Health Organization, diabetes was the seventh leading cause of death in 2016. Long-term diabetes complications are associated with hyperglycemia. It is difficult to predict the beginning and evolution of those complications. The goal of the study was to evaluate the relationship between glycemia and blood spectroscopic variables in an experimental model of type 1 diabetes (streptozotocin model). Blood samples were taken weekly (10 weeks) from the tail of male Wistar rats with or without diabetes. Blood optical absorption spectra were obtained by means of photoacoustic spectroscopy. It was possible to estimate the time-course of blood characteristic peak ratios. The area under the curve of those peaks correlated with hyperglycemia. The evolution of the optical absorption at 450 nm, related to cytochrome p450, was obtained by using the phase-resolved method. The area under the curve of p450 correlated also with hyperglycemia. It is concluded that photoacoustic spectroscopy is a reliable technology to detect the effects of hyperglycemia on blood with possible applications in the study of long-term diabetes complications.
Collapse
Affiliation(s)
- Lilia I Olvera Cano
- Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Ciudad de México, México
| | | | - Evelyn Romero Mateos
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, México
| | - Alfredo Cruz Orea
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
14
|
GUO Z, LUO F, LI S, FAN L, WU Y, CAO C. [Speculation of hemoglobin A 3 peak position in clinical cation exchange high performance liquid chromatogram of the diabetic blood sample with microarray isoelectric focusing]. Se Pu 2021; 39:1273-1278. [PMID: 34677023 PMCID: PMC9404208 DOI: 10.3724/sp.j.1123.2020.12033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Hemoglobin A1c (HbA1c) is a major component of glycated hemoglobin in human red blood cells. It has been proven to be a significant biomarker for the diagnosis of diabetes; its content in fresh red cells in diabetes blood reflects the average level of blood glucose over the previous three months. Thus, HbA1c level has been used for the assessment of long-term glycemic control in diabetes; the level of 6.5% HbA1c has been certified as a critical cut-off for the diabetes diagnosis. The current commonly used method for HbA1c quantification is based on cation-exchange high performance liquid chromatography (CX-HPLC). The method has advantages such as high stability, rapidity, and automation, but there are still some unidentified peaks of Hb species in CX-HPLC (VARIANT Ⅱ system); in particular, the presence of HbA3 (a glutathiolated Hb) affects the accurate determination of HbA1c. HbA3 is usually present in healthy adult blood samples at 2%-4%, but the concentration of HbA3 increases due to the protection of erythrocytes from oxidation, resulting in decreased HbA1c. However, the relative location of the HbA3 peak in the CX-HPLC clinical chromatogram has not been established. To address this issue, we extracted Hb species from fresh blood samples obtained from a hospital in an anaerobic environment to avoid possible redox reactions of Hb and glutathione. After the extraction, the Hb samples were analyzed using two methods: a low-resolution CX-HPLC (5/50 mm column) currently used for diabetes diagnosis and a high-resolution cationic exchange HPLC (Mono-S 5/50 mm column), to identify the peak corresponding to HbA3. The CX-HPLC analysis of fresh blood samples indicated that the unknown peak P3 located between HbA1c and HbA0 peaks corresponded to the HbA3 peak between HbA1c and HbA0 in the Mono-S-HPLC. Microarray isoelectric focusing (IEF) was used for the micro-preparation of HbA3, HbA1c, and HbA0 in healthy blood samples; then, the micro-prepared species of HbA3, HbA1c, and HbA0 were individually identified via Mono-S-HPLC. The results of the CX-HPLC, Mono-S-HPLC, and microarray IEF experiments indicated that the P3 peak might correspond to HbA3. To confirm this, glutathiolated Hb samples were synthesized via acetylphenylhydrazine and analyzed using both the Mono-S- and CX-HPLC systems. The results showed that the content of both glutaminated hemoglobin of HbA3 in Mono-S-HPLC and P3 in CX-HPLC increased, implying the peak of P3 with the retention time of 1.50 min in CX-HPLC was the peak corresponding to HbA3 in Mono-S-HPLC and microarray IEF. Based on the above experiments and our previous results, the influence of HbA3 on both the analysis of HbA1c in blood samples and the diabetes diagnosis needs to be considered and discussed. The study results are significant for the tentative assignment of peak P3 and for offering more information on diabetes diagnosis using CX-HPLC in the clinical setting.
Collapse
|
15
|
Li Z, Li J, Dou Y, Wang L, Song S. A Carbon-Based Antifouling Nano-Biosensing Interface for Label-Free POCT of HbA1c. BIOSENSORS 2021; 11:118. [PMID: 33921226 PMCID: PMC8069255 DOI: 10.3390/bios11040118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Electrochemical biosensing relies on electron transport on electrode surfaces. However, electrode inactivation and biofouling caused by a complex biological sample severely decrease the efficiency of electron transfer and the specificity of biosensing. Here, we designed a three-dimensional antifouling nano-biosensing interface to improve the efficiency of electron transfer by a layer of bovine serum albumin (BSA) and multi-walled carbon nanotubes (MWCNTs) cross-linked with glutaraldehyde (GA). The electrochemical properties of the BSA/MWCNTs/GA layer were investigated using both cyclic voltammetry and electrochemical impedance to demonstrate its high-efficiency antifouling nano-biosensing interface. The BSA/MWCNTs/GA layer kept 92% of the original signal in 1% BSA and 88% of that in unprocessed human serum after a 1-month exposure, respectively. Importantly, we functionalized the BSA/MWCNTs/GA layer with HbA1c antibody (anti-HbA1c) and 3-aminophenylboronic acid (APBA) for sensitive detection of glycated hemoglobin A (HbA1c). The label-free direct electrocatalytic oxidation of HbA1c was investigated by cyclic voltammetry (CV). The linear dynamic range of 2 to 15% of blood glycated hemoglobin A (HbA1c) in non-glycated hemoglobin (HbAo) was determined. The detection limit was 0.4%. This high degree of differentiation would facilitate a label-free POCT detection of HbA1c.
Collapse
Affiliation(s)
- Zhenhua Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jianyong Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yanzhi Dou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Song
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Z.L.); (J.L.); (Y.D.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Direct and Label-Free Determination of Human Glycated Hemoglobin Levels Using Bacteriorhodopsin as the Biosensor Transducer. SENSORS 2020; 20:s20247274. [PMID: 33353006 PMCID: PMC7765918 DOI: 10.3390/s20247274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
Glycated hemoglobin (HbA1c) levels are an important index for the diagnosis and long-term control of diabetes. This study is the first to use a direct and label-free photoelectric biosensor to determine HbA1c using bacteriorhodopsin-embedded purple membranes (PM) as a transducer. A biotinylated PM (b-PM) coated electrode that is layered with protein A-oriented antibodies against hemoglobin (Hb) readily captures non-glycated Hb (HbA0) and generates less photocurrent. The spectra of bacteriorhodopsin and Hb overlap so the photocurrent is reduced because of the partial absorption of the incident light by the captured Hb molecules. Two HbA0 and HbA1c aptasensors that are prepared by conjugating specific aptamers on b-PM coated electrodes single-step detect HbA0 and HbA1c in 15 min, without cross reactivity, with detection limits of ≤0.1 μg/mL and a dynamic range of 0.1–100 μg/mL. Both aptasensors exhibit high selectivity and long-term stability. For the clinical samples, HbA0 concentrations and HbA1c levels that are measured with aptasensors correlate well with total Hb concentrations and the HbA1c levels that are determined using standard methods (correlation gradient = 0.915 ± 0.004 and 0.981 ± 0.001, respectively). The use of these aptasensors for diabetes care is demonstrated.
Collapse
|
17
|
Flexible and highly ordered nanopillar electrochemical sensor for sensitive insulin evaluation. Biosens Bioelectron 2020; 161:112252. [DOI: 10.1016/j.bios.2020.112252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 01/12/2023]
|
18
|
Sharma P, Panchal A, Yadav N, Narang J. Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int J Biol Macromol 2020; 155:685-696. [PMID: 32229211 DOI: 10.1016/j.ijbiomac.2020.03.205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022]
Abstract
The increase in concentrations of blood glucose results arise in the proportion of glycated haemoglobin. Therefore, the percentage of glycated haemoglobin in the blood could function as a biomarker for the average glucose level over the past three months and can be used to detect diabetes. The study of glycated haemoglobin tends to be complex as there are about three hundred distinct assay techniques available for evaluating glycated haemoglobin which contributes to some differences in the recorded values from the similar samples. This review outlines distinct analytical methods that have evolved in the recent past for precise recognition of the glycated - proteins.
Collapse
Affiliation(s)
- Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Anupriya Panchal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
19
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
20
|
Losada-Garcia N, Rodriguez-Oliva I, Simovic M, Bezbradica DI, Palomo JM. New Advances in Fabrication of Graphene Glyconanomaterials for Application in Therapy and Diagnosis. ACS OMEGA 2020; 5:4362-4369. [PMID: 32175483 PMCID: PMC7066556 DOI: 10.1021/acsomega.9b04332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
Glycoderivatives are an important class of molecules with enormous relevance in numerous biological phenomena; therefore, they have a key role in the learning, understanding, and assessment of different diseases. Nanotechnology, and in particular the design of new nanomaterials, is one of the areas of greatest interest today. In this case, graphene nanomaterials represent very interesting platforms for studying glycosystems, glyconanomaterials that combine the biomolecular recognition and the characteristics of nanoscale objects in the development of early diagnosis systems, and efficient specific therapeutic modalities. In this mini-review, we discuss some results recently described in the literature on the conjugation of graphene materials and carbohydrates through the selective interaction of glycoenzymes in graphene to create new materials with biosensing applications, the development and application of sugar-graphene composites, and finally biosystems combining the properties of graphene with metallic nanoparticles and sugars for the creation of excellent glyconanomaterials as novel systems for the therapy or diagnosis of important diseases such as cancer or diabetes.
Collapse
Affiliation(s)
- Noelia Losada-Garcia
- Department
of Biocatalysis, Institute of Catalysis
(CSIC), Marie Curie 2, Cantoblanco Campus UAM, Madrid 28049, Spain
| | - Ivan Rodriguez-Oliva
- Department
of Biocatalysis, Institute of Catalysis
(CSIC), Marie Curie 2, Cantoblanco Campus UAM, Madrid 28049, Spain
| | - Milica Simovic
- Department
of Biochemical Engineering and Biotechnology, Faculty of Technology
and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11000, Serbia
| | - Dejan I. Bezbradica
- Department
of Biochemical Engineering and Biotechnology, Faculty of Technology
and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11000, Serbia
| | - Jose M. Palomo
- Department
of Biocatalysis, Institute of Catalysis
(CSIC), Marie Curie 2, Cantoblanco Campus UAM, Madrid 28049, Spain
| |
Collapse
|
21
|
Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens. Biomed Microdevices 2019; 21:72. [PMID: 31286242 DOI: 10.1007/s10544-019-0420-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the cis-diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process. Escherichia coli O157:H7 containing green fluorescence protein (GFP) and Staphylococcus aureus were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the eaeA gene of the captured E. coli O157:H7 within 1 h. Its detection limit for E. coli O157:H7 was determined to be 1 × 103 colony-forming units per milliliter (CFU mL-1). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.
Collapse
|
22
|
Shi Q, Teng Y, Hu Z, Zhang Y, Liu W. One‐step Electrodeposition of Tris(hydroxymethyl) Aminomethane – Prussian Blue on Screen‐printed electrode for Highly Efficient Detection of Glycosylated Hemoglobin. ELECTROANAL 2018. [DOI: 10.1002/elan.201800644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qianwei Shi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| | - Yuanjie Teng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's HospitalZhejiang University School of Medicine Hangzhou 310052 China
| | - Yuchao Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| | - Wenhan Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| |
Collapse
|