1
|
Moulahoum H, Ghorbanizamani F. The LOD paradox: When lower isn't always better in biosensor research and development. Biosens Bioelectron 2024; 264:116670. [PMID: 39151260 DOI: 10.1016/j.bios.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Biosensor research has long focused on achieving the lowest possible Limits of Detection (LOD), driving significant advances in sensitivity and opening up new possibilities in analysis. However, this intense focus on low LODs may not always meet the practical needs or suit the actual uses of these devices. While technological improvements are impressive, they can sometimes overlook important factors such as detection range, ease of use, and market readiness, which are vital for biosensors to be effective in real-world applications. This review advocates for a balanced approach to biosensor development, emphasizing the need to align technological advancements with practical utility. We delve into various applications, including the detection of cancer biomarkers, pathology-related biomarkers, and illicit drugs, illustrating the critical role of LOD within these contexts. By considering clinical needs and broader design aspects like cost-effectiveness, sustainability, and regulatory compliance, we argue that integrating technical progress with practicality will enhance the impact of biosensors. Such an approach ensures that biosensors are not only technically sound but also widely useable and beneficial in real-world applications. Addressing the diverse analytical parameters alongside user expectations and market demands will likely maximize the real-world impact of biosensors.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Izmir, Turkiye.
| | | |
Collapse
|
2
|
Xiao Q, Cao H, Tu X, Pan C, Fang Y, Huang S. Unraveling the impact of tungsten disulfide quantum dots on human serum albumin conformational dynamics and fibrillation pathways: An integrated multi-spectroscopic, biochemical, and molecular docking investigation. Int J Biol Macromol 2024; 282:136917. [PMID: 39490476 DOI: 10.1016/j.ijbiomac.2024.136917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Herein, the intricate molecular interplay between human serum albumin (HSA) and tungsten disulfide quantum dots (WS2 QDs) was probed using spectroscopic techniques and sophisticated molecular simulation methods. Fluorescence spectroscopy demonstrated that under physiological conditions, WS2 QDs forge a non-fluorescent ground-state complex with HSA, facilitated by hydrogen bonding and van der Waals forces, ultimately resulting in the static quenching of the protein's intrinsic fluorescence. Complementary site competition experiments and molecular docking simulations reinforced a precise 1: 1 binding stoichiometry, predominantly targeting HSA's Site I. Three-dimensional fluorescence spectroscopy revealed that WS2 QDs perturb the HSA polypeptide backbone, subtly modifying the microenvironment surrounding aromatic amino acid residues. This alteration was further corroborated by circular dichroism spectroscopy, marked by a decrease in helical content and a transition towards irregular peptide conformations. Thermal stability assays illuminated the reduced thermal resilience of the HSA - WS2 QD complex. Laser confocal microscopy coupled with thioflavin T staining yielded compelling evidence that WS2 QDs effectively inhibit amyloid fibril formation in both HSA and lysozyme, underscoring their potential as potent anti-amyloidogenic agents. This comprehensive study offers pivotal insights into multifaceted impact of WS2 QDs on protein structure and function, thereby expanding their horizon of potential applications within the burgeoning field of nanomedicine.
Collapse
Affiliation(s)
- Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Huishan Cao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Xincong Tu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Chunyan Pan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Fang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
3
|
Chellachamy Anbalagan A, Korram J, Doble M, Sawant SN. Bio-functionalized carbon dots for signaling immuno-reaction of carcinoembryonic antigen in an electrochemical biosensor for cancer biomarker detection. DISCOVER NANO 2024; 19:37. [PMID: 38421453 PMCID: PMC10904696 DOI: 10.1186/s11671-024-03980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Early diagnosis of cancer demands sensitive and accurate detection of cancer biomarkers in blood. Carbon dots (CDs) bio-functionalization with antibodies, peptides or aptamers have played significant role in cancer diagnosis and targeted cancer therapy. Herein, a biosensor for detection of cancer biomarker carcinoembryonic antigen (CEA) in blood serum has been designed using CDs bio-functionalized with HRP-conjugated CEA antibody (CUCDs@CEAAb2) as detection probe. CDs were synthesized by upscaling of cow urine, a nitrogen rich biomass waste, by hydrothermal method. Detection probe based on CDs resulted in 3.5 times higher sensitivity as compared to conventional electrochemical sandwich immunoassay. To further improve the sensor performance, hyper-branched polyethylenimine grafted poly amino aniline (PEI-g-PAANI) was used as the sensing interface, which enabled immobilization of higher amount of capture antibody. Detection of CEA in human blood serum coupled with wide linear range (0.5-50 ng/ml), good specificity, stability, reproducibility and low detection limit (10 pg/ml) signified the excellence of CUCDs based CEA immunosensor. CUCDs exhibited excitation wavelength dependent fluorescence property and showed strong blue emission under UV irradiation. MTT assay indicated that the material is not toxic towards human dental pulp stem cells (hDPSCs) and MG63 osteosarcoma cells (cell viability > 90%). The present study demonstrates a methodology for valorization of animal waste to a cost-effective carbon based functional nanomaterial for clinical detection of cancer biomarkers.
Collapse
Affiliation(s)
| | - Jyoti Korram
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Mukesh Doble
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Shilpa N Sawant
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
4
|
Kaur H, Garg M, Tomar D, Singh S, Jena KC. Role of tungsten disulfide quantum dots in specific protein-protein interactions at air-water interface. J Chem Phys 2024; 160:084705. [PMID: 38411235 DOI: 10.1063/5.0187563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The intriguing network of antibody-antigen (Ab-Ag) interactions is highly governed by environmental perturbations and the nature of biomolecular interaction. Protein-protein interactions (PPIs) have potential applications in developing protein-adsorption-based sensors and nano-scale materials. Therefore, characterizing PPIs in the presence of a nanomaterial at the molecular level becomes imperative. The present work involves the investigation of antiferritin-ferritin (Ab-Ag) protein interactions under the influence of tungsten disulfide quantum dots (WS2 QDs). Isothermal calorimetry and contact angle measurements validated the strong influence of WS2 QDs on Ab-Ag interactions. The interfacial signatures of nano-bio-interactions were evaluated using sum frequency generation vibration spectroscopy (SFG-VS) at the air-water interface. Our SFG results reveal a variation in the tilt angle of methyl groups by ∼12° ± 2° for the Ab-Ag system in the presence of WS2 QDs. The results illustrated an enhanced ordering of water molecules in the presence of QDs, which underpins the active role of interfacial water molecules during nano-bio-interactions. We have also witnessed a differential impact of QDs on Ab-Ag by raising the concentration of the Ab-Ag combination, which showcased an increased inter-molecular interaction among the Ab and Ag molecules and a minimal influence on the methyl tilt angle. These findings suggest the formation of stronger and ordered Ab-Ag complexes upon introducing WS2 QDs in the aqueous medium and signify the potentiality of WS2 QDs relevant to protein-based sensing assays.
Collapse
Affiliation(s)
- Harsharan Kaur
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Mayank Garg
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Tomar
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Suman Singh
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kailash C Jena
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
5
|
Bahri M, Yu D, Zhang CY, Chen Z, Yang C, Douadji L, Qin P. Unleashing the potential of tungsten disulfide: Current trends in biosensing and nanomedicine applications. Heliyon 2024; 10:e24427. [PMID: 38293340 PMCID: PMC10826743 DOI: 10.1016/j.heliyon.2024.e24427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The discovery of graphene ignites a great deal of interest in the research and advancement of two-dimensional (2D) layered materials. Within it, semiconducting transition metal dichalcogenides (TMDCs) are highly regarded due to their exceptional electrical and optoelectronic properties. Tungsten disulfide (WS2) is a TMDC with intriguing properties, such as biocompatibility, tunable bandgap, and outstanding photoelectric characteristics. These features make it a potential candidate for chemical sensing, biosensing, and tumor therapy. Despite the numerous reviews on the synthesis and application of TMDCs in the biomedical field, no comprehensive study still summarizes and unifies the research trends of WS2 from synthesis to biomedical applications. Therefore, this review aims to present a complete and thorough analysis of the current research trends in WS2 across several biomedical domains, including biosensing and nanomedicine, covering antibacterial applications, tissue engineering, drug delivery, and anticancer treatments. Finally, this review also discusses the potential opportunities and obstacles associated with WS2 to deliver a new outlook for advancing its progress in biomedical research.
Collapse
Affiliation(s)
- Mohamed Bahri
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
| | - Can Yang Zhang
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengming Yang
- University of Science and Technology Hospital, Shenzhen, Guangdong Province, China
| | - Lyes Douadji
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing City, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
6
|
Kaur M, Kumar V, Awasthi A, Singh K. Gum arabic-assisted green synthesis of biocompatible MoS 2 nanoparticles for methylene blue photodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112847-112862. [PMID: 37840085 DOI: 10.1007/s11356-023-30116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The current work reports the gum arabic-mediated greener synthesis of MoS2 nanoparticles (NPs) and its utilization for the solar light-assisted degradation of methylene blue. Furthermore, the safety analyses were performed on human-beneficial gut bacterium, L. delbrueckii, and human blood cells to confirm the biocompatibility of NPs synthesized. Antioxidant and antimicrobial activities were done to explore their usefulness for biological applications. Sonication and microwave treatment were used to obtain spherical 10-12 nm MoS2 NPs as characterized using high-resolution transmission electron microscopy. FT-IR characterization revealed the occurrence of gum arabic on the NPs surface. The MoS2 NPs exhibited ~ 98% MB degradation within 8 h under direct sunlight exposure. Moreover, the reusability studies have also been evaluated and free radical trapping experiments indicated that superoxide (•O2-) is the dominant active species of the reaction system. Furthermore, 98.89% MB degradation efficiency was observed within 150 min in the case of real textile industry MB effluent samples. Untreated MB inhibited the growth of L. delbrueckii on MRS agar plates, while growth was observed in the case of MoS2 NPs-treated MB samples indicating safety of current MB degradation approach. MoS2 NPs inhibited the growth of E. coli MTCC1698 and S. aureus MTCC 3160 with 26 mm and 21 mm zone of inhibition, respectively. Furthermore, MoS2 NPs have shown antioxidant properties, resulting in 82.3 ± 0.43% of DPPH scavenging activity which was comparable to ascorbic acid (81.6 ± 0.6%), a standard antioxidant molecule. The NPs have not shown any hemolytic activity at 0.0625 and 0.125 mg/mL doses to human blood proving their biocompatible nature. Gum arabic-synthesized biocompatible MoS2 NPs have good potential to treat MB released as waste from the textile industry and other biological applications.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Abhishek Awasthi
- Department of Biotechnology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, Himachal Pradesh, 174103, India
| | - Kulvinder Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh, UT, 160011, India
| |
Collapse
|
7
|
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Alzhrani A, Alnajjar K, Adeeb S, Al Eman N, Ahmed Z, Shakir I, Al-Kattan K, Yaqinuddin A. Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review. Cancers (Basel) 2023; 15:3414. [PMID: 37444523 DOI: 10.3390/cancers15133414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is the most commonly diagnosed of all cancers and one of the leading causes of cancer deaths among men and women worldwide, causing 1.5 million deaths every year. Despite developments in cancer treatment technologies and new pharmaceutical products, high mortality and morbidity remain major challenges for researchers. More than 75% of lung cancer patients are diagnosed in advanced stages, leading to poor prognosis. Lung cancer is a multistep process associated with genetic and epigenetic abnormalities. Rapid, accurate, precise, and reliable detection of lung cancer biomarkers in biological fluids is essential for risk assessment for a given individual and mortality reduction. Traditional diagnostic tools are not sensitive enough to detect and diagnose lung cancer in the early stages. Therefore, the development of novel bioanalytical methods for early-stage screening and diagnosis is extremely important. Recently, biosensors have gained tremendous attention as an alternative to conventional methods because of their robustness, high sensitivity, inexpensiveness, and easy handling and deployment in point-of-care testing. This review provides an overview of the conventional methods currently used for lung cancer screening, classification, diagnosis, and prognosis, providing updates on research and developments in biosensor technology for the detection of lung cancer biomarkers in biological samples. Finally, it comments on recent advances and potential future challenges in the field of biosensors in the context of lung cancer diagnosis and point-of-care applications.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Alnajjar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Salma Adeeb
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Noor Al Eman
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ismail Shakir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
8
|
Shang H, Zhang X, Ding M, Zhang A. Dual-mode biosensor platform based on synergistic effects of dual-functional hybrid nanomaterials. Talanta 2023; 260:124584. [PMID: 37121141 DOI: 10.1016/j.talanta.2023.124584] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Detection of biomarkers is very vital in the prevention, diagnosis and treatment of diseases. However, due to the poor accuracy and sensitivity of the constructed biosensors, we are now facing great challenges. In addressing these problems, nanohybrid-based dual mode biosensors including optical-optical, optical-electrochemical and electrochemical-electrochemical have been developed to detect various biomarkers. Integrating the merits of nanomaterials with abundant active sites, synergy and excellent physicochemical properties, many bi-functional nanohybrids have been reasonable designed and controllable preparation, which applied to the construction dual mode biosensors. Despite the significant progress, further efforts are still needed to develop dual mode biosensors and ensure their practical application by using portable digital devices. Therefore, the present review summarizes an in-depth evaluation of the bi-functional nanohybrids assisted dual mode biosensing platform of biomarkers. We are hoping this review could inspire further concepts in developing novel dual mode biosensors for possible detection application.
Collapse
Affiliation(s)
- Hongyuan Shang
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China.
| | - Xiaofei Zhang
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China
| | - Meili Ding
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University Taiyuan, 030001, PR China.
| |
Collapse
|
9
|
Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2023; 415:1003-1031. [PMID: 35970970 PMCID: PMC9378265 DOI: 10.1007/s00216-022-04237-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, therapeutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the inauguration of a new paradigm of personalized medicine.
Collapse
Affiliation(s)
- Viviana Vásquez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
10
|
Nambiar S, Mohan M, Rosin Jose A. Voltammetric Sensors: A Versatile Tool in COVID‐19 Diagnosis and Prognosis. ChemistrySelect 2023. [DOI: 10.1002/slct.202204506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Souparnika Nambiar
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| | - Malavika Mohan
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| | - Ammu Rosin Jose
- PG and Research Dept. of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala INDIA 682013
| |
Collapse
|
11
|
The development of high sensitive alpha-fetoprotein immune-electrochemical detection method using an excellent conductivity 3D-CuFC-C nanocrystals synthesized by solution-grown at room temperature. Biosens Bioelectron 2022; 218:114766. [DOI: 10.1016/j.bios.2022.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
12
|
Zhang J, Zhang X, Bi S. Two-Dimensional Quantum Dot-Based Electrochemical Biosensors. BIOSENSORS 2022; 12:bios12040254. [PMID: 35448314 PMCID: PMC9026491 DOI: 10.3390/bios12040254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 05/27/2023]
Abstract
Two-dimensional quantum dots (2D-QDs) derived from two-dimensional sheets have received increasing interest owing to their unique properties, such as large specific surface areas, abundant active sites, good aqueous dispersibility, excellent electrical property, easy functionalization, and so on. A variety of 2D-QDs have been developed based on different materials including graphene, black phosphorus, nitrides, transition metal dichalcogenides, transition metal oxides, and MXenes. These 2D-QDs share some common features due to the quantum confinement effects and they also possess unique properties owing to their structural differences. In this review, we discuss the categories, properties, and synthetic routes of these 2D-QDs and emphasize their applications in electrochemical biosensors. We deeply hope that this review not only stimulates more interest in 2D-QDs, but also promotes further development and applications of 2D-QDs in various research fields.
Collapse
|
13
|
Saatçi E, Natarajan S. State-of-the-art colloidal particles and unique interfaces-based SARS-CoV-2 detection methods and COVID-19 diagnosis. Curr Opin Colloid Interface Sci 2021; 55:101469. [PMID: 34093063 PMCID: PMC8164518 DOI: 10.1016/j.cocis.2021.101469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In March 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-based infections were declared 'COVID-19 pandemic' by the World Health Organization. Pandemic raised the necessity to design and develop genuine and sensitive tests for precise specific SARS-CoV-2 infections detection. Nanotechnological methods offer new ways to fight COVID-19. Nanomaterials are ideal for unique sensor platforms because of their chemically versatile properties and they are easy to manufacture. In this context, selected examples for integrating nanomaterials and distinct biosensor platforms are given to detect SARS-CoV-2 biological materials and COVID-19 biomarkers, giving researchers and scientists more goals and a better forecast to design more relevant and novel sensor arrays for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Ebru Saatçi
- Erciyes University, Faculty of Science, Biology Department, 38039, Kayseri, Turkey
| | - Satheesh Natarajan
- Healthcare Technology Innovation Centre, Indian Institute of Technology, Madras, 600113, Tamilnadu, India
| |
Collapse
|
14
|
Garg M, Gupta A, Sharma AL, Singh S. Advancements in 2D Materials Based Biosensors for Oxidative Stress Biomarkers. ACS APPLIED BIO MATERIALS 2021; 4:5944-5960. [DOI: 10.1021/acsabm.1c00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mayank Garg
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arushi Gupta
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit L. Sharma
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Singh
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Huang Z, Chen H, Ye H, Chen Z, Jaffrezic-Renault N, Guo Z. An ultrasensitive aptamer-antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosens Bioelectron 2021; 190:113451. [PMID: 34171819 DOI: 10.1016/j.bios.2021.113451] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Cortisol is a major glucocorticoid that can affect physiological activities in the human body. Besides, it is also a biomarker that can reflect the stress state of the body. Therefore, in order to monitor stress states in a sensitive and non-invasive manner, an ultra-sensitive aptamer-antibody sandwich sensor modified with multi-walled carbon nanotubes, ordered mesoporous carbon CMK-3, and silver nanoparticles (MWCNTs/CMK-3/AgNPs) was proposed for non-invasive detection of cortisol in human saliva. The MWCNTs/CMK-3/AgNPs nanocomposite was fixed on the surface of the glassy carbon electrodes (GCEs) as the material for the first round of signal amplification, and secondary signal amplification was realized by conjugating cortisol antibodies with gold nanoparticles (AuNPs). Finally, the aptamer-antibody sandwich pattern was used to specifically recognize and bind cortisol. The concentration response range for this aptamer-antibody sandwich sensor is 0.1 pg/mL-10 ng/mL, and the limit of detection (LOD) is 0.09 pg/mL. So far, the LOD of this sensor has been relatively low, showing its good sensitivity, selectivity, stability, and reproducibility. Furthermore, it has been successfully applied to detect cortisol in saliva samples to compare the stress states of postgraduates and undergraduates.
Collapse
Affiliation(s)
- Ziyu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China; School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Hao Chen
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Huarong Ye
- China Resources and Wisco General Hospital, Wuhan, 430080, PR China
| | - Zixuan Chen
- Department of Clinical Medicine, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne, 69100, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
16
|
Strzelak K, Czajkowska A, Koncki R. The comparison between light-scattering detectors based on LED and photodiode for immunoprecipitation assays of transferrin and ferritin. Anal Chim Acta 2021; 1175:338753. [PMID: 34330448 DOI: 10.1016/j.aca.2021.338753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Undoubtedly, light-emitting diodes (LEDs) and photodiodes (PDs) are indispensable optoelectronic devices in modern analytical chemistry. LEDs can serve as either light emitters or detectors, thus being an alternative to the most popular detection systems consisted of PD. In this contribution, a comparison between LED-LED and LED-PD detectors, operating in turbidimetric and nephelometric modes, has been carried out for immunoprecipitation detection of transferrin and ferritin. The greatest emphasis was placed on the study of detectors responses under different measurement conditions including current powering an emitter, amplification gain in the case of PD as detector or the construction of detection cells designed for the Multicommutated Flow Analysis (MCFA). The assumption was to obtain the fully-mechanized system with simple but efficient detection system to enable the determination of iron-binding proteins occurring at different concentration ranges in human body. As a result, the optimized arrangements of LED-LED and LED-PD setups were characterized by similar analytical characteristics, enabling the determination of transferrin with the detection limit (LOD) of 0.2 mg/L and RSDs of 2.8-4.8% for LED-LED, and LOD of 0.1 mg/L and RSDs of 0.9-3.6% for LED-PD. In the case of ferritin detection, only the response of the LED-PD detector was statistically distinguishable in the range of 130-198 μg/L of protein with recorded analytical signal change of 20 mV value. The addition of polymer for signal enhancement provided the increase of response range to 107-253 μg/L, enabling the developed system for detection of pathological serum ferritin levels.
Collapse
Affiliation(s)
- Kamil Strzelak
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland.
| | | | - Robert Koncki
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
17
|
Selvarajan RS, Gopinath SCB, Zin NM, Hamzah AA. Infection-Mediated Clinical Biomarkers for a COVID-19 Electrical Biosensing Platform. SENSORS (BASEL, SWITZERLAND) 2021; 21:3829. [PMID: 34205852 PMCID: PMC8198817 DOI: 10.3390/s21113829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
The race towards the development of user-friendly, portable, fast-detection, and low-cost devices for healthcare systems has become the focus of effective screening efforts since the pandemic attack in December 2019, which is known as the coronavirus disease 2019 (COVID-19) pandemic. Currently existing techniques such as RT-PCR, antigen-antibody-based detection, and CT scans are prompt solutions for diagnosing infected patients. However, the limitations of currently available indicators have enticed researchers to search for adjunct or additional solutions for COVID-19 diagnosis. Meanwhile, identifying biomarkers or indicators is necessary for understanding the severity of the disease and aids in developing efficient drugs and vaccines. Therefore, clinical studies on infected patients revealed that infection-mediated clinical biomarkers, especially pro-inflammatory cytokines and acute phase proteins, are highly associated with COVID-19. These biomarkers are undermined or overlooked in the context of diagnosis and prognosis evaluation of infected patients. Hence, this review discusses the potential implementation of these biomarkers for COVID-19 electrical biosensing platforms. The secretion range for each biomarker is reviewed based on clinical studies. Currently available electrical biosensors comprising electrochemical and electronic biosensors associated with these biomarkers are discussed, and insights into the use of infection-mediated clinical biomarkers as prognostic and adjunct diagnostic indicators in developing an electrical-based COVID-19 biosensor are provided.
Collapse
Affiliation(s)
- Reena Sri Selvarajan
- Institute of Microengineering and Nanoelectronics (IMEN), National University of Malaysia (UKM), Bangi 43600, Malaysia;
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering (INEE), University Malaysia Perlis (UniMAP), Kangar 01000, Malaysia;
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, National University of Malaysia (UKM), Kuala Lumpur 50300, Malaysia;
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics (IMEN), National University of Malaysia (UKM), Bangi 43600, Malaysia;
| |
Collapse
|
18
|
Chauhan D, Yadav AK, Solanki PR. Carbon cloth-based immunosensor for detection of 25-hydroxy vitamin D 3. Mikrochim Acta 2021; 188:145. [PMID: 33792779 PMCID: PMC8012417 DOI: 10.1007/s00604-021-04751-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022]
Abstract
Vitamin D (VD) deficiency is a global health concern due to its serious health impacts, and at present, the monitoring of VD status is expensive. Here, a novel immunosensor for sensitive and label-free detection of 25-hydroxy vitamin D3 (25VD3) is reported. Nanostructured cerium(IV) oxide (nCeO2) was anchored onto carbon cloth (CC) via electrophoretic deposition to fabricate a nanoplatform (nCeO2/CC). Subsequently, bioactive molecules (anti-25VD3 and BSA) were introduced to fabricate the nanobioplatform BSA/anti-25VD3/nCeO2/CC as an immunosensor. The analytical performance of the developed immunosensor was studied towards 25VD3 detection. The immunosensor provides a broad linear range of 1-200 ng mL-1, high sensitivity of 2.08 μA ng−1 mL cm−2, a detection limit of 4.63 ng mL−1, and a response time of 15 min, which is better than that of previous reports. The biosensor exhibited high selectivity, good reproducibility, and excellent stability for about 45 days. The potential application of the proposed immunosensor was observed for real serum samples towards 25VD3 detection that demonstrated a high correlation with the conventional enzyme-linked immunosorbent assay. Graphical abstract ![]()
Collapse
Affiliation(s)
- Deepika Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Garg M, Sharma AL, Singh S. Advancement in biosensors for inflammatory biomarkers of SARS-CoV-2 during 2019-2020. Biosens Bioelectron 2021; 171:112703. [PMID: 33049563 PMCID: PMC7544635 DOI: 10.1016/j.bios.2020.112703] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 pandemic has affected everyone throughout the world and has resulted in the loss of lives of many souls. Due to the restless efforts of the researchers working hard day and night, some success has been gained for the detection of virus. As on date, the traditional polymerized chain reactions (PCR), lateral flow devices (LFID) and enzyme linked immunosorbent assays (ELISA) are being adapted for the detection of this deadly virus. However, a more exciting avenue is the detection of certain biomarkers associated with this viral infection which can be done by simply re-purposing our existing infrastructure. SARS-CoV-2 viral infection triggers various inflammatory, biochemical and hematological biomarkers. Because of the infection route that the virus follows, it causes significant inflammatory response. As a result, various inflammatory markers have been reported to be closely associated with this infection such as C-reactive proteins, interleukin-6, procalcitonin and ferritin. Sensing of these biomarkers can simultaneously help in understanding the illness level of the affected patient. Also, by monitoring these biomarkers, we can predict the viral infections in those patients who have low SARS-CoV-2 RNA and hence are missed by traditional tests. This can give more targets to the researchers and scientists, working in the area of drug development and provide better prognosis. In this review, we propose to highlight the conventional as well as the non-conventional methods for the detection of these inflammatory biomarkers which can act as a single platform of knowledge for the researchers and scientists working for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mayank Garg
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit L Sharma
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Suman Singh
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh, 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Recent advances on TMDCs for medical diagnosis. Biomaterials 2020; 269:120471. [PMID: 33160702 DOI: 10.1016/j.biomaterials.2020.120471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, have attracted much attention in biosensing and bioimaging due to its excellent stability, biocompatibility, high specific surface area, and wide varieties. In this review, we overviewed the application of TMDCs in biosensing and bioimaging. Firstly, the synthesis methods and surface functionalization methods of TMDCs were summarized. Secondly, according to the working mechanism, we classified and gave a detailed account of the latest research progress of TMDC-based biosensing for the detection of the enzyme, DNA, and other biological molecules. Then, we outlined the recent progress of applying TMDCs in bio-imaging, including fluorescence, X-ray computed tomographic, magnetic response imaging, photographic and multimodal imaging, respectively. Finally, we discussed the future challenges and development direction of the application of TMDCs in medical diagnosis. Also, we put forward our view on the opportunity of TMDCs in the big data of modern medical diagnosis.
Collapse
|
21
|
Garg M, Christensen MG, Iles A, Sharma AL, Singh S, Pamme N. Microfluidic-Based Electrochemical Immunosensing of Ferritin. BIOSENSORS-BASEL 2020; 10:bios10080091. [PMID: 32764518 PMCID: PMC7460419 DOI: 10.3390/bios10080091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 02/01/2023]
Abstract
Ferritin is a clinically important biomarker which reflects the state of iron in the body and is directly involved with anemia. Current methods available for ferritin estimation are generally not portable or they do not provide a fast response. To combat these issues, an attempt was made for lab-on-a-chip-based electrochemical detection of ferritin, developed with an integrated electrochemically active screen-printed electrode (SPE), combining nanotechnology, microfluidics, and electrochemistry. The SPE surface was modified with amine-functionalized graphene oxide to facilitate the binding of ferritin antibodies on the electrode surface. The functionalized SPE was embedded in the microfluidic flow cell with a simple magnetic clamping mechanism to allow continuous electrochemical detection of ferritin. Ferritin detection was accomplished via cyclic voltammetry with a dynamic linear range from 7.81 to 500 ng·mL−1 and an LOD of 0.413 ng·mL−1. The sensor performance was verified with spiked human serum samples. Furthermore, the sensor was validated by comparing its response with the response of the conventional ELISA method. The current method of microfluidic flow cell-based electrochemical ferritin detection demonstrated promising sensitivity and selectivity. This confirmed the plausibility of using the reported technique in point-of-care testing applications at a much faster rate than conventional techniques.
Collapse
Affiliation(s)
- Mayank Garg
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India; (M.G.); (A.L.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (M.G.C.); (A.I.)
| | - Martin Gedsted Christensen
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (M.G.C.); (A.I.)
| | - Alexander Iles
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (M.G.C.); (A.I.)
| | - Amit L. Sharma
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India; (M.G.); (A.L.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Singh
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India; (M.G.); (A.L.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: (S.S.); (N.P.)
| | - Nicole Pamme
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (M.G.C.); (A.I.)
- Correspondence: (S.S.); (N.P.)
| |
Collapse
|