1
|
Chen DP, Wu PY, Lin YH. Irregular Antibody Screening Using a Microdroplet Platform. BIOSENSORS 2023; 13:869. [PMID: 37754103 PMCID: PMC10526156 DOI: 10.3390/bios13090869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
The screening procedure for antibodies is considered the most tedious among the three pretransfusion operations, i.e., ABO and Rhesus (Rh) typing, irregular antibody screening/identification, and crossmatching tests. The commonly used screening method for irregular antibodies in clinics at present is a manual polybrene test (MP). The MP test involves numerous reagent replacement and centrifuge procedures, and the sample volume is expected to be relatively less. Herein, screening red blood cells (RBCs) and serum irregular antibodies are encapsulated in microdroplets with a diameter of ~300 μm for a hemagglutination reaction. Owing to the advantage of spatial limitation in microdroplets, screening RBCs and irregular antibodies can be directly agglutinated, thereby eliminating the need for centrifugation and the addition of reagents to promote agglutination, as required by the MP method. Furthermore, the results for a large number of repeated tests can be concurrently obtained, further simplifying the steps of irregular antibody screening and increasing accuracy. Eight irregular antibodies are screened using the proposed platform, and the results are consistent with the MP method. Moreover, the volume of blood samples and antibodies can be reduced to 10 μL and 5 μL, respectively, which is ten times less than that using the MP method.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Pei-Yu Wu
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yen-Heng Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
2
|
Automated analysis of mitochondrial dimensions in mesenchymal stem cells: Current methods and future perspectives. Heliyon 2023; 9:e12987. [PMID: 36711314 PMCID: PMC9873686 DOI: 10.1016/j.heliyon.2023.e12987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
As centre of energy production and key regulators of metabolic and cellular signaling pathways, the integrity of mitochondria is essential for mesenchymal stem cell function in tissue regeneration. Alterations in the size, shape and structural organization of mitochondria are correlated with the physiological state of the cell and its environment and could be used as diagnostic biomarkers. Therefore, high-throughput experimental and computational techniques are crucial to ensure adequate correlations between mitochondrial function and disease phenotypes. The emerge of microfluidic technologies can address the shortcomings of traditional methods to determine mitochondrial dimensions for diagnostic and therapeutic use. This review discusses optical detection methods compatible with microfluidics to measure mitochondrial dynamics and their potential for clinical stem cell research targeting mitochondrial dysfunction.
Collapse
|
3
|
Zhang J, Yang L, Wang Y, Cao T, Sun Z, Xu J, Liu Y, Chen G. Ebselen-Agents for Sensing, Imaging and Labeling: Facile and Full-Featured Application in Biochemical Analysis. ACS APPLIED BIO MATERIALS 2021; 4:2217-2230. [PMID: 35014346 DOI: 10.1021/acsabm.0c01561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenyl-1,2-benzoselenazol-3(2H)-one (ebselen) is a classical mimic of glutathione peroxidase (GPx). Thioredoxin interaction endows ebselen attractive biological functions, such as antioxidation and anti-infection, as well as versatile therapeutic usage. Accordingly, application of ebselen analogues in biosensing, chemical labeling, imaging analysis, disease pathology, drug development, clinical treatment, etc. have been widely developed, in which mercaptans, reactive oxygen species, reactive sulfur species, peptides, and proteins were involved. Herein, focusing on the application of ebselen-agents in biochemistry, we have made a systematic summary and comprehensive review. First, we summarized both the classical and the innovative methods for preparing ebselen-agents to present the synthetic strategies. Then we discussed the full functional applicability of ebselen analogues in three fields of biochemical analysis including the fluorescence sensing and bioimaging, derivatization for high throughput fluorescence analysis, and the labeling gents for proteomics. Finally, we discussed the current challenges and perspectives for ebselen-agents as analytical tools in biological research. By presenting the multifunctional applicability of ebselen, we hope this review could appeal researchers to design the ebselen-related biomaterials for biochemical analysis.
Collapse
Affiliation(s)
- Jiawei Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Lei Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Yuxin Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Tianyi Cao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
| | - Jie Xu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuxia Liu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Guang Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Yao HW, Guo XF, Wang H. Simultaneous Quantitation of Intra- and Extracellular Nitric Oxide in Single Macrophage RAW 264.7 Cells by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Anal Chem 2020; 92:11904-11911. [DOI: 10.1021/acs.analchem.0c02283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hui-Wen Yao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiao-Feng Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Wei X, Lu Y, Zhang X, Chen ML, Wang JH. Recent advances in single-cell ultra-trace analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments. Biosens Bioelectron 2020; 155:112113. [DOI: 10.1016/j.bios.2020.112113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
|
7
|
Zhang X, Huang Y, Han X, Wang Y, Zhang L, Chen L. Evaluating the Protective Effects of Mitochondrial Glutathione on Cerebral Ischemia/Reperfusion Injury via Near-Infrared Fluorescence Imaging. Anal Chem 2019; 91:14728-14736. [DOI: 10.1021/acs.analchem.9b04082] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|