1
|
Xue T, Lu X, Wen Y, Maleh HK, Duan X, Xu J. Recent progress of black phosphorene from preparation to diversified bio-/chemo-nanosensors and their challenges and opportunities for comprehensive health. Mikrochim Acta 2024; 191:771. [PMID: 39609277 DOI: 10.1007/s00604-024-06828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
The introduction of comprehensive health, related to human living environment and mental state, helps people to improve human health literacy and accept scientific health guidance. The unique structure and properties of black phosphorene (BP) provide potential opportunities for rapid development and versatile applications of high-performance sensors serving comprehensive health. The review begins with the preparation from bulk black phosphorous crystals via transforming requirements of phosphorous allotropes and BP nanosheets via preparative strategies using both "top-down" and "bottom-up" methods. Then the diversified modification of BP and versatile fabrication of diversified bio-/chemo-nanosensors for sensitive detection of analytes are discussed. Besides, the challenges including the preparation of BP, diversified modification, devices for improving performance defects and chemo-/bio-nanosensors for enhancing performance are outlined together with potential opportunities for the BP preparation and applications in comprehensive health from agricultural environments, food safety, personal life, physical and mental life, and finally to medical care.
Collapse
Affiliation(s)
- Ting Xue
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xinyu Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yangping Wen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Hassan Karimi Maleh
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Jingkun Xu
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| |
Collapse
|
2
|
Li Q, Wang R, Xue J, Wang R, Zhang S, Kang H, Wang Y, Zhu H, Lv C. ZIF-8-Modified Black Phosphorus Nanosheets Incorporated into Injectable Dual-Component Hydrogels for Enhanced Photothermal Antibacterial and Osteogenic Activities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32058-32077. [PMID: 38872401 DOI: 10.1021/acsami.4c05298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The development of growth factor-free biomaterials for bone tissue regeneration with anti-infection and anti-inflammatory activities remains challenging. Black phosphorus nanosheets (BPNs), with distinctive attributes, including photothermal conversion and calcium ion chelation, offer potential for use in bone tissue engineering and infection prevention. However, BPNs are prone to oxidation and degradation in aqueous environments, and methods to stabilize BPNs for long-term bone repair remain insufficient. Herein, zeolitic imidazolate framework-8 (ZIF-8) was used to stabilize BPNs via in situ crystallization onto the surface of BPNs (BP@ZIF-8 nanocomposite). A novel injectable dual-component hydrogel comprising gelatin methacryloyl (GelMA) and methacrylate-modified hyaluronic acid (HAMA) was used as a BP@ZIF-8 nanocomposite carrier (GelMA/HAMA/BP@ZIF-8). The BP@ZIF-8 nanocomposite could effectively protect internal BPNs from oxidation and enhance the long-term photothermal performance of the hydrogel in both in vitro and in vivo settings. The GelMA/HAMA/BP@ZIF-8 hydrogel was injectable and exhibited outstanding performance for photothermal conversion, mechanical strength, and biodegradability, as well as excellent photothermal antibacterial activity against Staphylococcus aureus and Escherichia coli in vitro and in an in vivo rat model. The GelMA/HAMA/BP@ZIF-8 hydrogel also provided a microenvironment conducive to osteogenic differentiation, promoting the transformation of M2 macrophages and inhibiting inflammatory responses. Furthermore, the hydrogel promoted bone regeneration and had a synergistic effect with near-infrared irradiation in a rat skull-defect model. Transcriptome sequencing analysis revealed that the PI3K-AKT- and calcium-signaling pathways may be involved in promoting osteogenic differentiation induced by the GH-BZ hydrogel. This study presents an innovative, multifaceted solution to the challenges of bone tissue regeneration with antibacterial and anti-inflammatory effects, providing insights into the design of smart biomaterials with dual therapeutic capabilities.
Collapse
Affiliation(s)
- Quan Li
- Emergency Department, The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou 571199, China
| | - Ruijie Wang
- Emergency Department, The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jinfang Xue
- Emergency Department, The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Ruiyu Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shun Zhang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hai Kang
- Emergency Department, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huadong Zhu
- Emergency Department, The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Chuanzhu Lv
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou 571199, China
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
3
|
Guo W, Song X, Liu J, Liu W, Chu X, Lei Z. Quantum Dots as a Potential Multifunctional Material for the Enhancement of Clinical Diagnosis Strategies and Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1088. [PMID: 38998693 PMCID: PMC11243735 DOI: 10.3390/nano14131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Quantum dots (QDs) represent a class of nanoscale wide bandgap semiconductors, and are primarily composed of metals, lipids, or polymers. Their unique electronic and optical properties, which stem from their wide bandgap characteristics, offer significant advantages for early cancer detection and treatment. Metal QDs have already demonstrated therapeutic potential in early tumor imaging and therapy. However, biological toxicity has led to the development of various non-functionalized QDs, such as carbon QDs (CQDs), graphene QDs (GQDs), black phosphorus QDs (BPQDs) and perovskite quantum dots (PQDs). To meet the diverse needs of clinical cancer treatment, functionalized QDs with an array of modifications (lipid, protein, organic, and inorganic) have been further developed. These advancements combine the unique material properties of QDs with the targeted capabilities of biological therapy to effectively kill tumors through photodynamic therapy, chemotherapy, immunotherapy, and other means. In addition to tumor-specific therapy, the fluorescence quantum yield of QDs has gradually increased with technological progress, enabling their significant application in both in vivo and in vitro imaging. This review delves into the role of QDs in the development and improvement of clinical cancer treatments, emphasizing their wide bandgap semiconductor properties.
Collapse
Affiliation(s)
- Wenqi Guo
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Xueru Song
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Jiaqi Liu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Wanyi Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Zengjie Lei
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| |
Collapse
|
4
|
Jin P, Wan P, Zhang C, Li X, Wang Y, Luo J, Li K. Analyte-perturbed balance between reducibility and fluorescence of Ti 3C 2 MXene quantum dots for label-free, dual-mode detection of silver ions. Anal Chim Acta 2024; 1303:342517. [PMID: 38609276 DOI: 10.1016/j.aca.2024.342517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND As an emerging and attractive low-dimensional functional materials, Ti3C2 MXene quantum dots (QDs) enlarge the toolbox of fluorescence sensing. However, monochromatic fluorescence, which only provide one single signal, is often beset by challenges such as false-positive readouts and limitations in selectivity. Consequently, to improve the sensing accuracy by means of cross-verified dual-signal authentication, the endeavor to engineer dual-mode nanoprobes based on Ti3C2 QDs, incorporating both the capability of fluorescence and an alternative sensing mechanism, emerges as a compelling avenue. RESULTS Here, based on the alterations in colorimetric and fluorescent signals of Ti3C2 QDs with the addition of Ag+, we propose a dual-mode sensor obviating the necessity for nanoprobe labeling. Owing to the decent reducibility of Ti3C2 QDs, Ag+ is adsorbed and reduced, resulting in the generation of plasmonic Ag nanoparticles (NPs), which simultaneously trigger colorimetric responses of the solution and enhance the fluorescent emission of Ti3C2 QDs. The confluence of colorimetry and fluorometry within this strategy optimally harnesses the modulating role of the acquired Ag NPs on the reducing capability and fluorescence characteristics of Ti3C2 QDs. The equilibrium imparts versatility and promising prospects to this analyte-triggered label-free method, which enables a remarkable specificity and an excellent detecting limit (0.45 μM) for Ag+. SIGNIFICANCE The balance between reducibility and fluorescence of Ti3C2 QDs for dual-mode detection is inventively demonstrated. With the exemplification of a direct influence of both features of the nanoprobe via the introduction of analytes, this study opens the feasibility of the analyte-perturbed felicitous equilibrium, which endows label-free methods with versatility and promising prospects. This design may evoke more biosensing strategies with the function of double-signal mutual verification.
Collapse
Affiliation(s)
- Peng Jin
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, 471023, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Pingping Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunyan Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianxin Luo
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
5
|
Gouda M, Ghazzawy HS, Alqahtani N, Li X. The Recent Development of Acoustic Sensors as Effective Chemical Detecting Tools for Biological Cells and Their Bioactivities. Molecules 2023; 28:4855. [PMID: 37375410 PMCID: PMC10304203 DOI: 10.3390/molecules28124855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
One of the most significant developed technologies is the use of acoustic waves to determine the chemical structures of biological tissues and their bioactivities. In addition, the use of new acoustic techniques for in vivo visualizing and imaging of animal and plant cellular chemical compositions could significantly help pave the way toward advanced analytical technologies. For instance, acoustic wave sensors (AWSs) based on quartz crystal microbalance (QCM) were used to identify the aromas of fermenting tea such as linalool, geraniol, and trans-2-hexenal. Therefore, this review focuses on the use of advanced acoustic technologies for tracking the composition changes in plant and animal tissues. In addition, a few key configurations of the AWS sensors and their different wave pattern applications in biomedical and microfluidic media progress are discussed.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Central Laboratory for Date Palm Research and Development, Agriculture Research Center, Giza 12511, Egypt
| | - Nashi Alqahtani
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
6
|
Yang M, Jin H, Gui R. Ag +-doped boron quantum dots with enhanced stability and fluorescence enabling versatile practicality in visual detection, sensing, imaging and photocatalytic degradation. J Colloid Interface Sci 2023; 639:49-58. [PMID: 36804792 DOI: 10.1016/j.jcis.2023.02.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
In this work, a metal-doping strategy was put forward to construct metal-doped borophene and the corresponding zero-dimensional boron. Through theoretical calculations, Ag+ acts as the optimal metal ions to prepare Ag+-doped borophene derived boron quantum dots (Ag-BQDs). As predicted theoretically, doping of Ag+ endows borophene with enhanced stability of electronic structures. The newly emerging Ag-BQDs were experimentally acquired from ultrasonic-assisted liquid-phase exfoliation of bulk boron and solvothermal treatments. According to theoretical and experimental studies, the improved stability and fluorescence (FL) of Ag-BQDs are due to the formation of strong B-Ag bonding to competitively suppress B-O bonding. The function enables the maximal protection of borophene electronic structures from oxidization, destruction and reconfiguration. Because of Ag-BQDs with relatively higher colloidal and FL stability over BQDs, potential applications of Ag-BQDs were further explored in promising fields toward FL visualization in aqueous solutions and on filter paper, employed as a chemosensor of Fe3+ for FL sensing and visual detection at the solid/liquid phases, utilized for multiple FL bio-imaging at the levels of fresh plants, live animals and live cells of fresh plants, and applied to photocatalytic degradation of organic dyes and anticancer drug. Experimental results demonstrate excellent performances of Ag-BQDs in multiple applications, including versatile FL sensing and visual detection, unique multi-channel FL bio-imaging and visible-light-driven photodegradation of organic pollutants, toxic and harmful substances. This work can promote the development of metal-ion-doped low- dimensional nanomaterials with improved stability and FL properties for significant applications.
Collapse
Affiliation(s)
- Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, PR China
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, PR China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, PR China.
| |
Collapse
|
7
|
Gui X, Zhang H, Zhang R, Li Q, Zhu W, Nie Z, Zhao J, Cui X, Hao W, Wen X, Shen W, Song H. Exosomes incorporated with black phosphorus quantum dots attenuate retinal angiogenesis via disrupting glucose metabolism. Mater Today Bio 2023; 19:100602. [PMID: 36942311 PMCID: PMC10024194 DOI: 10.1016/j.mtbio.2023.100602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023] Open
Abstract
Black phosphorus quantum dots (BPQDs) have shown potential in tumor therapy, however, their anti-angiogenic functions have not been studied. Although BPQDs are easily degraded to non-toxic phosphrous, the reported toxicity, poor stability, and non-selectivity largely limit their further application in medicine. In this study, a vascular targeting, biocompatible, and cell metabolism-disrupting nanoplatform is engineered by incorporating BPQDs into exosomes modified with the Arg-Gly-Asp (RGD) peptide (BPQDs@RGD-EXO nanospheres, BREs). BREs inhibit endothelial cells (ECs) proliferation, migration, tube formation, and sprouting in vitro. The anti-angiogenic role of BREs in vivo is evaluated using mouse retinal vascular development model and oxygen-induced retinopathy model. Combined RNA-seq and metabolomic analysis reveal that BREs disrupt glucose metabolism, which is further confirmed by evaluating metabolites, ATP production and the c-MYC/Hexokinase 2 pathway. These BREs are promising anti-angiogenic platforms for the treatment of pathological retinal angiogenesis with minimal side effects.
Collapse
Affiliation(s)
- Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Rui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiye Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Jiawei Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Xiao Cui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiju Hao
- University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of TCM, Chengdu, 610016, China
- Corresponding author.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| | - Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| |
Collapse
|
8
|
Tao M, Mao J, Bao Y, Liu F, Mai Y, Guan S, Luo S, Huang Y, Li Z, Zhong Y, Wei B, Pan J, Wang Q, Zheng L, Situ B. A Blood-Responsive AIE Bioprobe for the Ultrasensitive Detection and Assessment of Subarachnoid Hemorrhage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205435. [PMID: 36683187 PMCID: PMC10015902 DOI: 10.1002/advs.202205435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a severe subtype of stroke caused by the rupturing of blood vessels in the brain. The ability to accurately assess the degree of bleeding in an SAH model is crucial for understanding the brain-damage mechanisms and developing therapeutic strategies. However, current methods are unable to monitor microbleeding owing to their limited sensitivities. Herein, a new bleeding assessment system using a bioprobe TTVP with aggregation-induced emission (AIE) characteristics is demonstrated. TTVP is a water-soluble, small-molecule probe that specifically interacts with blood. Taking advantage of its AIE characteristics, cell membranes affinity, and albumin-targeting ability, TTVP fluoresces in bleeding areas and detects the presence of blood with a high signal-to-noise (S/N) ratio. The degree of SAH bleeding in an endovascular perforation model is clearly evaluated based on the intensity of the fluorescence observed in the brain, which enables the ultrasensitive detection of mirco-bleeding in the SAH model in a manner that outperforms the current imaging strategies. This method serves as a promising tool for the sensitive analysis of the degree of bleeding in SAHs and other hemorrhagic diseases.
Collapse
Affiliation(s)
- Maliang Tao
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jian Mao
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yun Bao
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Fan Liu
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yiying Mai
- The Second Clinical CollegeSouthern Medical UniversityGuangzhou510515China
| | - Shujuan Guan
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Researchthe Affiliated Hospital of Youjiang Medical University for NationalitiesBaise533000China
| | - Yifang Huang
- Department of Clinical Laboratorythe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Zixiong Li
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yuan Zhong
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Binbin Wei
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jun Pan
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qian Wang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
9
|
Jin H, Yang M, Gui R. Ratiometric upconversion luminescence nanoprobes from construction to sensing, imaging, and phototherapeutics. NANOSCALE 2023; 15:859-906. [PMID: 36533436 DOI: 10.1039/d2nr05721b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In terms of the combined advantages of upconversion luminescence (UCL) properties and dual-signal ratiometric outputs toward specific targets, the ratiometric UCL nanoprobes exhibit significant applications. This review summarizes and discusses the recent advances in ratiometric UCL nanoprobes, mainly including the construction of nanoprobe systems for sensing, imaging, and phototherapeutics. First, the construction strategies are introduced, involving different types of nanoprobe systems, construction methods, and ratiometric dual-signal modes. Then, the sensing applications are summarized, involving types of targets, sensing mechanisms, sensing targets, and naked-eye visual detection of UCL colors. Afterward, the phototherapeutic applications are discussed, including bio-toxicity, bio-distribution, biosensing, and bioimaging at the level of living cells and small animals, and biomedicine therapy. Particularly, each section is commented on by discussing the state-of-the-art relevant studies on ratiometric UCL nanoprobe systems. Moreover, the current status, challenges, and perspectives in the forthcoming studies are discussed. This review facilitates the exploration of functionally luminescent nanoprobes for excellent sensing, imaging, biomedicine, and multiple applications in significant fields.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| |
Collapse
|
10
|
Yang M, Jin H, Gui R. Metal-Doped Boron Quantum Dots for Versatile Detection of Lactate and Fluorescence Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56986-56997. [PMID: 36519898 DOI: 10.1021/acsami.2c17321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To improve the stability and fluorescence (FL) of monoelemental boron nanomaterials, this work put forward a metal-coordination strategy to explore emerging metal-doped boron quantum dots, Co@BQDs. Through theoretical calculations, B-Co bonding as predicted can suppress the B-O reaction and protect the electronic structures of exfoliated two-dimensional (2D) boron from oxidation and decomposition upon exposure to oxygen. In experimental studies, Co2+ was added into a dispersion liquid of bulk boron and subjected to probe sonication to promote Co2+ adsorption on the surface of exfoliated 2D boron, followed by Co2+ coordination with exposed boron atoms. Solvothermal treatment of exfoliated 2D boron resulted in the generation of Co2+-doped 0D boron Co@BQDs. Experimental results confirm that Co@BQDs have higher colloidal and FL stability than BQDs as a reference. B-Co bonding formation to suppress the B-O reaction ensures the high stability of exfoliated boron structures. A dispersion liquid of Co@BQDs with stable and bright FL was used for visual FL imaging of solutions and solid substrates. Based on enzymatic and cascade oxidation-induced FL quenching of Co@BQDs, a novel FL bio-probe of lactate was explored. This bio-probe, with a broad detection range of 0.01-10 mM and a low detection limit of 3.1 μM, enables FL sensing of lactate in biosamples and shows high detection recoveries of 98.0-102.8%. Moreover, this bio-probe realized versatile FL imaging and visual detection of lactate in liquid/solid-phase systems. These results demonstrate great prospects of Co@BQDs as emerging and efficient imaging reagents for long-term tracking and bioimaging applications.
Collapse
Affiliation(s)
- Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
11
|
Fan X, Lv J, Li R, Chen Y, Zhang S, Liu T, Zhou S, Shao X, Wang S, Hu G, Yue Q. Paper test strip for silver ions detection in drinking water samples based on combined fluorometric and colorimetric methods. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Gouda M, He Y, Bekhit AED, Li X. Emerging Technologies for Detecting the Chemical Composition of Plant and Animal Tissues and Their Bioactivities: An Editorial. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092620. [PMID: 35565969 PMCID: PMC9105901 DOI: 10.3390/molecules27092620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
Integrating physical and chemical technologies for the characterization and modification of plants and animal tissues has been used for several decades to improve their detection potency and quality [...].
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12422, Egypt
- Correspondence: or (M.G.); (Y.H.); (X.L.)
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: or (M.G.); (Y.H.); (X.L.)
| | - Alaa El-Din Bekhit
- Department of Food Sciences, University of Otago, Dunedin 9054, New Zealand;
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: or (M.G.); (Y.H.); (X.L.)
| |
Collapse
|
13
|
Fan X, Zhang S, Guan R, Shao X, Jiang S, Hu Y, Wang S, Yue Q. Black phosphorus quantum dots as photocatalyst for dye degradation with a high efficiency and rate constant. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Liu H, Zou Q, Kim MG, Qiao Z, Nguyen DTT, Koo B, Lee HJ, Jang YO, Kim JK, Shin Y. Homobifunctional Imidoester Combined Black Phosphorus Nanosheets Used as Cofactors for Nucleic Acid Extraction. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00046-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Ozhukil Valappil M, Alwarappan S, Pillai VK. Phosphorene quantum dots: synthesis, properties and catalytic applications. NANOSCALE 2022; 14:1037-1053. [PMID: 34994751 DOI: 10.1039/d1nr07340k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives.
Collapse
Affiliation(s)
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India.
| | - Vijayamohanan K Pillai
- Indian Institute of Science Education and Research, Mangalam (P.O.), Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
16
|
Ge X, Su L, Yang L, Fu Q, Li Q, Zhang X, Liao N, Yang H, Song J. NIR-II Fluorescent Biodegradable Nanoprobes for Precise Acute Kidney/Liver Injury Imaging and Therapy. Anal Chem 2021; 93:13893-13903. [PMID: 34609146 DOI: 10.1021/acs.analchem.1c02742] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NIR-II fluorescent nanoprobes based on inorganic materials, including rare-earth-doped nanoparticles, single-walled carbon nanotubes, CdS quantum dots (QDs), gold nanoclusters, etc., have gained growing interest in bioimaging applications. However, these nanoprobes are usually not biodegradable and lack therapeutic functions. Herein, we developed novel NIR-II fluorescence (FL) imaging and therapeutic nanoprobes based on black phosphorus QDs (BPQDs), which exhibited excellent biodegradability and high tunability of size-dependent optical properties. By adjusting the size of nanoparticles, BPQDs can specifically accumulate in the kidney or liver. Importantly, a low dosage of BPQDs can effectively protect tissues from reactive oxygen species (ROS)-mediated damage in acute kidney and liver injury, which was real-time monitored by responsive NIR-II fluorescence imaging. Overall, we developed novel NIR-II emitting and therapeutic BPQDs with excellent biodegradability vivo, providing a promising candidate for NIR-II FL imaging and ROS scavenging.
Collapse
Affiliation(s)
- Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Lijiao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Naishun Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| |
Collapse
|
17
|
Li X, Han B, Xu Y, Liu X, Zhao C, Xu J. Conjugated polymer coating enabled light-resistant black phosphorus with enhanced stability. NANOSCALE ADVANCES 2021; 3:5650-5655. [PMID: 36133262 PMCID: PMC9418405 DOI: 10.1039/d1na00403d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
As an advanced two-dimensional (2D) material with unique properties, black phosphorus (BP) has attracted great attention in a variety of fields. One of the main obstacles for the practical application of BP is the poor ambient stability of few-layer BP, especially under light irradiation. In this study, a light-absorbing conjugated polymer is functionalized on the surface of BP during the exfoliation process, yielding BP nanosheets with light-resistance. The obtained BP/polymer nanosheets demonstrate enhanced stability compared to pure BP under sunlight. Systematic characterization reveals that the crystal structure and electronic characteristics of BP are well retained after 30 days of sun exposure. This convenient and efficient conjugated polymer passivation provides a novel light-prohibited method to improve the stability of BP for future applications.
Collapse
Affiliation(s)
- Xingyun Li
- Department of Biomaterials, College of Materials, Xiamen University Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518057 P. R. China
| | - Bin Han
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University Xiamen 361005 China
| | - Yaojie Xu
- School of Materials Science and Engineering, Nanchang Hangkong University Nanchang 330063 Jiangxi China
| | - Xiao Liu
- Department of Biomaterials, College of Materials, Xiamen University Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518057 P. R. China
| | - Chunhui Zhao
- School of Materials Science and Engineering, Nanchang Hangkong University Nanchang 330063 Jiangxi China
| | - Jun Xu
- Department of Biomaterials, College of Materials, Xiamen University Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518057 P. R. China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University Xiamen 361005 China
| |
Collapse
|
18
|
Zhang Z, Li S, Qiao D, Hu N, Gu Y, Deng Q, Wang S. Black Phosphorus Nanosheet Encapsulated by Zeolitic Imidazole Framework-8 for Tumor Multimodal Treatments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43855-43867. [PMID: 34494809 DOI: 10.1021/acsami.1c04001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Black phosphorus (BP) nanosheet is easily oxidized by oxygen and water under ambient environment, thus, reliable BP passivation techniques for biomedical applications is urgently needed. A simple and applicable passivation strategy for biomedical applications was established by encapsulating BP nanosheet into zeolitic imidazole framework-8 (ZIF-8). The resulted BP nanosheet in ZIF-8 (BP@ZIF-8) shows not only satisfied chemical stability in both water and phosphate buffered saline (PBS), but also excellent biocompatibility. Notably, BP nanosheet endows the prepared BP@ZIF-8 with prominent photothermal conversion efficiency (31.90%). Besides passivation BP, ZIF-8 provides the BP@ZIF-8 with high drug loading amount (1353.3 mg g-1). Moreover, the loaded drug can be controlled release by pH stimuli. Both in vitro and in vivo researches verified the resulted BP@ZIF-8 an ideal candidate for tumor multimodal treatments.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sige Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dan Qiao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Nan Hu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Gu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiliang Deng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Zheng F, Liu Y, Ren W, Sunli Z, Xie X, Cui Y, Hao Y. Application of quantum dots in perovskite solar cells. NANOTECHNOLOGY 2021; 32:482003. [PMID: 33647887 DOI: 10.1088/1361-6528/abead9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Perovskite solar cells (PSCs) are important candidates for next-generation thin-film photovoltaic technology due to their superior performance in energy harvesting. At present, their photoelectric conversion efficiencies (PCEs) are comparable to those of silicon-based solar cells. PSCs usually have a multi-layer structure. Therefore, they face the problem that the energy levels between adjacent layers often mismatch each other. Meanwhile, large numbers of defects are often introduced due to the solution preparation procedures. Furthermore, the perovskite is prone to degradation under ultraviolet (UV) irradiation. These problems could degrade the efficiency and stability of PSCs. In order to solve these problems, quantum dots (QDs), a kind of low-dimensional semiconductor material, have been recently introduced into PSCs as charge transport materials, interfacial modification materials, dopants and luminescent down-shifting materials. By these strategies, the energy alignment and interfacial conditions are improved, the defects are efficiently passivated, and the instability of perovskite under UV irradiation is suppressed. So the device efficiency and stability are both improved. In this paper, we overview the recent progress of QDs' utilizations in PSCs.
Collapse
Affiliation(s)
- Fei Zheng
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yifan Liu
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Weihua Ren
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Zetong Sunli
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Xiangyu Xie
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yanxia Cui
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yuying Hao
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| |
Collapse
|
20
|
Liu Z, Xie Z, Wu X, Chen Z, Li W, Jiang X, Cao L, Zhang D, Wang Q, Xue P, Zhang H. pH-responsive black phosphorus quantum dots for tumor-targeted photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 35:102429. [PMID: 34237475 DOI: 10.1016/j.pdpdt.2021.102429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022]
Abstract
Black phosphorus quantum dots(BPQDs) have shown a good application prospect in the field of tumor therapy due to their photoelectric effect and good biodegradability. Due to the active endocytosis and fast metabolic efficiency of tumor cells, BPQDs are easy to be absorbed by tumor cells. However, this does not guarantee that BPQDs will be completely targeted to tumor cells, and normal cells will also absorb BPQDs. Because the cell membrane is negatively charged, BPQDs are also negatively charged and are not easily absorbed by cells under the action of electrostatic repulsion. Surface pegylation is the most common modification method of black phosphorus at present. However, surface pegylation can reduce the uptake of BPQDs by tumor cells. Positive PEG is also easy to be recognized and swallowed by the reticuloendothelial system. The inherent instability and poor tumor targeting of BPQDs under physiological conditions limit further research and clinical application. For this purpose, we selected cationic polymer polyethylenimine (PEI) to modify BPQDs and then added RGD peptides targeting tumor cells. An outer layer of negatively charged PEG+DMMA makes the nanosystem more stable . In the acidic environment of the tumor, the PEG layer has a charge reversal, and the positively charged PEI and the RGD polypeptide BPQDs targeted by the tumor cells are released into the tumor cells. It provides a new method for efficiently and accurately transporting BPQDs, a novel photosensitive nanomaterial, into tumor cells for photodynamic therapy.
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongjian Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Xinqiang Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zijian Chen
- Surgical laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wenting Li
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Qiwen Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
21
|
Modulating fluorescence emission of l-methionine-stabilized Au nanoclusters from green to red and its application for visual detection of silver ion. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Gouda M, El-Din Bekhit A, Tang Y, Huang Y, Huang L, He Y, Li X. Recent innovations of ultrasound green technology in herbal phytochemistry: A review. ULTRASONICS SONOCHEMISTRY 2021; 73:105538. [PMID: 33819867 PMCID: PMC8048006 DOI: 10.1016/j.ultsonch.2021.105538] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 05/10/2023]
Abstract
Ultrasound (US) has become one of the most important techniques in green chemistry and emerging technologies. Many research investigations documented the usefulness of US in a wide range of applications in food science, nanotechnology, and complementary medicine, where effective extraction of natural products is important. However, as with all novel technologies, US has advantages and limitations that require clarification for full adaptation at an industrial scale. The present review discusses recent applications of US in herbal phytochemistry with the emphasis on US effects on chemical structures of bioactive compounds extracted from herbs and their bioactivities. The impact of different US processing conditions such as frequency, intensity, duration, temperature, and pressure on the effectiveness of the extraction process and the properties of the extracted materials are also discussed. Different frequencies and intensities of US have demonstrated its potential applications in modifying, determining, and predicting the physicochemical properties of herbs and their extracts. US has important applications in nanotechnology where it supports the fabrication of inexpensive and eco-friendly herbal nanostructures, as well as acoustic-based biosensors for chemical imaging of the herbal tissues. The application of US enhances the rates of chemical processes such as hydrolysis of herbal fibers, which reduces the time and energy consumed without affecting the quality of the final products. Overall, the use of US in herbal science has great potential to create novel chemical constructions and to be used as an innovative diagnostic system in various biomedical, food, and analytical applications.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza, Egypt
| | | | - Yu Tang
- College of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Yifeng Huang
- College of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
23
|
Li Q, Wu JT, Liu Y, Qi XM, Jin HG, Yang C, Liu J, Li GL, He QG. Recent advances in black phosphorus-based electrochemical sensors: A review. Anal Chim Acta 2021; 1170:338480. [PMID: 34090586 DOI: 10.1016/j.aca.2021.338480] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Since the discovery of liquid-phase-exfoliated black phosphorus (BP) as a field-effect transistor in 2014, BP, with its 2D layered structure, has attracted significant attention, owing to its anisotropic electroconductivity, tunable direct bandgap, extraordinary surface activity, moderate switching ratio, high hole mobility, good biocompatibility, and biodegradability. Several pioneering research efforts have explored the application of BP in different types of electrochemical sensors. This review summarizes the latest synthesis methods, protection strategies, and electrochemical sensing applications of BP and its derivatives. The typical synthesis methods for BP-based crystals, nanosheets, and quantum dots are discussed in detail; the degradation of BP under ambient conditions is introduced; and state-of-the-art protection methodologies for enhancing BP stability are explored. Various electrochemical sensing applications, including chemically modified electrodes, electrochemiluminescence sensors, enzyme electrodes, electrochemical aptasensors, electrochemical immunosensors, and ion-selective electrodes are discussed in detail, along with the mechanisms of BP functionalization, sensing strategies, and sensing properties. Finally, the major challenges in this field are outlined and future research avenues for BP-based electrochemical sensors are highlighted.
Collapse
Affiliation(s)
- Qing Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jing-Tao Wu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Ying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiao-Man Qi
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Hong-Guang Jin
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Chun Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jun Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Guang-Li Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Quan-Guo He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
24
|
Jiang X, Jin H, Gui R. Emerging metal ion-coordinated black phosphorus nanosheets and black phosphorus quantum dots with excellent stabilities. Dalton Trans 2020; 49:11911-11920. [PMID: 32808612 DOI: 10.1039/d0dt02272a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, emerging metal ion-coordinated black phosphorus nanosheets (M@BPNSs) and quantum dots (M@BPQDs) were prepared via the sonication-assisted liquid-phase exfoliation of bulk black phosphorus (BP) crystals in the presence of a metal ion (M) and solvothermal reaction of the exfoliated few-layer M@BP nanosheets. Based on theoretical calculations, a bonding mode exists between M and BP. Consequently, the adsorption energies of M on BP via the bonding mode are lower than that of M on BP via the non-bonding mode. Under the bonding mode, the adsorption energy of Zn2+ (-2.04 eV) on BP is lower than other M. Zn2+, serves as the preferred M and can be easily adsorbed on the surface of BP. We experimentally prepared emerging M@BPNSs and M@BPQDs, characterized, and compared various morphologies, microstructures and spectra under different conditions. It is verified, that the surface coordination of M with BP protects BP from oxidization and degradation of its nanostructures upon exposure to O2 and H2O. In comparison to the bare BPNSs, Zn@BPNSs showed high microstructural stability. Moreover, in comparison to bare BPQDs, Zn@BPQDs exhibited high colloidal stability and excellent stabilities with fluorescence and photothermal conversion performances. The long-term stabilities are due to the M-coordination with BP through P-M bonding on BP nanostructures. Thus, the excellent long-term stabilities in microstructure, fluorescence and photothermal conversion levels endow the emerging two-dimensional M@BPNSs and zero-dimensional M@BPQDs with great prospects towards promising applications, especially in electronics, optoelectronics, optical and biomedical fields.
Collapse
Affiliation(s)
- Xiaowen Jiang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P.R. China.
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P.R. China.
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P.R. China.
| |
Collapse
|