1
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
2
|
Zhang Z, Li J, Chen C, Tong Y, Liu D, Li C, Lu H, Huang L, Feng W, Sun X. Exploring T7 RNA polymerase-assisted CRISPR/Cas13a amplification for the detection of BNP via electrochemiluminescence sensing platform. Anal Chim Acta 2024; 1300:342409. [PMID: 38521567 DOI: 10.1016/j.aca.2024.342409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
Brain natriuretic peptide (BNP) is considered to be an important biomarker of heart failure (HF) attracting attention. However, its low concentration and short half-life in blood lead to a low-sensitivity detection of BNP, which is a challenge that has to be overcome. In this work, we propose a highly specific, highly sensitive T7 RNA polymerase-assisted clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a system to detect BNP via an electrochemiluminescence (ECL) sensing platform and incorporate exonuclease III (Exo III)-hairpin and dumbbell-shaped hybridization chain reaction (HCR) technologies. In this detection scheme, the ECL sensing platform possesses low background signal and high sensitivity. Firstly, the T7 promoter-initiated T7 RNA polymerase acts as a signal amplification technique to generate large amounts of RNAs that can activate CRISPR/Cas13a activity. Secondly, CRISPR/Cas13a is able to trans-cleave the surrounding trigger strand to produce DNA1. Thirdly, DNA1 is involved in the co-amplification reaction of Exo III and hairpin DNA, which subsequently triggers a dumbbell-shaped HCR technology. Eventually, a large number of Ru (II) molecules are inserted into the interstitial space of the dumbbell-shaped HCR to generate a strong ECL signal. The CRISPR/Cas13a possesses outstanding specificity for a single base and increased sensitivity. The tightly conformed dumbbell-shaped HCR provides higher sensitivity than the traditional linear HCR amplification technique. Ultimately, the clever combination of several amplification reactions enables the limit of detection (LOD) as low as 3.2 fg/mL. It showed promise for clinical sample testing, with recovery rates ranging from 98.4% to 103% in 5% human serum samples. This detection method offered a valuable tool for early HF detection, emphasizing the synergy of amplification strategies and specificity conferred by CRISPR/Cas13a technology.
Collapse
Affiliation(s)
- Zaiyong Zhang
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Jinglong Li
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Chunlin Chen
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Yuwei Tong
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Dehui Liu
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Cuizhi Li
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Huan Lu
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China.
| | - Li Huang
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Wanling Feng
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Xiaoting Sun
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| |
Collapse
|
3
|
Sousa MP, Bettencourt P, Brás-Silva C, Pereira C. Biosensors for natriuretic peptides in cardiovascular diseases. A review. Curr Probl Cardiol 2024; 49:102180. [PMID: 37907188 DOI: 10.1016/j.cpcardiol.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with high rates of morbidity and mortality. Over the years, it has been crucial to find accurate biomarkers capable of doing a precise monitor of HF and provide an early diagnosis. Of these, it has been established an important role of natriuretic peptides in HF assessment. Moreover, the development of biosensors has been garnering interest as new diagnostic medical tools. In this review we first provide a general overview of HF, its pathogenesis, and diagnostic features. We then discuss the role of natriuretic peptides in heart failure by characterizing them and point out their potential as biomarkers. Finally, we adress the evolution of biosensors development and the available natriuretic peptides biosensors for disease monitoring.
Collapse
Affiliation(s)
- Mariana P Sousa
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto 4200-135, Portugal
| | - Paulo Bettencourt
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Claudia Pereira
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, Porto 4249-004, Portugal; HE-FP-Hospital Fernando Pessoa, CECLIN, Center of Clinical Studies, 4420-096 Gondomar, Portugal; FCS-Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
4
|
Xia J, Zhong S, Hu X, Koh K, Chen H. Perspectives and trends in advanced optical and electrochemical biosensors based on engineered peptides. Mikrochim Acta 2023; 190:327. [PMID: 37495747 DOI: 10.1007/s00604-023-05907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
With the advancement of life medicine, in vitro diagnostics (IVD) technology has become an auxiliary tool for early diagnosis of diseases. However, biosensors for IVD now face some disadvantages such as poor targeting, significant antifouling properties, low density of recognized molecules, and poor stability. In recent years, peptides have been demonstrated to have various functions in unnatural biological systems, such as targeting properties, antifouling properties, and self-assembly properties, which indicates that peptides can be engineered. These properties of peptides, combined with their good biocompatibility, can be well applied to the design of biosensors to solve the problems mentioned above. This review provides an overview of the properties of engineered functional peptides and their applications in enhancing biosensor performance, mainly in the field of optics and electrochemistry.
Collapse
Affiliation(s)
- Junjie Xia
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Suyun Zhong
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Polonschii C, Potara M, Iancu M, David S, Banciu RM, Vasilescu A, Astilean S. Progress in the Optical Sensing of Cardiac Biomarkers. BIOSENSORS 2023; 13:632. [PMID: 37366997 PMCID: PMC10296523 DOI: 10.3390/bios13060632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Biomarkers play key roles in the diagnosis, risk assessment, treatment and supervision of cardiovascular diseases (CVD). Optical biosensors and assays are valuable analytical tools answering the need for fast and reliable measurements of biomarker levels. This review presents a survey of recent literature with a focus on the past 5 years. The data indicate continuing trends towards multiplexed, simpler, cheaper, faster and innovative sensing while newer tendencies concern minimizing the sample volume or using alternative sampling matrices such as saliva for less invasive assays. Utilizing the enzyme-mimicking activity of nanomaterials gained ground in comparison to their more traditional roles as signaling probes, immobilization supports for biomolecules and for signal amplification. The growing use of aptamers as replacements for antibodies prompted emerging applications of DNA amplification and editing techniques. Optical biosensors and assays were tested with larger sets of clinical samples and compared with the current standard methods. The ambitious goals on the horizon for CVD testing include the discovery and determination of relevant biomarkers with the help of artificial intelligence, more stable specific recognition elements for biomarkers and fast, cheap readers and disposable tests to facilitate rapid testing at home. As the field is progressing at an impressive pace, the opportunities for biosensors in the optical sensing of CVD biomarkers remain significant.
Collapse
Affiliation(s)
- Cristina Polonschii
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (S.A.)
| | - Madalina Iancu
- “Professor Dr. Agrippa Ionescu” Clinical Emergency Hospital, 7 Architect Ion Mincu Street, 011356 Bucharest, Romania;
| | - Sorin David
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Roberta Maria Banciu
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
- Faculty of Chemistry, University of Bucharest, 4-12 “Regina Elisabeta” Blvd., 030018 Bucharest, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, Intrarea Portocalelor 1B, 060101 Bucharest, Romania; (C.P.); (S.D.); (R.M.B.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (S.A.)
| |
Collapse
|
6
|
Xu X, Xia J, Song S, Liu Y, Chen J, Zhong S, Chen H, Zhang Z. Dual‐signal immuno‐competitive determination of brain natriuretic peptide based on magnetic nanozyme. ELECTROANAL 2023. [DOI: 10.1002/elan.202200500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Xiao‐Hui Xu
- School of Preclinical Medicine Wannan Medical College Wuhu 241001 PR China
| | - Junjie Xia
- School of Life Sciences Shanghai University Shanghai 200444 China
| | - Sunfengda Song
- School of Life Sciences Shanghai University Shanghai 200444 China
| | - Yawen Liu
- School of Medicine Shanghai University Shanghai 200444 P.R. China
- School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 P.R. China
| | - Jie Chen
- School of Life Sciences Shanghai University Shanghai 200444 China
| | - Suyun Zhong
- School of Life Sciences Shanghai University Shanghai 200444 China
| | - Hongxia Chen
- School of Life Sciences Shanghai University Shanghai 200444 China
| | - Zhao‐Huan Zhang
- Department of Laboratory Medicine Changzheng Hospital Naval Medical University Shanghai 200003 PR China
| |
Collapse
|
7
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
8
|
Zhou Z, Yang Z, Xia L, Zhang H. Construction of an enzyme-based all-fiber SPR biosensor for detection of enantiomers. Biosens Bioelectron 2022; 198:113836. [PMID: 34847363 DOI: 10.1016/j.bios.2021.113836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
Chiral analysis of amino acids (AAs) is of great importance in medical science due to the distinctive effect of AA isomers on human health. Although various chiral recognition techniques have been developed, the quantitative chiral recognition of low-level AA isomers remains challenging. Here, we combined the fiber optic SPR with an enzyme-substrate recognition mechanism to construct a direct-assay-type chiral AA biosensor. As a proof-of-concept attempt, a recently discovered Rasamsonia emersonii D-amino acid oxidase (ReDAAO) with a wide substrate spectrum and high stability was immobilized on the graphene oxide and gold nanorods composites (GO-AuNRs), using both EDC/NHS coupling and the gold-binding peptide (GBP) method. Such a biosensor can distinguish two AA isomers at the same concentration. It achieved specific detection of D-amino acids (D-AAs) with a linear range from 5x10-4 mM to 30 mM. Furthermore, it showed good resistance to enantiomeric interference. When the percentage of D-AA increases in the isomer mixture, a good linear relationship between the D/(D + L)-AA ratio and SPR spectral shift was obtained. This unique combination of the enzyme, nanocomposite, and SPR taps into the rich reservoir of proteins for chiral receptors. It lays the foundation for protein-based chiral recognition of other clinically important small molecules in future biosensor designs.
Collapse
Affiliation(s)
- Zhuoyue Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhao Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Xia
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Houjin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
9
|
Zhao J, Zhao F, Li H, Xiong Y, Cai S, Wang C, Chen Y, Han N, Yang R. Magnet-assisted electrochemical immunosensor based on surface-clean Pd-Au nanosheets for sensitive detection of SARS-CoV-2 spike protein. Electrochim Acta 2022; 404:139766. [PMID: 34961798 PMCID: PMC8696018 DOI: 10.1016/j.electacta.2021.139766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022]
Abstract
Tracking and monitoring of low concentrations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can effectively control asymptomatic transmission of current coronavirus disease 2019 (COVID-19) in the early stages of infection. Here, we highlight an electrochemical immunosensor for sensitive detection of SARS-CoV-2 antigen marker spike protein. The surface-clean Pd-Au nanosheets as a substrate for efficient sensing and signal output have been synthesized. The morphology, chemical states and excellent stable electrochemical properties of this surface-clean heterostructures have been studied. Functionalized superparamagnetic nanoparticles (MNPs) were introduced as sample separators and signal amplifiers. This biosensor was tested in phosphate buffered saline (PBS) and nasopharyngeal samples. The results showed that the sensor has a wide linear dynamic range (0.01 ng mL-1 to 1000 ng mL-1) with a low detection limit (0.0072 ng mL-1), which achieved stable and sensitive detection of the spike protein. Therefore, this immunosensing method provides a promising electrochemical measurement tool, which can furnish ideas for early screening and the reasonable optimization of detection methods of SARS-CoV-2.
Collapse
Affiliation(s)
- Jialin Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Haolin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youlin Xiong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Shuangfei Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Chen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Rong Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wang Q, Ren ZH, Zhao WM, Wang L, Yan X, Zhu AS, Qiu FM, Zhang KK. Research advances on surface plasmon resonance biosensors. NANOSCALE 2022; 14:564-591. [PMID: 34940766 DOI: 10.1039/d1nr05400g] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The surface plasmon resonance (SPR) phenomenon is of wide interest due to its sensitivity to changes in surface refractive index for the label-free, highly sensitive and rapid detection of biomarkers. This paper reviews research progress on SPR biosensors modified with different substrate structures and surface materials, surface plasmon resonance imaging (SPRI), and SPR-enhanced electrochemiluminescent (ECL) biosensors for applications in biosensing in the last five years. This paper focuses on the research on the application of the SPR phenomenon in the field of bio-detection, reviews the sensing characteristics of SPR biosensors with substrate structures of prisms, gratings, and optical fibers, and summarizes and analyzes the sensitivity and interference resistance of SPR sensors with surface modification of different materials (high-refractive index dielectric films, metallic micro- and nanostructures, and surface antifouling materials). Considering that imaging is an important tool for biomedical detection, this paper reviews the research progress on SPRI technology in the field of biomedical detection. In addition, this paper also reviews the research progress on SPR-enhanced ECL biosensors in the field of biosensing. Finally, this paper provides an outlook on the development trends of biosensing technology in terms of portable high-precision SPR sensors, reduction of self-loss of thin film materials, optimization of image processing techniques and simplification of electrode modification for ECL sensors.
Collapse
Affiliation(s)
- Qi Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, P. R. China
- State Key Laboratory of Synthetical Automation for Process Industries (Northeastern University), Shenyang 110819, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Zi-Han Ren
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Wan-Ming Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Lei Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Xin Yan
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Ai-Song Zhu
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Feng-Mei Qiu
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Ke-Ke Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, P. R. China
| |
Collapse
|
11
|
Gachpazan M, Mohammadinejad A, Saeidinia A, Rahimi HR, Ghayour-Mobarhan M, Vakilian F, Rezayi M. A review of biosensors for the detection of B-type natriuretic peptide as an important cardiovascular biomarker. Anal Bioanal Chem 2021; 413:5949-5967. [PMID: 34396470 DOI: 10.1007/s00216-021-03490-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022]
Abstract
Heart disease, as the most serious threat to human health globally, is responsible for rising mortality rates, largely due to lifestyle and diet. Unfortunately, the main problem for patients at high risk of heart disease is the validation of prognostic tests. To this end, the detection of cardiovascular biomarkers has been employed to obtain pathological and physiological information in order to improve prognosis and early-stage diagnosis of chronic heart failure. Short-term changes in B-type natriuretic peptide are known as a standard and important biomarker for diagnosis of heart failure. The most important problem for detection is low concentration and short half-life in the blood. The normal concentration of BNP in blood is less than 7 nM (25 pg/mL), which increases significantly to more than 80 pg/mL. Therefore, the development of new biosensors with better sensitivity, detection limit, and dynamic range than current commercial kits is urgently needed. This review classifies the biosensors designed for detection of BNP into electrochemical, optical, microfluidic, and lateral-flow immunoassay techniques. The review clearly demonstrates that a variety of immunoassay, aptasensor, enzymatic and catalytic nanomaterials, and fluorophores have been successfully employed for detection of BNP at low attomolar ranges. Dtection of B-type natriuretic peptide with biosensors.
Collapse
Affiliation(s)
- Meysam Gachpazan
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Amin Saeidinia
- Pediatric Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, 9196773117, Iran
| | - Hamid Reza Rahimi
- Vascular and Endovascular Surgery Research Center, Alavi Hospital, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Farveh Vakilian
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9176699199, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran. .,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran. .,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
12
|
Landim VPA, Silva BVM, Sobral Filho DC, Dutra RF. A Novel Redox‐free Immunosensor Concept Based on Cobalt Phthalocyanine@carbon Nanotubes Pseudocapacitor for Cardiac B‐type Natriuretic Peptide Detection. ELECTROANAL 2021. [DOI: 10.1002/elan.202100177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Vicente P. A. Landim
- Biomedical Engineering Laboratory, Department of Biomedical Engineering Federal University of Pernambuco Av. Prof. Moraes Rego, 1235. Recife-PE 50670-901 Brazil
| | - Bárbara V. M. Silva
- Biomedical Engineering Laboratory, Department of Biomedical Engineering Federal University of Pernambuco Av. Prof. Moraes Rego, 1235. Recife-PE 50670-901 Brazil
| | - Dário C. Sobral Filho
- Cardiac Emergency of Pernambuco (PROCAPE)/State University of Pernambuco R. dos Palmares Recife-PE 74970-240 Brazil
| | - Rosa F. Dutra
- Biomedical Engineering Laboratory, Department of Biomedical Engineering Federal University of Pernambuco Av. Prof. Moraes Rego, 1235. Recife-PE 50670-901 Brazil
| |
Collapse
|
13
|
Olejnik B, Kozioł A, Brzozowska E, Ferens-Sieczkowska M. Application of selected biosensor techniques in clinical diagnostics. Expert Rev Mol Diagn 2021; 21:925-937. [PMID: 34289786 DOI: 10.1080/14737159.2021.1957833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Examination of disease biomarkers mostly performed on crude materials, such as serum, meets some obstacles, resulting from sample complexity and the wide range of concentrations and sizes of the components. Techniques currently used in clinical diagnostics are usually time-consuming and expensive. The more sensitive and portable devices are needed for early diagnostics. Chemical sensors are devices that convert chemical information into parameters suitable for fast and precise processing and measurement. AREA COVERED We review the use of biosensors and their possible application in early diagnostics of some diseases like cancer or viral infections. We focus on different types of biorecognition and some technical modifications, lowering the limit of detection potentially attractive to medical practitioners. EXPERT OPINION Among the new diagnostic strategies, the use of biosensors is of increasing interest. In these techniques, the capture ligand interacts with the analyte of interest. Measuring interactions between partners in real time by surface plasmon resonance yields valuable information about kinetics and affinity in a short time and without labels. Importantly, the tendency in such techniques is to make biosensor devices smaller and the test results apparent with the naked eye, so they can be used in point-of-care medicine.
Collapse
Affiliation(s)
- Beata Olejnik
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Wrocław, Poland
| | - Agata Kozioł
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Wrocław, Poland
| | - Ewa Brzozowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Laboratory of Medical Microbiology, Wrocław, Poland
| | | |
Collapse
|
14
|
Huang X, Hu J, Zhu H, Chen J, Liu Y, Mao Z, Lee J, Chen H. Magnetic field-aligned Fe 3O 4-coated silver magnetoplasmonic nanochain with enhanced sensitivity for detection of Siglec-15. Biosens Bioelectron 2021; 191:113448. [PMID: 34171735 DOI: 10.1016/j.bios.2021.113448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
Noble metal nanoparticles could provide a significant gain in sensitivity of surface plasmon resonance (SPR) sensor by electromagnetic field coupling between the localized plasmon resonance of nanoparticles and gold film. A facile and cost-effective SPR sensor based on magnetic field-aligned Fe3O4-coated silver magnetoplasmonic nanoparticles (Ag@MNPs) nanochain (M-Ag@MNPs) was proposed to improve the sensitivity of the sensor, which gave access to detect clinical targets at low concentration. Optimization experiments proved that 80 ng mL-1 M-Ag@MNPs-based SPR sensor showed high refractive index sensitivity and increased detection accuracy and quality factor when comparing with those of bare gold. Sialic acid binding Ig like lectins-15 (Siglec-15) was used as proof of concept to verify the sensitivity enhancement performance of M-Ag@MNPs in the actual detection process. SPR angle shifts of M-Ag@MNPs/gold sensor were significantly higher than those of traditional gold sensor under the same concentration of Siglec-15, which was consistent with previous performance analysis. Also, the detection limit of M-Ag@MNPs/gold sensor was calculated to be 1.36 pg mL-1. All these results had proved that aligning M-Ag@MNPs onto the gold chip could improve the performance of the SPR sensor and achieve sensitive detection of small amounts of clinical biomarkers.
Collapse
Affiliation(s)
- Xing Huang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Junjie Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Han Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Zhihui Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
15
|
Huang X, Zhang ZH, Chen J, Mao Z, Zhu H, Liu Y, Zhu Z, Chen H. One dimensional magneto-optical nanocomplex from silver nanoclusters and magnetite nanorods containing ordered mesocages for sensitive detection of PD-L1. Biosens Bioelectron 2021; 189:113385. [PMID: 34091282 DOI: 10.1016/j.bios.2021.113385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Programmed death ligand 1 (PD-L1) is a typical immune checkpoint protein, whose up-regulation on the membrane of different tumor cells inhibits the immune response of T cells and leads to the escape of tumor cells. In this work, we designed a facile and highly specific surface plasmon resonance (SPR) biosensor to detect PD-L1 in human plasma based on magnetite nanorods containing ordered mesocages (MNOM) and silver nanoclusters (AgNCs). Magneto-optical nanocomplex MNOM@AgNCs with superior magneto-optical properties and high signal-to-noise ratio were fabricated to improve the detection sensitivity owing to the high specific surface area of MNOM and excellent localized SPR of AgNCs. The PD-L1 Antibody on the surface of gold chip and the PD-L1 aptamer on MNOM@AgNCs could realize dual selective recognition of PD-L1, providing the specificity of the sensor and reducing non-specific binding. The SPR sensor showed a good linear range of PD-L1 from 10 ng/mL to 300 ng/mL with the detection limit of 3.29 ng/mL. The practical performance of this immunosensing platform had been successfully verified by clinical samples which included healthy donors and cancer patients. Based on the analysis, the developed immunosensor provided a new strategy for point-of-care detection of PD-L1 and could be used as clinical companion diagnosis of PD-1/PD-L1 inhibitor therapy.
Collapse
Affiliation(s)
- Xing Huang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhao-Huan Zhang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Zhihui Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Han Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Zhongzheng Zhu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, PR China.
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
16
|
Hu J, Zhang ZH, Zhu Z, Chen J, Hu X, Chen H. Specific intracellular binding peptide as sPD-L1 antibody mimic: Robust binding capacity and intracellular region specific modulation upon applied to sensing research. Biosens Bioelectron 2021; 185:113269. [PMID: 33930752 DOI: 10.1016/j.bios.2021.113269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 02/08/2023]
Abstract
Programmed death ligand 1 (PD-L1) immune checkpoint has been regarded as a new target for predicting cancer immunotherapy. As a transmembrane protein, PD-L1 has very low blood concentration and is likely to deplete their native activity when separated from the membrane environment due to significant hydrophobic domains, which make it difficult to measure sensitively. The reported PD-L1 aptamers and antibodies are both extracellular region binding molecules with the overlapping binding sites, which seriously limit with the construction of biosensor. Specific intracellular binding peptide (SIBP) as a unique PD-L1 intracellular region homing probe molecule is utilized for specifically capture targets. A simple and sensitive surface plasmon resonance (SPR) sandwich assay was constructed to detect serum soluble PD-L1 (sPD-L1) based on the unique and strong binding ability of SIBP to the intracellular region of sPD-L1. The designed SPR sensor showed great selectivity and wide dynamic response range of sPD-L1 concentration from 10 ng/mL to 2000 ng/mL. The limit of detection was calculated to be 1.749 ng/mL (S/N = 3). Owing to the SIBP's strong and specific binding ability with sPD-L1, the sensitive sensor can successfully detect sPD-L1 in serum samples, paving the way for the development of efficient test tools for clinical diagnosis and analysis.
Collapse
Affiliation(s)
- Junjie Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhao-Huan Zhang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Zhongzheng Zhu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, PR China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
17
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
18
|
Dahiya T, Yadav S, Yadav N, Mann A, Sharma M, Rana J. Monitoring of BNP cardiac biomarker with major emphasis on biosensing methods: A review. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
19
|
Zhu Z, Li H, Xiang Y, Koh K, Hu X, Chen H. Pyridinium porphyrins and AuNPs mediated bionetworks as SPR signal amplification tags for the ultrasensitive assay of brain natriuretic peptide. Mikrochim Acta 2020; 187:327. [PMID: 32405667 DOI: 10.1007/s00604-020-04289-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/19/2020] [Indexed: 12/23/2022]
Abstract
Extension of the self-assembled bionanonetworks into surface plasmon resonance (SPR) assay investigation provides an effective signal amplification approach. We fabricated a bionetwork by nucleic acids, organic compounds, and supramolecular gold nanoparticles for ultrasensitive SPR detection of B-type natriuretic peptide (BNP). The SPR method was developed by a sandwich-type format of aptamer-target-antibody, and the aptamer-modified bionanonetworks induced localized SPR and large refractive index for different concentrations of the target BNP. The linear concentration range and limit of detection were 1-10,000 pg/mL (R2 = 0.9852) and 0.3 pg/mL respectively. The detection recovery was in the range 92.13 to 108.69%. The approach embraces the following main advantages: (1) Cooperative double recognition was realized by calix[4]arenes for amino aptamers and pyridinium porphyrins. (2) The approach provided the specificity for supramolecular-based nanomaterials and a simple synthesis process via the ordered self-assembly under mild conditions. (3) The bionanonetworks endowed the SPR assay with signal amplification and stable determination for trace proteins. Therefore, it is expected that this study may offer a new SPR signal-amplified platform of organic-inorganic bionanonetworks to achieve sensitive, stable, and real-time determination. Graphical abstract Schematic of bionanonetwork based on porphyrin-mediated functionalized gold nanoparticles for SPR signal amplification to quantitatively detect BNP.
Collapse
Affiliation(s)
- Zhikang Zhu
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongjie Li
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yangquan Xiang
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Xiaojun Hu
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Hongxia Chen
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
20
|
Wu Q, Li N, Wang Y, Xu Y, Wu J, Jia G, Ji F, Fang X, Chen F, Cui X. Ultrasensitive and Selective Determination of Carcinoembryonic Antigen Using Multifunctional Ultrathin Amino-Functionalized Ti3C2-MXene Nanosheets. Anal Chem 2020; 92:3354-3360. [DOI: 10.1021/acs.analchem.9b05372] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Ningbo Li
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Ying Wang
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Yanchao Xu
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Jiandong Wu
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Guangri Jia
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Xuedong Fang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Fangfang Chen
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| |
Collapse
|
21
|
A surface plasmon resonance biosensor in conjunction with a DNA aptamer-antibody bioreceptor pair for heterogeneous nuclear ribonucleoprotein A1 concentrations in colorectal cancer plasma solutions. Biosens Bioelectron 2020; 154:112065. [PMID: 32056960 DOI: 10.1016/j.bios.2020.112065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
A new DNA aptamer and antibody pair was incorporated into surface plasmon resonance (SPR) sensing platform to detect heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in plasma at clinically relevant native concentrations for the diagnosis of colorectal cancer (CRC). SPR detection of hnRNP A1 was realized via formation of the surface sandwich complex of aptamer/hnRNP A1/anti-hnRNP A; the specific adsorption of hnRNP A1 onto a gold chip surface modified with a DNA aptamer followed by the adsorption of anti-hnRNP A1. Changes in the refractive unit (RU) with respect to the hnRNP A1 concentration in buffer solutions were monitored at a fixed anti-hnRNP A1 concentration of 90 nM, resulting in a dynamic range of 0.1-10 nM of hnRNP A1. The surface sandwich SPR biosensor was further applied to the direct analysis of undiluted human normal and pooled CRC patient plasma solutions. Our plasma analysis results were compared to those obtained with a commercial enzyme-linked immunosorbent assay kit.
Collapse
|
22
|
Zhu Z, Zhu J, Zhao J, Zhu K, Xu Q, Chen H. Natural receptor-based competitive immunoelectrochemical assay for ultra-sensitive detection of Siglec 15. Biosens Bioelectron 2019; 151:111950. [PMID: 31868605 DOI: 10.1016/j.bios.2019.111950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/28/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectin 15 (Siglec 15) is a novel immunomodulatory target and was identified as an immune suppressor in the tumor microenvironment. Accurate assessment of Siglec 15 expression levels is critical for cancer prognosis and treatment. In this work, a natural receptor-based immunoelectrochemical sensor is designed to mimic the interaction between Siglec 15 and DNAX-activation protein (DAP 12) in the cellular signal pathway. DAP 12 labeled with the electrochemical signal molecule Fc is recognized by Siglec 15 through specific interaction on the electrode surface and used as the signal reporter. Anti-Siglec 15 modified MNPs (MNPs-Ab) were used as the extraction agent for the magnetic extraction of target analytes in complex matrices. Free Anti-Siglec 15 will "squeeze out" the DAP 12-Fc to bind the Siglec 15 on the electrode surface, resulting a sensitive electrochemical signal change according to the Siglec 15 concentration in sample. Natural receptor-based competitive assay ensure the efficient binding between antibody and Siglec 15 and decrease the nonspecific interaction. Therefore, this simple natural receptor-based competitive assay with sensitivity and selectivity has potential for practical clinical application.
Collapse
Affiliation(s)
- Zhongzheng Zhu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, PR China
| | - Jiayi Zhu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jialin Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Kexuan Zhu
- Department of Burns and Plastic Surgery, General Hospital of Liaoning Provincial Armed Police Force of PLA, Shenyang, 110034, PR China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, PR China.
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
23
|
McConnell EM, Cozma I, Morrison D, Li Y. Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Anal Chem 2019; 92:327-344. [PMID: 31656066 DOI: 10.1021/acs.analchem.9b04868] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Ioana Cozma
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1.,Department of Surgery, Division of General Surgery , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| |
Collapse
|