1
|
Qin M, Hu J, Li X, Liu J, Jiang R, Shi Y, Wang Z, Zhang L, Zhao Y, Gao H, Zhang Q, Zhao H, Li M, Huang C. Exosomal membrane proteins analysis using a silicon nanowire field effect transistor biosensor. Talanta 2024; 278:126534. [PMID: 39002259 DOI: 10.1016/j.talanta.2024.126534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are of great significance in clinical diagnosis, due to their high homology with parental generation, which can reflect the pathophysiological status. However, the quantitative and classification detection of exosomes is still faced with the challenges of low sensitivity and complex operation. In this study, we develop an electrical and label-free method to directly detect exosomes with high sensitivity based on a Silicon nanowire field effect transistor biosensor (Si-NW Bio-FET). First, the impact of Debye length on Si-NW Bio-FET detection was investigated through simulation. The simulation results demonstrated that as the Debye length increased, the electrical response to Si-NW produced by charged particle at a certain distance from the surface of Si-NW was greater. A Si-NW Bio-FET modified with specific antibody CD81 on the nanowire was fabricated then used for detection of cell line-derived exosomes, which achieved a low limit of detection (LOD) of 1078 particles/mL in 0.01 × PBS. Furthermore, the Si-NW Bio-FETs modified with specific antibody CD9, CD81 and CD63 respectively, were employed to distinguish exosomes derived from human promyelocytic leukemia (HL-60) cell line in three different states (control group, lipopolysaccharide (LPS) inflammation group, and LPS + Romidepsin (FK228) drug treatment group), which was consistent with nano-flow cytometry. This study provides a highly sensitive method of directly quantifying exosomes without labeling, indicating its potential as a tool for disease surveillance and medication instruction.
Collapse
Affiliation(s)
- Meiyan Qin
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiawei Hu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; North China University of Technology, Beijing 100144, China
| | - Xue Li
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jinlong Liu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Jiang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yimin Shi
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizhen Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Hang Gao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Qingzhu Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China.
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Hu J, He P, Zhao F, Lin W, Xue C, Chen J, Yu Z, Ran Y, Meng Y, Hong X, Shum PP, Shao L. Magnetic microspheres enhanced peanut structure cascaded lasso shaped fiber laser biosensor for cancer marker-CEACAM5 detection in serum. Talanta 2024; 271:125625. [PMID: 38244308 DOI: 10.1016/j.talanta.2024.125625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
The detection of trace cancer markers in body fluids such as blood/serum is crucial for cancer diseases screening and treatment, which requires high sensitivity and specificity of biosensors. In this study, a peanut structure cascaded lasso (PSCL) shaped fiber sensing probe based on fiber laser demodulation method was proposed to specifically detect the carcinoembryonic antigen related cell adhesion molecules 5 (CEACAM5) protein in serum. Thanks for the narrow linewidth and high signal-to-noise ratio (SNR) of the laser spectrum, it is easier to distinguish small spectral changes than interference spectrum. Adding the antibody modified magnetic microspheres (MMS) to form the sandwich structure of "antibody-antigen-antibody-MMS", and amplified the response caused by biomolecular binding. The limit of detection (LOD) for CEACAM5 in buffer could reach 0.11 ng/mL. Considering the common threshold of 5 ng/mL for CEA during medical screening and the cut off limit of 2.5 ng/mL for some kits, the LOD of proposed biosensor meets the actual needs. Human serum samples from a hospital were used to validate the real sensing capability of proposed biosensor. The deviation between the measured value in various serum samples and the clinical value ranged from 1.9 to 9.8 %. This sensing scheme holds great potential to serve as a point of care testing (POCT) device and extend to more biosensing applications.
Collapse
Affiliation(s)
- Jie Hu
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Panpan He
- Medcaptain Medical Technology Co., Ltd., Shenzhen, 518055, China.
| | - Fang Zhao
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Weihao Lin
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Xue
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jinna Chen
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhiguang Yu
- Medcaptain Medical Technology Co., Ltd., Shenzhen, 518055, China.
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Yue Meng
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 511436, China.
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Perry Ping Shum
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Liyang Shao
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Wei K, Gong F, Wu J, Tang W, Liao F, Han Z, Pei Z, Lei H, Wang L, Shao M, Liu Z, Cheng L. Orally Administered Silicon Hydrogen Nanomaterials as Target Therapy to Treat Intestinal Diseases. ACS NANO 2023; 17:21539-21552. [PMID: 37843009 DOI: 10.1021/acsnano.3c06551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The occurrence and development of inflammatory bowel diseases (IBDs) are inextricably linked to the excessive production of reactive oxygen species (ROS). Thus, there is an urgent need to develop innovative tactics to combat IBDs and scavenge excess ROS from affected areas. Herein, silicon hydrogen nanoparticles (SiH NPs) with ROS-scavenging ability were prepared by etching Si nanowires (NWs) with hydrogen fluoride (HF) to alleviate the symptoms associated with IBD by orally targeting the inflamed colonic sites. The strong reductive Si-H bonds showed excellent stability in the gastric and intestinal fluids, which exhibited efficient ROS-scavenging effects to protect cells from high oxidative stress-induced death. After oral delivery, the negatively charged SiH NPs were specifically adsorbed to the positively charged inflammatory epithelial tissues of the colon for an extended period via electrostatic interactions to prolong the colonic residence time. SiH NPs exhibited significant preventive and therapeutic effects in dextran sodium sulfate-induced prophylactic and therapeutic mouse models by inhibiting colonic shortening, reducing the secretion of pro-inflammatory cytokines, regulating macrophage polarization, and protecting the colonic barrier. As determined using 16S rDNA high-throughput sequencing, the oral administration of SiH NPs treatment led to changes in the abundance of the intestinal microbiome, which improved the bacterial diversity and restored the relative abundance of beneficial bacteria after the inflamed colon. Overall, our findings highlight the broad application of SiH-based anti-inflammatory drugs in the treatment of IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Kailu Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
4
|
Yi Y, Cui M, Song S, Zhang C, Mei J, Ying G. Genetic fusion of mussel foot protein to ZZ protein improves target detection in solid-phase immunoassays. J Immunol Methods 2023; 516:113461. [PMID: 36963561 DOI: 10.1016/j.jim.2023.113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
In the process of a solid-phase immunoassay, the stability and binding orientation between the antibody and the solid matrix can substantially influence the results. ZZ protein is a modified peptide of the B domain of Staphylococcus aureus protein A, which can bind to the Fc fragment of an antibody. It is often used for oriented immobilization of antibodies during solid-phase immunoassay. However, the conjugate is often not retained during the process, for example during washing steps. The resulting low stability detracts from reproducibility and sensitivity. Mfp-5 protein comes from mussel, is one of the components of mussel foot silk protein, and has good adhesion and biocompatibility. In this paper, the fusion protein of ZZ and Mfp-5 was constructed and expressed in Escherichia coli. In this method, the ZZ domain was firmly attached to the solid-phase support by Mfp-5, the directional fixation of IgG was realized by binding the ZZ protein to an Fc fragment, and then a Fab fragment was bound to the antigen to realize the solid-phase immunoassay. In addition, a protein adsorption assay confirmed that the adhesion of ZZ-Mfp-5 was significantly higher than that of ZZ protein, and the presence of Mfp-5 improved the ability of ZZ protein to capture antibodies. In conclusion, compared with the passively immobilized ZZ protein, the ZZ-Mfp-5 protein had stronger immobilization and antibody capture, a 10-fold increase in sensitivity and wider linear range, and better stability of detection. This may be an attractive strategy for solid-phase immunoassays or biosensing assays.
Collapse
Affiliation(s)
- Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Mengyuan Cui
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shupeng Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cheng Zhang
- Gmax Biopharm International Limited, Hangzhou 310014, China
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Ali Q, Zheng H, Rao MJ, Ali M, Hussain A, Saleem MH, Nehela Y, Sohail MA, Ahmed AM, Kubar KA, Ali S, Usman K, Manghwar H, Zhou L. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. CHEMOSPHERE 2022; 296:133773. [PMID: 35114264 DOI: 10.1016/j.chemosphere.2022.133773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 05/22/2023]
Abstract
Phytopathogenic bacteria cause severe economic losses in agricultural production worldwide. The spread rates, severity, and emerging plant bacterial diseases have become serious threat to the sustainability of food sources and the fruit industry. Detection and diagnosis of plant diseases are imperative in order to manage plant diseases in field conditions, greenhouses, and food storage conditions as well as to maximize agricultural productivity and sustainability. To date, various techniques including, serological, observation-based, and molecular methods have been employed for plant disease detection. These methods are sensitive and specific for genetic identification of bacteria. However, these methods are specific for genetic identification of bacteria. Currently, the innovative biosensor-based disease detection technique is an attractive and promising alternative. A biosensor system involves biological recognition and transducer active receptors based on sensors used in plant-bacteria diagnosis. This system has been broadly used for the rapid diagnosis of plant bacterial pathogens. In the present review, we have discussed the conventional methods of bacterial-disease detection, however, the present review mainly focuses on the applications of different biosensor-based techniques along with point-of-care (POC), robotics, and cell phone-based systems. In addition, we have also discussed the challenges and limitations of these techniques.
Collapse
Affiliation(s)
- Qurban Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, 210095, China.
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Junaid Rao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, PR China
| | - Mohsin Ali
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Amjad Hussain
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA; Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Agha Mushtaque Ahmed
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tando Jam, Sindh, Pakistan
| | - Kashif Ali Kubar
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Balochistan, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
6
|
Tatar AS, Farcău C, Vulpoi A, Boca S, Astilean S. Development and evaluation of a gold nanourchin (GNU)-based sandwich architecture for SERS immunosensing in liquid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121069. [PMID: 35231760 DOI: 10.1016/j.saa.2022.121069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Nanosensors represent a class of emerging promising nanotools that can be used for the rapid, sensitive and specific detection of relevant molecules such as biomarkers of cancer or other diseases. The sensing platforms that rely on the exceptional physical properties of colloidal gold nanoparticles have gained a special attraction and various architectural designs were proposed with the aim of rapid and real-time detection, identification and monitoring of the capturing events. Moreover, biomarker sensing in liquid samples allows a more facile implementation of the nanosensors by circumventing the need for invasive practices such as biopsies, in favor of non-invasive investigations with potential for use as point-of-care assays. Herein, we propose a sandwich-type surface enhanced Raman scattering (SERS) immuno-nanosensor which is aimed for detecting and quantifying Carcinoembryonic antigen-related cell adhesion molecule 5 (CEA-CAM5), a protein involved in intercellular adhesion and signaling pathways that acts as a tumor marker in several types of cancer. For constructing the proposed system, colloidal gold nano spheres (GNS) and gold nano-urchins (GNU) were chemically synthesized, labeled with SERS active molecules, conjugated with polymers, functionalized with antibodies as capturing substrates and tested in two different sensing configurations: pairs of GNUs-GNUs and GNUs-GNSs. When the target antigen is present in the analyte solution, nanoparticle bridging occurs and a subsequent amplification of the characteristic Raman signal of the label molecule appears due to the formation of hot-spots in interparticle gaps. The capability of observing small analyte concentrations in liquid samples with an easy-to-handle portable Raman device makes the proposed system feasible for rapid, non-invasive and cost-effective clinical or laboratory use.
Collapse
Affiliation(s)
- Andra-Sorina Tatar
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Cosmin Farcău
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| | - Sanda Boca
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania.
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Ma J, Jiang G, Ma Q, Du M, Wang H, Wu J, Wang C, Xie X, Li T, Chen S, Zhang L, Wu M. Portable immunosensor directly and rapidly detects Mycobacterium tuberculosis in sputum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:438-448. [PMID: 35022623 DOI: 10.1039/d1ay01561c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tuberculosis (TB) remains a public health problem that cannot be ignored. The portable and efficient detection of Mycobacterium tuberculosis (MTB) is important for the effective control of this disease. However, current detection techniques do not meet the requirements for MTB detection in the actual environment and often require cumbersome detection steps that are time consuming and inflexible. In this study, a portable immunosensor to detect MTB in sputum was prepared and then subjected to interface characterizations, such as scanning electron microscopy, hydrophilic angle test, and fluorescence characterization. The source and gate voltage of the device were optimized and tested using a non-contact photoresponse. The results showed that the sensitivity of the sensor to luminance increases with the decrease in source voltage. The gate voltage can substantially improve the response of the immunosensor to the normalized current of protein and amplify the signal at least 1.6 times. The optimal voltage detection conditions of source voltage (0.3 V) and gate voltage (0.1 V) were also determined. Several common proteins present in simulated saliva were used for anti-interference tests, and the sensor exhibited good specificity. Finally, the dilution gradient of an actual TB sputum sample was optimized. In the absence of preconditioning, a double-blind experiment was used to distinguish between the sputum from patients with TB and healthy individuals to shorten the TB detection time to a few minutes. Compared with the hospital's conventional detection method using cultures, the proposed method can complete the detection in a shorter time. This study provides a new strategy for the portable diagnosis of TB.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Guanyu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Qingqing Ma
- Department of Respiratory Medicine, Shandong Public Health Clinical Center (Shandong Province Chest Hospital), Jinan, 250013, PR China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, PR China
| | - Jianguo Wu
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- National Bio-Protection Engineering Center, Tianjin, 300161, PR China
| | - Tie Li
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Shixing Chen
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Lixia Zhang
- Tianjin Haihe Hospital, Tianjin, 300350, PR China
| | - Min Wu
- Tianjin Haihe Hospital, Tianjin, 300350, PR China
| |
Collapse
|
8
|
Mahmoudi M, Bouras O, Hadjersi T, Baudu M, Aissiou S. Synthesis of CuO-modified silicon nanowires as a photocatalyst for the degradation of malachite green. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Yusoh SN, Yaacob KA. Study on the Physical Properties of a SiNW Biosensor to the Sensitivity of DNA Detection. MATERIALS 2021; 14:ma14195716. [PMID: 34640114 PMCID: PMC8510051 DOI: 10.3390/ma14195716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023]
Abstract
SiNW (silicon nanowire) arrays consisting of 5- and 10-wires were fabricated by using an atomic force microscope—the local anodic oxidation (AFM-LAO) technique followed by wet chemical etching. Tetramethylammonium hydroxide (TMAH) and isopropyl alcohol (IPA) at various concentrations were used to etch SiNWs. The SiNWs produced were differed in dimension and surface roughness. The SiNWs were functionalized and used for the detection of deoxyribonucleic acid (DNA) dengue (DEN-1). SiNW-based biosensors show sensitive detection of dengue DNA due to certain factors. The physical properties of SiNWs, such as the number of wires, the dimensions of wires, and surface roughness, were found to influence the sensitivity of the biosensor device. The SiNW biosensor device with 10 wires, a larger surface-to-volume ratio, and a rough surface is the most sensitive device, with a 1.93 fM limit of detection (LOD).
Collapse
|
10
|
Ma J, Du M, Wang C, Xie X, Wang H, Li T, Chen S, Zhang L, Mao S, Zhou X, Wu M. Rapid and Sensitive Detection of Mycobacterium tuberculosis by an Enhanced Nanobiosensor. ACS Sens 2021; 6:3367-3376. [PMID: 34470206 DOI: 10.1021/acssensors.1c01227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) mostly spreads from person to person through Mycobacterium tuberculosis (MTB). However, the majority of conventional detection methods for MTB cannot satisfy the requirements for actual TB detection. As one of the most promising powerful platforms, a silicon nanowire field-effect transistor (SiNW-FET) biosensor shows good prospect in TB detection. In this study, an enhanced SiNW-FET biosensor was developed for the rapid and sensitive detection of MTB. The surface functional parameters of the biosensor were explored and optimized. The SiNW-FET biosensor has good sensitivity with a detection limit of 0.01 fg/mL toward protein. The current change value shows a linear upward trend with the increase in protein concentration in the range of 1 fg/mL to 100 μg/mL. One whole test cycle can be accomplished within only 30 s. More importantly, a good distinction was realized in the sputum without pretreatment between normal people and TB patients, which greatly shortened the TB detection time (only 2-5 min, considering the dilution of sputum). Compared with other methods, the SiNW-FET biosensor can detect MTB with a remarkably broad dynamic linear range in a shorter time.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, PR China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, PR China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, PR China
- National Bio-Protection Engineering Center, Tianjin 300161, PR China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, PR China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, PR China
| | - Tie Li
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Shixing Chen
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Lixia Zhang
- Tianjin Haihe Hospital, Tianjin 300350, PR China
| | - Shun Mao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Min Wu
- Tianjin Haihe Hospital, Tianjin 300350, PR China
| |
Collapse
|
11
|
Mallavarapu A, Ajay P, Barrera C, Sreenivasan SV. Ruthenium-Assisted Chemical Etching of Silicon: Enabling CMOS-Compatible 3D Semiconductor Device Nanofabrication. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1169-1177. [PMID: 33348977 DOI: 10.1021/acsami.0c17011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The semiconductor industry's transition to three-dimensional (3D) logic and memory devices has revealed the limitations of plasma etching in reliable creation of vertical high aspect ratio (HAR) nanostructures. Metal-assisted chemical etch (MacEtch) can create ultra-HAR, taper-free nanostructures in silicon, but the catalyst used for reliable MacEtch-gold-is not CMOS (complementary metal-oxide-semiconductor)-compatible and therefore cannot be used in the semiconductor industry. Here, for the first time, we report a ruthenium MacEtch process that is comparable in quality to gold MacEtch. We introduce new process variables-catalyst plasma pretreatment and surface area-to achieve this result. Ruthenium is particularly desirable as it is not only CMOS-compatible but has also been introduced in semiconductor fabrication as an interconnect material. The results presented here remove a significant barrier to adoption of MacEtch for scalable fabrication of 3D semiconductor devices, sensors, and biodevices that can benefit from production in CMOS foundries.
Collapse
Affiliation(s)
- Akhila Mallavarapu
- NASCENT Engineering Research Center, University of Texas at Austin, Austin, Texas 78758, United States
| | - Paras Ajay
- NASCENT Engineering Research Center, University of Texas at Austin, Austin, Texas 78758, United States
| | - Crystal Barrera
- NASCENT Engineering Research Center, University of Texas at Austin, Austin, Texas 78758, United States
| | - S V Sreenivasan
- NASCENT Engineering Research Center, University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
12
|
Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. Trends Analyt Chem 2020; 133:116067. [PMID: 33052154 PMCID: PMC7545218 DOI: 10.1016/j.trac.2020.116067] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of field-Effect-Transistor (FET) type biosensing arrangements has been highlighted by researchers in the field of early biomarker detection and drug screening. Their non-metalized gate dielectrics that are exposed to an electrolyte solution cover the semiconductor material and actively transduce the biological changes on the surface. The efficiency of these novel devices in detecting different biomolecular analytes in a real-time, highly precise, specific, and label-free manner has been validated by numerous research studies. Considerable progress has been attained in designing FET devices, especially for biomedical diagnosis and cell-based assays in the past few decades. The exceptional electronic properties, compactness, and scalability of these novel tools are very desirable for designing rapid, label-free, and mass detection of biomolecules. With the incorporation of nanotechnology, the performance of biosensors based on FET boosts significantly, particularly, employment of nanomaterials such as graphene, metal nanoparticles, single and multi-walled carbon nanotubes, nanorods, and nanowires. Besides, their commercial availability, and high-quality production on a large-scale, turn them to be one of the most preferred sensing and screening platforms. This review presents the basic structural setup and working principle of different types of FET devices. We also focused on the latest progression regarding the use of FET biosensors for the recognition of viruses such as, recently emerged COVID-19, Influenza, Hepatitis B Virus, protein biomarkers, nucleic acids, bacteria, cells, and various ions. Additionally, an outline of the development of FET sensors for investigations related to drug development and the cellular investigation is also presented. Some technical strategies for enhancing the sensitivity and selectivity of detection in these devices are addressed as well. However, there are still certain challenges which are remained unaddressed concerning the performance and clinical use of transistor-based point-of-care (POC) instruments; accordingly, expectations about their future improvement for biosensing and cellular studies are argued at the end of this review.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Dept. of Elecrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada
| |
Collapse
|
13
|
Chen PY, Hung HL, Han CC, Chiu HC. Correlation between Nanoscale Elasticity, Semiconductivity, and Structural Order in Functionalized Polyaniline Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4153-4164. [PMID: 32216355 DOI: 10.1021/acs.langmuir.0c00100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The correlation between structural order, elasticity, and semiconductivity for butylthio-functionalized polyaniline (PANI-SBu) thin films was investigated using atomic force microscopy (AFM)-based techniques with X-ray diffraction (XRD) and scanning electron microscopy (SEM). After different stirring times, the thin films were cast from the solution of PANI-SBu in N-methyl-2-pyrrolidone that was continuously stirred at a constant rate of 150 rpm in an airtight round-bottom flask. According to the XRD and SEM results, the cross-sectional film structure evolved from being generally holey to highly lamellar with an increase in the stirring time. However, some new types of disordered structures began emerging beyond the optimal stirring time, possibly caused by the formation of disordered packing structures as contributed from the overoxidized polyaniline backbones during the additional stirring time. Moreover, according to the investigation results obtained using AFM-based techniques, the out-of-plane elastic moduli and charge mobilities of the PANI-SBu films were consistently smaller for disordered thin films and larger for structurally more ordered ones. The shear force resulting from the mechanical stirring of the PANI-SBu solution may gradually disentangle the polymer chains and thus help transform the individual polyaniline molecule from a coil-like chain conformation to a better extended rodlike chain conformation. Therefore, when cast into a film, the stretched polymer chains facilitate self-organization among the PANI-SBu backbones during the film formation process. Thus, an improved structural order in the film is attained. Our results demonstrate an unambiguous correlation between the structure order, elasticity, and conductivity in PANI-SBu thin films, which may have useful applications in conducting polymer-based flexible electronics.
Collapse
Affiliation(s)
- Po-Yen Chen
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan 106, Republic of China
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
| | - Hua-Li Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
| | - Chien-Chung Han
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
| | - Hsiang-Chih Chiu
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan 106, Republic of China
| |
Collapse
|
14
|
Xiao A, Huang Y, Zheng J, Chen P, Guan BO. An Optical Microfiber Biosensor for CEACAM5 Detection in Serum: Sensitization by a Nanosphere Interface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1799-1805. [PMID: 31829549 DOI: 10.1021/acsami.9b16702] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detection of carcinoembryonic antigen (CEA)-related cell adhesion molecules 5 (CEACAM5) is significant in cancer prewarning. Early diagnosis can effectively alleviate the danger of cancer. Point-of-care testing (POCT) has become a competitive technology for early detection. Fiber optic biosensors have great potential as POCT tools. However, their limits of detection (LODs) are not sufficient to afford ultralow concentration detection at the early stage. Herein, this work presents an optical microfiber sensor functionalized by a polystyrene@gold nanosphere (PS@Au nanosphere) interface for a synergistic sensitization effect to detect the ultralow CEACAM5 concentrations in serum at the early stage. The sensor's LOD achieves 3.54 × 10-17 M in pure solution and 5.27 × 10-16 M in serum, with the sensitization effect coupled with surface area enlargement and electromagnetic enhancement of interface. This LOD is about 6 orders of magnitude lower than that of current methods. It can be employed to detect the biomarkers at ultralow concentrations present in serum in the early stages of cancer. As the interfacial synergistic sensitization strategy is suitable for refractive index (RI)-based optical transducers, this work provides new opportunities to employ fiber optic biosensors as effective POCT tools.
Collapse
Affiliation(s)
- Aoxiang Xiao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology , Jinan University , Guangzhou 511486 , China
| | - Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology , Jinan University , Guangzhou 511486 , China
| | - Jiaying Zheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology , Jinan University , Guangzhou 511486 , China
| | - Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology , Jinan University , Guangzhou 511486 , China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology , Jinan University , Guangzhou 511486 , China
| |
Collapse
|