1
|
Alqahtani YS, Mahmoud AM, Ali AMBH, El-Wekil MM. Enhanced fluorometric detection of histamine using red emissive amino acid-functionalized bimetallic nanoclusters. RSC Adv 2024; 14:18970-18977. [PMID: 38873548 PMCID: PMC11168285 DOI: 10.1039/d4ra02010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Lysine-capped gold nanoclusters doped with silver (LYS@Ag/Au NCs) have been developed for the sensitive and selective "turn-off" fluorescence detection of histamine. This fluorescent probe demonstrates excellent stability and a high quantum yield of 9.45%. Upon addition of histamine, a positively charged biogenic amine, to the LYS@Ag/Au NCs fluorescent probe, its fluorescence emission is quenched due to electrostatic interaction, aggregation, and hydrogen bond formation. The probe exhibits good sensitivity for the determination of histamine within the range of 0.003-350 μM, with a detection limit of 0.001 μM based on a signal-to-noise ratio of 3. Furthermore, the probe has been applied to detect biogenic amines in complicated matrices, highlighting its potential for practical applications. However, interference from the analogue histidine was observed during analysis, which can be mitigated by using a Supelclean™ LC-SAX solid-phase extraction column for removal.
Collapse
Affiliation(s)
- Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran 11001 Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran 11001 Saudi Arabia
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut 71516 Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut 71516 Egypt
| |
Collapse
|
2
|
Alkahtani SA, Mahmoud AM, Ali R, El-Wekil MM. Sonochemical synthesis of lanthanum ferrite nanoparticle-decorated carbon nanotubes for simultaneous electrochemical determination of acetaminophen and dopamine. Mikrochim Acta 2023; 191:25. [PMID: 38091119 DOI: 10.1007/s00604-023-06110-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023]
Abstract
A new nanocomposite consisting of lanthanum ferrite nanoparticles (LaFeO3 NPs) integrated with carbon nanotubes (CNTs) was fabricated via facile sonochemical approach. The engineered nanocomposite was applied to simultaneously determine acetaminophen (ACP) and dopamine (DA) in a binary mixture. The LaFeO3 NPs@CNT probe possesses several advantages such as superior conductivity, large surface area, and more active sites, improving its electrocatalytic activity towards ACP and DA. Under optimized conditions, the anodic peak currents (Ipa) linearly increased with increasing concentration of ACP and DA in the range 0.069-210 µM and 0.15-210 µM, respectively. The sensitivity of LaFeO3 NPs@CNTs/glassy carbon electrode (GCE) for detecting ACP and DA is 7.456 and 5.980 μA·μM-1·cm-2, respectively. The detection limits (S/N = 3) for ACP and DA are 0.02 μM and 0.05 μM, respectively. Advantages of LaFeO3 NPs@CNTs/GCE for the detection of ACP and DA include wide linear ranges, low-detection limits, good selectivity, and long-term stability. The as-fabricated electrode was applied to determine ACP and DA in pharmaceutical formulations and human serum samples with recoveries ranging from 97.7 to 103.3% and an RSD that did not exceed 3.7%, confirming the suitability of the proposed sensor for the determination of ACP and DA in real samples. This study not only presents promising opportunities for enhancing the sensitivity and stability of electrochemical sensors used in the detection of bioanalytes but also significantly contributes to the progress of unique and comprehensive biochemical detection methodologies.
Collapse
Affiliation(s)
- Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ramadan Ali
- Department of Pharmaceutical Chemistry, FacultyofPharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Asyut, 71526, Egypt.
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
3
|
Wei XW, Zhang Y, Zhou Y, Li M, Liu ZF, Feng XS, Tan Y. A Review on Pretreatment and Analysis Methods of Polyether Antibiotics in Complex Samples. Crit Rev Anal Chem 2023; 54:3453-3477. [PMID: 37647335 DOI: 10.1080/10408347.2023.2251156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polyether antibiotics (PAs) are the anti-coccidiosis drugs used for treating and preventing coccidiosis. Studies show the residues of these antibiotics in food cause adversities and threaten human health. PAs thus need robust, rugged, and accurate methods for their analysis. This review encompasses pretreatment and detection methods of PAs in diverse matrices since 2010. Both conventional and developed methods are part of the pretreatments, such as dispersive liquid-liquid microextraction, solid-phase extraction, solid-phase microextraction, solvent front position extraction, QuEChERS (Quick Easy Cheap Effective Rugged and Safe), supercritical fluid extraction, and others. The analysis methods involve liquid chromatography coupled with detectors, sensors, etc. The pros and cons of various techniques for PAs have been discussed and future tendencies are proposed.
Collapse
Affiliation(s)
- Xin-Wei Wei
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
A dual-recognition-controlled electrochemical biosensor for selective and ultrasensitive detection of acrylamide in heat-treated carbohydrate-rich food. Food Chem 2023; 413:135666. [PMID: 36796261 DOI: 10.1016/j.foodchem.2023.135666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
A synergistic hybrid was fabricated for the electrochemical aptasensing of acrylamide (AAM) via molecularly imprinted technology. The aptasensor depends on the modification of glassy carbon electrode with AuNPs and reduced graphene oxide (rGO)/multiwalled carbon nanotubes (MWCNTs) {Au@rGO-MWCNTs/GCE}. The aptamer (Apt-SH) and AAM (template) were incubated with the electrode. After that, the monomer was electro-polymerized to fabricate molecular imprinted polymeric film (MIP) over the surface of Apt-SH/Au@rGO/MWCNTs/GCE. The modified electrodes were characterized using different morphological and electrochemical techniques. Under optimum conditions, the aptasensor exhibited a linear relationship between AAM concentration and anodic peak current difference (ΔIpa) in the range of 1-600 nM with a limit of quantitation (LOQ, S/N = 10) and a limit of detection (LOD, S/N = 3) of 0.346 and 0.104 nM, respectively. The aptasensor was successfully applied for the determination of AAM in potato fries samples with recoveries % in the range of 98.7-103.4 % and RSDs did not exceed 3.2 %. The advantages of MIP/Apt-SH/Au@rGO/MWCNTs/GCE are low detection limit, high selectivity, and satisfactory stability towards AAM detection.
Collapse
|
5
|
Bifunctional nanoprobe for dual-mode detection based on blue emissive iron and nitrogen co-doped carbon dots as a peroxidase-mimic platform. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Mahmoud AM, Mahnashi MH, Alshareef F, El-Wekil MM. Functionalized vanadium disulfide quantum dots as a novel dual-mode sensor for ultrasensitive and highly selective determination of rutin. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe3O4 binary hybrid. Sci Rep 2022; 12:12502. [PMID: 35869107 PMCID: PMC9307609 DOI: 10.1038/s41598-022-15637-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Pathogenic bacteria cause disease outbreaks and threaten human health, prompting the research on advanced detection assays. Herein, we developed a selective molecular imprinted aptasensor for sensitive and prompt quantitation of Staphylococcus aureus (S. aureus) bacteria. The aptasensor was constructed by immobilization of aptamer on gold nanoparticles modified magnetic nanoparticles (apt-AuNPs@ Fe3O4). A functional monomer (o-phenylenediamine, o-phen) was electro-polymerized on the surface of the as-synthesized nanocomposite in the presence of a template (S. aureus). After removing S. aureus, the formed imprinted sites were available to extract pathogenic bacteria from complicated matrices. The surface morphology of the as-fabricated nanocomposites was characterized using different spectroscopic and electrochemical methods. Moreover, we thoroughly evaluated factors affecting the synthesis and determination procedures. The molecular imprinted aptasensor exhibited a wide linear range of 101–107 CFU mL−1 with a Limit of Detection, LOD (signal to noise = 3) of 1 CFU mL−1. The aptasensor detected S. aureus in milk, conduit water, and apple juice samples with good recoveries % and satisfactory relative standard deviations (RSDs %) values.
Collapse
|
8
|
Lanthanum doped zirconium oxide-nanocomposite as sensitive electrochemical platforms for Tenofovir detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Zhang Z, Yuan J, Zheng H, Liu Z, Lu G, Huang Q, Liu M. Highly Sensitive Electrochemical Determination of Lead(II) by Double Stranded DNA (dsDNA) with a Carbon Paper/Reduced Graphene Oxide (CP/rGO) Substrate by Differential Pulse Anodic Stripping Voltammetry (DPASV). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2119245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ziwei Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Jin Yuan
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Huiling Zheng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Zelin Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Guangqiu Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Qilin Huang
- Yunnan Provincial Key Laboratory of Criminal Science and Technology, Yunnan Police College, Kunming, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Lim RRX, Ang WL, Ambrosi A, Sofer Z, Bonanni A. Electroactive nanocarbon materials as signaling tags for electrochemical PCR. Talanta 2022; 245:123479. [DOI: 10.1016/j.talanta.2022.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
|
11
|
El-Wekil MM, Hayallah AM, Abdelgawad MA, Shahin RY. Nanocomposite of gold nanoparticles@nickel disulfide-plant derived carbon for molecularly imprinted electrochemical determination of favipiravir. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Madhuvilakku R, Yen YK, Yan WM, Huang GW. Laser-scribed Graphene Electrodes Functionalized with Nafion/Fe 3O 4 Nanohybrids for the Ultrasensitive Detection of Neurotoxin Drug Clioquinol. ACS OMEGA 2022; 7:15936-15950. [PMID: 35571850 PMCID: PMC9096983 DOI: 10.1021/acsomega.2c01069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 05/04/2023]
Abstract
The analysis of pharmaceutical active ingredients plays an important role in quality control and clinical trials because they have a significant physiological effect on the human body even at low concentrations. Herein, a flexible three-electrode system using laser-scribed graphene (LSG) technology, which consists of Nafion/Fe3O4 nanohybrids immobilized on LSG as the working electrode and LSG counter and reference electrodes on a single polyimide film, is presented. A Nafion/Fe3O4/LSG electrode is constructed by drop coating a solution of Nafion/Fe3O4, which is electrostatically self-assembled between positively charged Fe3O4 and negatively charged Nafion on the LSG electrode and is used for the first time to determine a neurotoxicity drug (clioquinol; CQL) in biological samples. Owing to their porous 3D structure, an enriched surface area at the active edges and polar groups (OH, COOH, and -SO3H) in Nafion/Fe3O4/LSG electrodes resulted in excellent wettability to facilitate electrolyte diffusion, which gave ∼twofold enhancement in electrocatalytic activity over LSG electrodes. The experimental parameters affecting the analytical performance were investigated. The quantification of clioquinol on the Nafion/Fe3O4/LSG electrode surface was examined using differential pulse voltammetry and chronoamperometry techniques. The fabricated sensor displays preferable sensitivity (17.4 μA μM-1 cm-2), a wide linear range (1 nM to 100 μM), a very low detection limit (0.73 nM), and acceptable selectivity toward quantitative analysis of CQL. Furthermore, the reliability of the sensor was checked by CQL detection in spiked human blood serum and urine samples, and satisfactory recoveries were obtained.
Collapse
Affiliation(s)
- Rajesh Madhuvilakku
- Department
of Mechanical Engineering, National Taipei
University of Technology, Taipei 106, Taiwan
- Department
of Energy and Refrigeration Air-Conditioning Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yi-Kuang Yen
- Department
of Mechanical Engineering, National Taipei
University of Technology, Taipei 106, Taiwan
- . Phone: +886-2771-2171. Fax: +886-2731-7191
| | - Wei-Mon Yan
- Department
of Energy and Refrigeration Air-Conditioning Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Guang-Wei Huang
- Department
of Mechanical Engineering, National Taipei
University of Technology, Taipei 106, Taiwan
| |
Collapse
|
13
|
Fluorometric and electrochemical dual-mode detection of toxic flavonoid rutin based on new nitrogen and sulfur co-doped carbon dots: Enhanced selectivity based on masking the interfering flavonoids with BSA complexation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Electrochemical sensing of copper-chelator D- penicillamine based on complexation with gold nanoparticles modified copper based-metal organic frameworks. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Highly selective and sensitive electrochemical determination of cysteine based on complexation with gold nanoparticle–modified copper-based metal organic frameworks. Anal Bioanal Chem 2022; 414:2343-2353. [DOI: 10.1007/s00216-021-03852-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
|
16
|
Enhanced molecular imprinted electrochemical sensing of histamine based on signal reporting nanohybrid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Abbas NS, Mohamed YAS, Derayea SM, Omar MA, Saleh GA. Simple TLC-spectrodensitometric method for studying lipophilicity and quantitative analysis of hypoglycemic drugs in their binary mixture. Biomed Chromatogr 2021; 35:e5154. [PMID: 33955025 DOI: 10.1002/bmc.5154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022]
Abstract
A selective and simple salting-out-assisted thin-layer chromatographic methodology was developed for the simultaneous determination of two oral hypoglycemic drugs, dapagliflozin (DAPA) and metformin (MET) in their pure forms, tablets and spiked human plasma samples. Silica gel 60 F254 plates were used in the separation of the two drugs using a mobile phase consisting of 0.5 m (NH4 )2 SO4 and methanol (3:7, v/v). The plates were scanned in the reflectance mode at λmax = 237 nm. The obtained retardation factor (Rf ) values for DAPA and MET were 0.77 ± 0.02 and 0.25 ± 0.02, respectively. The thin-layer chromatography method was validated according to International Conference on Harmonization guidelines. The peak areas were linearly increased with the increases in concentrations of 45-1,000 and 50-1,500 ng/band for DAPA and MET, respectively. Moreover, the method was applied to estimate the molecular lipophilicity parameters of DAPA and MET via retention data. The suggested method was efficiently utilized for the analysis of DAPA and MET in pharmaceutical tablets and plasma samples with recoveries 98.4-100.4 and RSDs in the ranges of 1.4-2.6 and 2.2-3.0% for DAPA and MET, respectively.
Collapse
Affiliation(s)
- Noha S Abbas
- Ministry of Health and Population, Assiut, Egypt
| | - Yahya Abduh Salim Mohamed
- Department of Medicinal and Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sana'a University, 464414, Yemen
| | - Sayed M Derayea
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, 61519, Egypt
| | - Mahmoud A Omar
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, 61519, Egypt.,Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Gamal A Saleh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
18
|
Mahnashi MH, Mahmoud AM, AZ A, Alhazzani K, Alanazi SA, Alanazi MM, El-Wekil MM. A novel design and facile synthesis of nature inspired poly (dopamine-Cr3+) nanocubes decorated reduced graphene oxide for electrochemical sensing of flibanserin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Mahnashi MH, Mahmoud AM, Alhazzani K, Alanazi AZ, Alaseem AM, Algahtani MM, El-Wekil MM. Ultrasensitive and selective molecularly imprinted electrochemical oxaliplatin sensor based on a novel nitrogen-doped carbon nanotubes/Ag@cu MOF as a signal enhancer and reporter nanohybrid. Mikrochim Acta 2021; 188:124. [PMID: 33712895 DOI: 10.1007/s00604-021-04781-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 01/16/2023]
Abstract
A sensitive and selective molecular imprinted polymeric network (MIP) electrochemical sensor is proposed for the determination of anti-cancer drug oxaliplatin (OXAL). The polymeric network [poly(pyrrole)] was electrodeposited on a glassy carbon electrode (GCE) modified with silver nanoparticles (Ag) functionalized Cu-metal organic framework (Cu-BDC) and nitrogen-doped carbon nanotubes (N-CNTs). The MIP-Ag@Cu-BDC /N-CNTs/GCE showed an observable reduction peak at -0.14 V, which corresponds to the Cu-BDC reduction. This peak increased and decreased by eluting and rebinding of OXAL, respectively. The binding constant between OXAL and Cu-BDC was calculated to be 3.5 ± 0.1 × 107 mol-1 L. The electrochemical signal (∆i) increased with increasing OXAL concentration in the range 0.056-200 ng mL-1 with a limit of detection (LOD, S/N = 3) of 0.016 ng mL-1. The combination of N-CNTs and Ag@Cu-BDC improves both the conductivity and the anchoring sites for binding the polymer film on the surface of the electrode. The MIP-based electrochemical sensor offered outstanding sensitivity, selectivity, reproducibility, and stability. The MIP-Ag@Cu-BDC /N-CNTs/GCE was applied to determine OXAL in pharmaceutical injections, human plasma, and urine samples with good recoveries (97.5-105%) and acceptable relative standard deviations (RSDs = 1.8-3.2%). Factors affecting fabrication of MIP and OXAL determination were optimized using standard orthogonal design using L25 (56) matrix. This MIP based electrochemical sensor opens a new venue for the fabrication of other similar sensors and biosensors.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Khalid Alhazzani
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - A Z Alanazi
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ali Mohammed Alaseem
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
20
|
Alkahtani SA, Mahmoud AM, Mahnashi MH, AlQarni AO, Alqahtani YSA, El-Wekil MM. Facile one pot sonochemical synthesis of layered nanostructure of ZnS NPs/rGO nanosheets for simultaneous analysis of daclatasvir and hydroxychloroquine. Microchem J 2021; 164:105972. [PMID: 33518809 PMCID: PMC7826116 DOI: 10.1016/j.microc.2021.105972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/30/2022]
Abstract
In this study, zinc sulfide nanoparticles were loaded on reduced graphene oxide (ZnS NPs/rGO) using simple sonochemical method. The nanocomposite was characterized using different morphological and electrochemical techniques such as TEM, SEM, PXRD, EDX, Raman spectroscopy, FTIR, N2-adsorption-desorption, CV, and EIS. The ZnS NPs/rGO modified glassy carbon electrode (GCE) was used to simultaneously estimate hydroxychloroquine (HCQ) and daclatasvir (DAC) in a binary mixture for the first time. The modified nanocomposite exhibited good catalytic activity towards HCQ and DAC detection. In addition, it showed higher sensitivity, good selectivity and stability; and high reproducibility towards HCQ and DAC analysis. The activity of the modified electrode was noticeably improved due to synergism between ZnS NPs and rGO. Under optimum conditions of DPV measurements, the anodic peak currents (Ipa) were obviously increased with the increase of HCQ and DAC amounts with linear ranges of 5.0-65.0 and 7.0-65.0 nM with LODs of 0.456 and 0.498 nM for HCQ and DAC, respectively. The ZnS NPs/ rGO modified GCE was used to quantify HCQ and DAC in biological fluids with recoveries of 98.7-102.7% and 96.9-104.5% and RSDs of 1.89-3.57% and 1.91-3.70%, respectively.
Collapse
Affiliation(s)
- Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O AlQarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S A Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
21
|
Mater Mahnashi H, Mahmoud AM, Saad Alkahtani A, El-Wekil MM. Simultaneous electrochemical detection of azithromycin and hydroxychloroquine based on VS 2 QDs embedded N, S @graphene aerogel/cCNTs 3D nanostructure. Microchem J 2021; 163:105925. [PMID: 33437097 PMCID: PMC7792520 DOI: 10.1016/j.microc.2021.105925] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
In this research paper, an innovative electrochemical sensor was suggested for simultaneous voltammetric analysis of azithromycin (AZM) and hydroxychloroquine (HCQ) for the first time. The sensor based on hydrothermal synthesis of vanadium disulfide quantum dots (VS2 QDs) and insertion within 3D N, S graphene aerogel (3D N, S @ GNA) and carbon nanotubes nanaostructure as a new and widely group of carbon nanomaterials. The nanocomposites were characterized morphologically using different techniques. In addition, the nanomaterials were characterized electrochemically using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The proposed electrochemical sensor showed wide dynamic linear ranges of 0.28–30 × 10−8 M and 0.84–22.5 × 10−8 M for analysis of AZM and HCQ, respectively. The limits of detection (LODs) based on signal to noise (S/N) 3:1 were found to be 0.091 × 10−8 M and 0.277 × 10−8 M for AZM and HCQ, respectively. Briefly, the electrochemical sensor had good stability, selectivity, reproducibility and feasibility for simultaneous detection of AZM and HCQ in presence of different interfering species.
Collapse
Affiliation(s)
- H Mater Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - A Saad Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
22
|
Nataraj N, Krishnan SK, Chen TW, Chen SM, Lou BS. Ni-Doped ZrO2 nanoparticles decorated MW-CNT nanocomposite for the highly sensitive electrochemical detection of 5-amino salicylic acid. Analyst 2021; 146:664-673. [DOI: 10.1039/d0an01507e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ni-ZrO2/MWCNT/GCE for highly sensitive electrochemical detection of 5-ASA in biofluids.
Collapse
Affiliation(s)
- Nandini Nataraj
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
- Research and Development Center for Smart Textile Technology
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Bih-Show Lou
- Chemistry Division
- Center for General Education
- Chang Gung University
- Taoyuan 333
- Taiwan
| |
Collapse
|
23
|
Nitrogen and sulfur co-doped graphene quantum dots/nanocellulose nanohybrid for electrochemical sensing of anti-schizophrenic drug olanzapine in pharmaceuticals and human biological fluids. Int J Biol Macromol 2020; 165:2030-2037. [DOI: 10.1016/j.ijbiomac.2020.10.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 01/24/2023]
|
24
|
Mahnashi MH. Synthesis of three-dimensional nickel ferrite nanospheres decorated activated graphite nanoplatelets for electrochemical detection of vortioxetine with pharmacokinetic insights in human volunteers. Mikrochim Acta 2020; 187:519. [PMID: 32852618 DOI: 10.1007/s00604-020-04523-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 12/23/2022]
Abstract
An innovative electrochemical nanoprobe was developed for determination of vortioxetine (VORT), a serotonergic antidepressant drug, for the first time. The fabrication of the nanoprobe is based on decoration of a glassy carbon electrode with three-dimensional nickel ferrite nanospheres modified activated graphite nanoplatelets (3D NiFe2O4 NS/AGNP/GCE). The morphological characterization of the nanoprobe was carried out via scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), N2-adsorption-desorption isotherm, and powder X-ray spectroscopy (PXRD). In addition, the electrochemical behavior of the nanoprobe was described using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). A well-defined and irreversible peak at 0.82 V was seen at the surface of 3D NiFe2O4 NS/AGNP/GCE. The proposed nanoprobe exhibited outstanding electro-catalytic activity towards VORT oxidation. Under the optimized conditions, the anodic oxidation currents were linearly proportional to VORT concentration at the working range 1.8-90 nM with a LOD of 0.55 nM. The nanoprobe was used to determine VORT in pharmaceutical tablets and human plasma samples. Satisfactory recoveries and RSD percentages were obtained in the range 103.8-107.7% (RSD% = 2.7-3.1%) and 101.4-105.3% (RSD % = 2.8-3.4%) for tablets and plasma samples, respectively. Moreover, the method was used to monitor VORT during a pharmacokinetic study in human volunteers with satisfactory results. The 3D NiFe2O4 NS/AGNP/GCE shows excellent sensitivity, reproducibility, and selectivity towards VORT detection. The proposed electrode could be utilized as simple, rapid, and inexpensive sensing tool for routine analysis and during pharmacokinetic/pharmacodynamic investigations. Graphical abstract.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| |
Collapse
|
25
|
Zarei M. Sensitive visible light-driven photoelectrochemical aptasensor for detection of tetracycline using ZrO2/g-C3N4 nanocomposite. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|