1
|
Ye C, Zhao Z, Lai P, Chen C, Jian F, Liang H, Guo Q. Strategies for the detection of site-specific DNA methylation and its application, opportunities and challenges in the field of electrochemical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5496-5508. [PMID: 39051422 DOI: 10.1039/d4ay00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various biological processes. Aberrant DNA methylation is closely associated with the onset of diseases, and the specific localization of methylation sites in the genome offers further insight into the connection between methylation and diseases. Currently, there are numerous methods available for site-specific methylation detection. Electrochemical biosensors have garnered significant attention due to their distinct advantages, such as rapidity, simplicity, high sensitivity, low cost, and the potential for miniaturization. In this paper, we present a systematic review of the primary sensing strategies utilized in the past decade for analyzing site-specific methylation and their applications in electrochemical sensors, from a novel perspective focusing on the localization analysis of site-specific methylation. These strategies include bisulfite treatment, restriction endonuclease treatment, other sensing strategies, and deamination without direct bisulfite treatment. We hope that this paper can offer ideas and references for establishing site-specific methylation electrochemical analysis in clinical practice.
Collapse
Affiliation(s)
- Chenliu Ye
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Zhibin Zhao
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Penghui Lai
- The Second Hospital of Longyan, Longyan 364000, China
| | - Chunmei Chen
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Fumei Jian
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Haiying Liang
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Qiongying Guo
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| |
Collapse
|
2
|
Pataer P, Zhang P, Li Z. Single Methylation Sensitive Restriction Endonuclease-Based Cascade Exponential Amplification Assay for Visual Detection of DNA Methylation at Single-Molecule Level. Anal Chem 2024. [PMID: 39093040 DOI: 10.1021/acs.analchem.4c03638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Function as a potential cancer biomarker, DNA methylation shows great significance in cancer diagnosis, prognosis, and treatment monitoring. While the lack of an ultrasensitive, specific, and accurate method at the single-molecule level hinders the analysis of the exceedingly low levels of DNA methylation. Herein, based on the outstanding recognition and digestion ability of methylation-sensitive restriction endonuclease (MSRE), we established a single MSRE-based cascade exponential amplification method, which requires only two ingeniously designed primers and only one recognition site of MSRE for the detection of DNA methylation. Differentiated by MSRE digestion, the cleaved unmethylated DNA is too short to induce any amplification reactions, while methylated DNA remains intact to trigger cascade exponential amplification and the subsequent CRISPR/Cas12a system. By integrating the two exponential amplification reactions, as low as 1 aM methylated DNA can be accurately detected, which corresponds to 6 molecules in a 10 μL system, indicating that our method is more sensitive than single amplification-based methods with the ability to detect DNA methylation at the single-molecule level. In addition, 0.1% methylated DNA can be effectively distinguished from large amounts of unmethylated DNA. Our method is further introduced to exploit the expression difference of DNA methylation among normal cells and cancer cells. Moreover, the visual detection of DNA methylation is also realized by the full hybridization between amplification products and the crRNA of CRISPR/Cas12a. Therefore, the proposed method has great potential to be a promising and robust bisulfite-free method for the detection of DNA methylation at the single-molecule level, which is of great importance for early diagnosis of cancer.
Collapse
Affiliation(s)
- Parezhati Pataer
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Pengbo Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
3
|
Cai J, Zhu Q. New advances in signal amplification strategies for DNA methylation detection in vitro. Talanta 2024; 273:125895. [PMID: 38508130 DOI: 10.1016/j.talanta.2024.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
5-methylcytosine (5 mC) DNA methylation is a prominent epigenetic modification ubiquitous in the genome. It plays a critical role in the regulation of gene expression, maintenance of genome stability, and disease control. The potential of 5 mC DNA methylation for disease detection, prognostic information, and prediction of response to therapy is enormous. However, the quantification of DNA methylation from clinical samples remains a considerable challenge due to its low abundance (only 1% of total bases). To overcome this challenge, scientists have recently developed various signal amplification strategies to enhance the sensitivity of DNA methylation biosensors. These strategies include isothermal nucleic acid amplification and enzyme-assisted target cycling amplification, among others. This review summarizes the applications, advantages, and limitations of these signal amplification strategies over the past six years (2018-2023). Our goal is to provide new insights into the selection and establishment of DNA methylation analysis. We hope that this review will offer valuable insights to researchers in the field and facilitate further advancements in this area.
Collapse
Affiliation(s)
- Jiajing Cai
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, 410013, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
4
|
Huang Y, Zhao Z, Yi G, Zhang M. Importance of DNA nanotechnology for DNA methyltransferases in biosensing assays. J Mater Chem B 2024; 12:4063-4079. [PMID: 38572575 DOI: 10.1039/d3tb02947f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA methylation is the process by which specific bases on a DNA sequence acquire methyl groups under the catalytic action of DNA methyltransferases (DNMT). Abnormal changes in the function of DNMT are important markers for cancers and other diseases; therefore, the detection of DNMT and the selection of its inhibitors are critical to biomedical research and clinical practice. DNA molecules can undergo intermolecular assembly to produce functional aggregates because of their inherently stable physical and chemical properties and unique structures. Conventional DNMT detection methods are cumbersome and complicated processes; therefore, it is necessary to develop biosensing technology based on the assembly of DNA nanostructures to achieve rapid analysis, simple operation, and high sensitivity. The design of the relevant program has been employed in life science, anticancer drug screening, and clinical diagnostics. In this review, we explore how DNA assembly, including 2D techniques like hybridization chain reaction (HCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA), and exponential isothermal amplified strand displacement reaction (EXPAR), as well as 3D structures such as DNA tetrahedra, G-quadruplexes, DNA hydrogels, and DNA origami, enhances DNMT detection. We highlight the benefits of these DNA nanostructure-based biosensing technologies for clinical use and critically examine the challenges of standardizing these methods. We aim to provide reference values for the application of these techniques in DNMT analysis and early cancer diagnosis and treatment, and to alert researchers to challenges in clinical application.
Collapse
Affiliation(s)
- Yuqi Huang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| | - Zixin Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Mingjun Zhang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| |
Collapse
|
5
|
Zhao X, Na N, Ouyang J. Functionalized DNA nanoplatform for multi-target simultaneous imaging: Establish the atlas of cancer cell species. Talanta 2024; 267:125222. [PMID: 37778181 DOI: 10.1016/j.talanta.2023.125222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Detection and imaging of cell membrane receptor proteins have gained widespread interest in recent years. However, recognition based on a single biomarker can induce false positive feedback, including off-target phenomenon caused by the absence of tumor-specific antigens. In addition, nucleic acid probes often cause nonspecific and undesired cell internalization during cell imaging. In this work, we constructed a logic gate DNA nano-platform (LGDP) for single-molecule imaging of cell membrane proteins to synergistically diagnose cancer cells. The traffic light-like color response of LGDP facilitates the precise discrimination among different cell lines. Combined with single molecule technology, the target proteins were qualitatively and quantitatively analyzed synergistically. Logic-gated recognition integrated in aptamer-functionalized molecular machines will prompt fast cells analysis, laying the foundation of cancer early diagnosis and treatment.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Na Na
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin Ouyang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China; Department of Chemistry, College of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai City, 519087, Guangdong Province, China.
| |
Collapse
|
6
|
Liu WJ, Wang LJ, Zhang CY. Progress in quantum dot-based biosensors for microRNA assay: A review. Anal Chim Acta 2023; 1278:341615. [PMID: 37709484 DOI: 10.1016/j.aca.2023.341615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
MicroRNAs (miRNAs) are responsible for post-transcriptional gene regulation, and may function as valuable biomarkers for diseases diagnosis. Accurate and sensitive analysis of miRNAs is in great demand. Quantum dots (QDs) are semiconductor nanomaterials with superior optoelectronic features, such as high quantum yield and brightness, broad absorption and narrow emission, long fluorescence lifetime, and good photostability. Herein, we give a comprehensive review about QD-based biosensors for miRNA assay. Different QD-based biosensors for miRNA assay are classified by the signal types including fluorescent, electrochemical, electrochemiluminescent, and photoelectrochemical outputs. We highlight the features, principles, and performances of the emerging miRNA biosensors, and emphasize the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
7
|
Peng S, Zhang X, Wu Y. Potential applications of DNA methylation testing technology in female tumors and screening methods. Biochim Biophys Acta Rev Cancer 2023; 1878:188941. [PMID: 37329994 DOI: 10.1016/j.bbcan.2023.188941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
DNA methylation is a common epigenetic modification, and the current commonly used methods for DNA methylation detection include methylation-specific PCR, methylation-sensitive restriction endonuclease-PCR, and methylation-specific sequencing. DNA methylation plays an important role in genomic and epigenomic studies, and combining DNA methylation with other epigenetic modifications, such as histone modifications, may lead to better DNA methylation. DNA methylation also plays an important role in the development of disease, and analyzing changes in individual DNA methylation patterns can provide individualized diagnostic and therapeutic solutions. Liquid biopsy techniques are also increasingly well established in clinical practice and may provide new methods for early cancer screening. It is important to find new screening methods that are easy to perform, minimally invasive, patient-friendly, and affordable. DNA methylation mechanisms are thought to have an important role in cancer and have potential applications in the diagnosis and treatment of female tumors. This review discussed early detection targets and screening methods for common female tumors such as breast, ovarian, and cervical cancers and discussed advances in the study of DNA methylation in these tumors. Although existing screening, diagnostic, and treatment modalities exist, the high morbidity and mortality rates of these tumors remain challenging.
Collapse
Affiliation(s)
- Shixuan Peng
- Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China
| | - Xinwen Zhang
- Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China
| | - Yongjun Wu
- Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China.
| |
Collapse
|
8
|
Wang Z, Jiang C, Jin Y, Yang J, Zhao Y, Huang L, Yuan Y. Cationic Conjugated Polymer Fluorescence Resonance Energy Transfer for DNA Methylation Assessment to Discriminate the Geographical Origins of Lonicerae japonicae flos. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12346-12356. [PMID: 37539957 DOI: 10.1021/acs.jafc.3c02646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The flavor and taste of Lonicerae japonicae flos (LJF) products are heavily influenced by geographical origin. Tracing the geographical origin is an important aspect of LJF quality assessment. Here, DNA methylation analysis coupled with chemometrics revealed that, in 10 CpG islands upstream of genes in the chlorogenic acid and iridoid biosynthetic pathways, DNA methylation differences appear close association with LJF geographical origin. DNA methylation status in these CpG islands was determined using the cationic conjugated polymer fluorescence resonance energy transfer method. As a result, LJFs from 39 geographical origins were classified into four groups corresponding to Northern China, Central Plain of China, Southeast China, and Western China, according to cluster analysis and principal component analysis. Our findings contribute to an understanding of the modulation of LJF taste and can assist in understanding how DNA methylation in LJF varies with geographical origin.
Collapse
Affiliation(s)
- Zhengpeng Wang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Chao Jiang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Yan Jin
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Yuyang Zhao
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, People's Republic of China
| |
Collapse
|
9
|
Rocha JF, Hasimoto LH, Santhiago M. Recent progress and future perspectives of polydopamine nanofilms toward functional electrochemical sensors. Anal Bioanal Chem 2023; 415:3799-3816. [PMID: 36645457 PMCID: PMC9841946 DOI: 10.1007/s00216-023-04522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Jaqueline F Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Leonardo H Hasimoto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| |
Collapse
|
10
|
Xu Z, Chen X, Song X, Kong X, Chen J, Song Y, Xue M, Qiu L, Geng M, Xue C, Zhang W, Zhang R. ATHENA: an independently validated autophagy-related epigenetic prognostic prediction model of head and neck squamous cell carcinoma. Clin Epigenetics 2023; 15:97. [PMID: 37296474 PMCID: PMC10257287 DOI: 10.1186/s13148-023-01501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
The majority of these existing prognostic models of head and neck squamous cell carcinoma (HNSCC) have unsatisfactory prediction accuracy since they solely utilize demographic and clinical information. Leveraged by autophagy-related epigenetic biomarkers, we aim to develop a better prognostic prediction model of HNSCC incorporating CpG probes with either main effects or gene-gene interactions. Based on DNA methylation data from three independent cohorts, we applied a 3-D analysis strategy to develop An independently validated auTophagy-related epigenetic prognostic prediction model of HEad and Neck squamous cell carcinomA (ATHENA). Compared to prediction models with only demographic and clinical information, ATHENA has substantially improved discriminative ability, prediction accuracy and more clinical net benefits, and shows robustness in different subpopulations, as well as external populations. Besides, epigenetic score of ATHENA is significantly associated with tumor immune microenvironment, tumor-infiltrating immune cell abundances, immune checkpoints, somatic mutation and immunity-related drugs. Taken together these results, ATHENA has the demonstrated feasibility and utility of predicting HNSCC survival ( http://bigdata.njmu.edu.cn/ATHENA/ ).
Collapse
Affiliation(s)
- Ziang Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Department of Oral Special Consultation, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinlei Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Department of Oral Special Consultation, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinxin Kong
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, SPH Building Room 406, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, SPH Building Room 406, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yunjie Song
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, SPH Building Room 406, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Maojie Xue
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, SPH Building Room 406, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Lin Qiu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Department of Oral Special Consultation, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingzhu Geng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Department of Oral Special Consultation, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changyue Xue
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
- Department of Implant Dentistry, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
- Department of Oral Special Consultation, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, SPH Building Room 406, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
11
|
Ishwar D, Venkatakrishnan K, Tan B, Haldavnekar R. DNA Methylation Signatures of Tumor-Associated Natural Killer Cells with Self-Functionalized Nanosensor Enable Colorectal Cancer Diagnosis. NANO LETTERS 2023; 23:4142-4151. [PMID: 37134017 DOI: 10.1021/acs.nanolett.2c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Natural killer (NK) cells undergo multiple DNA genomic alterations, especially methylation-based modifications that affect activation and function. Several epigenetic modifier markers have been targeted for immunotherapy to date, but the possibility of cancer diagnosis using NK cell's DNA has been overlooked. Here, we investigated the potential use of NK cell DNA genome modifications as markers for the diagnosis of colorectal cancer (CRC) and validated their efficacy in CRC patients. Using Raman spectroscopy as the detection methodology, we identified CRC-specific methylation signatures by comparing CRC-interacted NK cells to healthy circulating NK cells. Subsequently, we identified methylation-dependent alterations in these NK cell populations. These markers were then utilized by a machine learning algorithm to develop a diagnostic model with predictive capabilities. The diagnostic prediction model accurately differentiated CRC patients from normal controls. Our findings demonstrated the utility of NK DNA markers in the diagnosis of CRC.
Collapse
Affiliation(s)
- Deeptha Ishwar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Bo Tan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
12
|
Methylation-sensitive transcription-enhanced single-molecule biosensing of DNA methylation in cancer cells and tissues. Anal Chim Acta 2023; 1251:340996. [PMID: 36925287 DOI: 10.1016/j.aca.2023.340996] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
As a major epigenetic modification, DNA methylation participates in diverse cellular functions and emerges as a promising biomarker for disease diagnosis and monitoring. Herein, we developed a methylation-sensitive transcription-enhanced single-molecule biosensor to detect DNA methylation in human cells and tissues. In this biosensor, a rationally designed transcription machine is split into two parts including a promoter sequence (probe-P) for initiating transcription and a template sequence (probe-T) for RNA synthesis. The presence of specific DNA methylation leads to the formation of full-length transcription machine through sequence-specific ligation of probe-P and probe-T, initiating the synthesis of abundant ssRNA transcripts. The resultant ssRNAs can activate CRISPR/Cas12a to catalyze cyclic cleavage of fluorophore- and quencher-dual labeled signal probes, resulting in the recovery of the fluorophore signal that can be quantified by single-molecule detection. Taking advantages of the high-fidelity ligation of split transcription machine and the high efficiency of transcription- and CRISPR/Cas12a cleavage-mediated dual signal amplification, this single-molecule biosensor achieves a low detection limit of 337 aM and high selectivity. Moreover, it can distinguish 0.01% methylation level, and even accurately detect genomic DNA methylation in single cell and clinical samples, providing a powerful tool for epigenetic researches and clinical diagnostics.
Collapse
|
13
|
Liu Y, Wang X, Li Y, Wu H. An all-in-one strategy for bisulfite-free DNA methylation detection by temperature-programmed enzymatic reactions. Anal Chim Acta 2023; 1251:341001. [PMID: 36925290 DOI: 10.1016/j.aca.2023.341001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The fragmentation and low concentration of cell-free DNA (cfDNA) pose higher challenges for the cfDNA methylation detection technologies. Conventional bisulfite conversion-based methods are inadequate for cfDNA methylation analysis due to cumbersome operation and exacerbating cfDNA degradation. Herein, we proposed temperature-programmed enzymatic reactions for cfDNA methylation analysis in a single tube. Endonuclease was used to mildly recognize DNA methylation to avoid the degradation of cfDNA. And two stages of amplification reactions significantly improved the detection sensitivity for GC-rich sequence. With vimentin as the target, the detection sensitivity was 10 copies of methylated DNA. Meanwhile, the proposed method can accurately quantify the methylation level of target sequence from 1000-fold of unmethylated DNA background. Further, the methylated vimentin gene in 20 clinical plasma samples was successfully detected. The results shown significant differences in methylation levels of the vimentin gene between healthy volunteers and colorectal cancer patients. These results lead us to believe that the proposed method has great application potential for DNA methylation analysis as a complement to bisulfite conversion-based methods.
Collapse
Affiliation(s)
- Yunlong Liu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xiaoming Wang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, PR China
| | - Yujiao Li
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China
| | - Haiping Wu
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
14
|
Jia J, Qin L, Lei R. DGA-5mC: A 5-methylcytosine site prediction model based on an improved DenseNet and bidirectional GRU method. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:9759-9780. [PMID: 37322910 DOI: 10.3934/mbe.2023428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The 5-methylcytosine (5mC) in the promoter region plays a significant role in biological processes and diseases. A few high-throughput sequencing technologies and traditional machine learning algorithms are often used by researchers to detect 5mC modification sites. However, high-throughput identification is laborious, time-consuming and expensive; moreover, the machine learning algorithms are not so advanced. Therefore, there is an urgent need to develop a more efficient computational approach to replace those traditional methods. Since deep learning algorithms are more popular and have powerful computational advantages, we constructed a novel prediction model, called DGA-5mC, to identify 5mC modification sites in promoter regions by using a deep learning algorithm based on an improved densely connected convolutional network (DenseNet) and the bidirectional GRU approach. Furthermore, we added a self-attention module to evaluate the importance of various 5mC features. The deep learning-based DGA-5mC model algorithm automatically handles large proportions of unbalanced data for both positive and negative samples, highlighting the model's reliability and superiority. So far as the authors are aware, this is the first time that the combination of an improved DenseNet and bidirectional GRU methods has been used to predict the 5mC modification sites in promoter regions. It can be seen that the DGA-5mC model, after using a combination of one-hot coding, nucleotide chemical property coding and nucleotide density coding, performed well in terms of sensitivity, specificity, accuracy, the Matthews correlation coefficient (MCC), area under the curve and Gmean in the independent test dataset: 90.19%, 92.74%, 92.54%, 64.64%, 96.43% and 91.46%, respectively. In addition, all datasets and source codes for the DGA-5mC model are freely accessible at https://github.com/lulukoss/DGA-5mC.
Collapse
Affiliation(s)
- Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Lulu Qin
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Rufeng Lei
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| |
Collapse
|
15
|
Zhang Q, Zhang X, Zou X, Ma F, Zhang CY. CRISPR/Cas-Based MicroRNA Biosensors. Chemistry 2023; 29:e202203412. [PMID: 36477884 DOI: 10.1002/chem.202203412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
As important post-transcriptional regulators, microRNAs (miRNAs) play irreplaceable roles in diverse cellular functions. Dysregulated miRNA expression is implicated in various diseases including cancers, and thus miRNAs have become the valuable biomarkers for disease monitoring. Recently, clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system has shown great promise for the development of next-generation biosensors because of its precise localization capability, good fidelity, and high cleavage activity. Herein, we review recent advance in development of CRISPR/Cas-based biosensors for miRNA detection. We summarize the principles, features, and performance of these miRNA biosensors, and further highlight the remaining challenges and future directions.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University Institution, Nanjing, 211189, P.R. China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
16
|
Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. SMART MEDICINE 2023; 2:e20220027. [PMID: 39188556 PMCID: PMC11235902 DOI: 10.1002/smmd.20220027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 08/28/2024]
Abstract
Optical biosensors are platforms that translate biological information into detectable optical signals, and have extensive applications in various fields due to their characteristics of high sensitivity, high specificity, dynamic sensing, etc. The development of optical sensing materials is an important part of optical sensors. In this review, we emphasize the role of microfluidic technology in the preparation of optical sensing materials and the application of the derived optical sensors in the biomedical field. We first present some common optical sensing mechanisms and the functional responsive materials involved. Then, we describe the preparation of these sensing materials by microfluidics. Afterward, we enumerate the biomedical applications of these optical materials as biosensors in disease diagnosis, drug evaluation, and organ-on-a-chip. Finally, we discuss the challenges and prospects in this field.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiali Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
17
|
Wang W, Xiao D, Lin L, Gao X, Peng L, Chen J, Xiao K, Zhu S, Chen J, Zhang F, Xiong Y, Chen H, Liao B, Zhou L, Lin Y. Antifibrotic Effects of Tetrahedral Framework Nucleic Acids by Inhibiting Macrophage Polarization and Macrophage-Myofibroblast Transition in Bladder Remodeling. Adv Healthc Mater 2023; 12:e2203076. [PMID: 36603196 DOI: 10.1002/adhm.202203076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Bladder outlet obstruction (BOO) is a prevalent condition arising from urethral stricture, posterior urethral valves, and benign prostatic hyperplasia. Long-term obstruction can lead to bladder remodeling, which is characterized by inflammatory cell infiltration, detrusor hypertrophy, and fibrosis. Until now, there are no efficacious therapeutic options for BOO-induced remodeling. Tetrahedral framework nucleic acids (tFNAs) are a type of novel 3D DNA nanomaterials that possess excellent antifibrotic effects. Here, to determine the treatment effects of tFNAs on BOO-induced remodeling is aimed. Four single-strand DNAs are self-assembled to form tetrahedral framework DNA nanostructures, and the antifibrotic effects of tFNAs are investigated in an in vivo BOO animal model and an in vitro transforming growth factor beta1 (TGF-β1)-induced fibrosis model. The results demonstrated that tFNAs could ameliorate BOO-induced bladder fibrosis and dysfunction by inhibiting M2 macrophage polarization and the macrophage-myofibroblast transition (MMT) process. Furthermore, tFNAs regulate M2 polarization and the MMT process by deactivating the signal transducer and activator of transcription (Stat) and TGF-β1/small mothers against decapentaplegic (Smad) pathways, respectively. This is the first study to reveal that tFNAs might be a promising nanomaterial for the treatment of BOO-induced remodeling.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Lede Lin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoshuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Liao Peng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Jiawei Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Shiyu Zhu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Jixiang Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Yang Xiong
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Huiling Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
18
|
Zhang Q, Yuan ZZ, Zhang X, Zhang Y, Zou X, Ma F, Zhang CY. Entropy-Driven Self-Assembly of Single Quantum Dot Sensor for Catalytic Imaging of Telomerase in Living Cells. Anal Chem 2022; 94:18092-18098. [PMID: 36519804 DOI: 10.1021/acs.analchem.2c04747] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Telomerase is a highly valuable cancer diagnosis biomarker and a promising cancer therapy target. So far, most telomerase assays are limited by the involvement of tedious procedures, multiple enzymes, and complicated reaction schemes. Sensitive monitoring of low-abundant telomerase in living cells remains a challenge. Herein, we demonstrate an entropy-driven catalytic assembly of quantum dot (QD) sensors for accurate detection and imaging of telomerase activity in living cells. In this sensor, target telomerase specifically catalyzes extension of telomerase primer, and the extended primer subsequently acts as a catalyst to continuously initiate entropy-driven catalytic reaction, generating a large number of fluorophore- and biotin-labeled DNAs that can be self-assembled on the QD surface to induce an efficient Föster resonance energy transfer signal. The proposed sensor requires a single step for both recognition and amplification of the telomerase signal, eliminating the use of either protein enzymes or laborious procedures. Taking advantage of the inherent superiority of single-molecule fluorescence detection and high amplification efficiency of the entropy-driven reaction, this sensor demonstrates single-cell sensitivity for the in vitro assay. Moreover, it is capable of screening the telomerase inhibitor, discriminating different tumor cells from normal ones, and even real-time imaging telomerase in living cells, providing a novel platform for telomerase-associated cancer diagnosis and drug screening.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Zhen-Zhen Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan528458, China
| | - Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| |
Collapse
|
19
|
Zhou S, Dong J, Deng L, Wang G, Yang M, Wang Y, Huo D, Hou C. Endonuclease-Assisted PAM-free Recombinase Polymerase Amplification Coupling with CRISPR/Cas12a (E-PfRPA/Cas) for Sensitive Detection of DNA Methylation. ACS Sens 2022; 7:3032-3040. [PMID: 36214815 DOI: 10.1021/acssensors.2c01330] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA methylation is considered as a potential cancer biomarker. The evaluation of DNA methylation level will contribute to the prognosis and diagnosis of cancer. Herein, we propose a novel assay based on endonuclease-assisted protospacer adjacent motif (PAM)-free recombinase polymerase amplification coupling with CRISPR/Cas12a (E-PfRPA/Cas) for sensitive detection of DNA methylation. The methylation-sensitive restriction enzyme (MSRE) is first used to selectively digest unmethylated DNA, while the methylated target remains structurally intact. Therefore, the methylated target can initiate the RPA reaction to generate a large amount of double-stranded DNA (dsDNA). To avoid the dependence of PAM site of CRISPR/Cas12a, one of the RPA primers is designed with 5'-phosphate terminuses. After treating with Lambda, the sequence with 5'-phosphate modification will be degraded, leaving the single-stranded DNA (ssDNA). The CRISPR/Cas12a can accurately locate ssDNA without PAM, then initiating its trans-cleavage activity for further signal amplification. Meanwhile, non-specific amplification can be also avoided under Lambda, effectively filtering the detection background. Benefiting from the specificity of MSRE, the high amplification efficiency of Lambda-assisted RPA, and the self-amplification effect of CRISPR/Cas, the E-PfRPA/Cas assay shows outstanding sensitivity and selectivity, and as low as 0.05% of methylated DNA can be distinguished. Moreover, the lateral flow assay is also introduced to exploit the point-of-care diagnostic platform. Most importantly, the proposed method shows high sensitivity for determination of genomic DNA methylation from cancer cells, indicating its great potential for tumor-specific gene analysis.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
20
|
Bao F, Liu J, Chen H, Miao L, Xu Z, Zhang G. Diagnosis Biomarkers of Cholangiocarcinoma in Human Bile: An Evidence-Based Study. Cancers (Basel) 2022; 14:cancers14163921. [PMID: 36010914 PMCID: PMC9406189 DOI: 10.3390/cancers14163921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary A liquid biopsy has the characteristics of low trauma and easy acquisition in the diagnosis of cholangiocarcinoma. Many researchers try to find diagnostic or prognostic biomarkers of CCA through blood, urine, bile and other body fluids. Due to the close proximity of bile to the lesion and the stable nature, bile gradually comes into people’s view. The evaluation of human bile diagnostic biomarkers is not only to the benefit of screening more suitable clinical markers but also of exploring the pathological changes of the disease. Abstract Cholangiocarcinoma (CCA) is a multifactorial malignant tumor of the biliary tract, and the incidence of CCA is increasing in recent years. At present, the diagnosis of CCA mainly depends on imaging and invasive examination, with limited specificity and sensitivity and late detection. The early diagnosis of CCA always faces the dilemma of lacking specific diagnostic biomarkers. Non-invasive methods to assess the degree of CAA have been developed throughout the last decades. Among the many specimens looking for CCA biomarkers, bile has gotten a lot of attention lately. This paper mainly summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in human bile at the levels of the gene, protein, metabolite, extracellular vesicles and volatile organic compounds.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayue Liu
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Haiyang Chen
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Correspondence: (Z.X.); (G.Z.)
| | - Guixin Zhang
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- Correspondence: (Z.X.); (G.Z.)
| |
Collapse
|
21
|
Ye Q, Zhang Z, Liu J, Wang X. Screen-printed electrode-based biosensors modified with functional nucleic acid probes and their applications in this pandemic age: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2961-2975. [PMID: 35913361 DOI: 10.1039/d2ay00666a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical methodology has probably been the most used sensing platform in the past few years as they provide superior advantages. In particular, screen-printed electrode (SPE)-based sensing applications stand out as they provide extraordinary miniaturized but robust and user-friendly detection system. In this context, we are focusing on the modification of SPE with functional nucleic acid probes and nanostructures to improve the electrochemical detection performance in versatile sensing applications, particularly in the fight against the COVID-19 pandemic. Aptamers are immobilized on the electrode surface to detect non-nucleic acid targets and complementary probes to recognize and capture nucleic acid targets. In a step further, SPE-based biosensors with the modification of self-assembled DNA nanostructures are emphasized as they offer great potential for the interface engineering of the electrode surface and promote the excellent performance of various interface reactions. By equipping with a portable potentiostat and a smartphone monitoring device, the realization of this SPE-based miniaturized diagnostic system for the further requirement of fast and POC detection is revealed. Finally, more novel and excellent works are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Qingqing Ye
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
22
|
Wang ZY, Li DL, Tian X, Li Y, Zhang CY. Single-Molecule Counting of FTO in Human Breast Tissues Based on a Rolling Circle Transcription Amplification-Driven Clustered Regularly Interspaced Short Palindromic Repeat─Cas12a. Anal Chem 2022; 94:11425-11432. [PMID: 35916620 DOI: 10.1021/acs.analchem.2c02578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N6-methyladenosine modification as an mRNA modification in mammalian cells is dynamically reversible, regulated by RNA demethylase [e.g., fat mass and obesity-associated protein (FTO)]. The abnormal expression of FTO is closely related to numerous diseases (e.g., various cancers and obesity). Herein, we demonstrate the single-molecule counting of FTO in human cancer cells and breast tissues based on a T7 RNA polymerase-mediated rolling circle transcription (RCT) amplification-driven clustered regularly interspaced short palindromic repeat (CRISPR)─Cas12a. When FTO is present, it demethylates the DNA substrate, initiating the DpnII-mediated cleavage reaction. After magnetic separation, the cleaved DNA fragments trigger the T7 RNA polymerase-mediated RCT amplification, activating CRISPR-/Cas12a-mediated cleavage of signal probes and releasing abundant FAM molecules that are simply counted via single-molecule detection. In this assay, only target FTO can generate CRISPR RNAs, efficiently improving detection specificity. Moreover, the integration of single-molecule detection with magnetic separation achieves zero background and effectively enhances detection sensitivity. This method can specifically and sensitively monitor FTO activity with a limit of detection of 1.20 × 10-13 M, and it may measure FTO at the single-cell level. Furthermore, it may accurately discriminate the FTO expression level in breast tissues between healthy persons and breast cancer patients and screen the FTO inhibitors as well, with great potential in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Dong-Ling Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yueying Li
- Institute of Immunity and Infectious Diseases, School of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
23
|
Wang ZY, Yuan H, Li DL, Hu J, Qiu JG, Zhang CY. Hydroxymethylation-Specific Ligation-Mediated Single Quantum Dot-Based Nanosensors for Sensitive Detection of 5-Hydroxymethylcytosine in Cancer Cells. Anal Chem 2022; 94:9785-9792. [PMID: 35749235 DOI: 10.1021/acs.analchem.2c01495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) modification is a key epigenetic regulator of cellular processes in mammalian cells, and its misregulation may lead to various diseases. Herein, we develop a hydroxymethylation-specific ligation-mediated single quantum dot (QD)-based fluorescence resonance energy transfer (FRET) nanosensor for sensitive quantification of 5hmC modification in cancer cells. We design a Cy5-modified signal probe and a biotinylated capture probe for the recognition of specific 5hmC-containing genes. 5hmC in target DNA can be selectively converted by T4 β-glucosyltransferase to produce a glycosyl-modified 5hmC, which cannot be cleaved by methylation-insensitive restriction enzyme MspI. The glycosylated 5hmC DNA may act as a template to ligate a signal probe and a capture probe, initiating hydroxymethylation-specific ligation to generate large amounts of biotin-/Cy5-modified single-stranded DNAs (ssDNAs). The assembly of biotin-/Cy5-modified ssDNAs onto a single QD through streptavidin-biotin interaction results in FRET and consequently the generation of a Cy5 signal. The nanosensor is very simple without the need for bisulfite treatment, radioactive reagents, and 5hmC-specific antibodies. Owing to excellent specificity and high amplification efficiency of hydroxymethylation-specific ligation and near-zero background of a single QD-based FRET, this nanosensor can quantify 5hmC DNA with a limit of detection of 33.61 aM and a wider linear range of 7 orders of magnitude, and it may discriminate the single-nucleotide difference among 5hmC, 5-methylcytosine, and unmodified cytosine. Moreover, this nanosensor can distinguish as low as a 0.001% 5hmC DNA in complex mixtures, and it can monitor the cellular 5hmC level and discriminate cancer cells from normal cells, holding great potential in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Huimin Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
24
|
Khoshfetrat SM, Seyed Dorraji P, Shayan M, Khatami F, Omidfar K. Smartphone-Based Electrochemiluminescence for Visual Simultaneous Detection of RASSF1A and SLC5A8 Tumor Suppressor Gene Methylation in Thyroid Cancer Patient Plasma. Anal Chem 2022; 94:8005-8013. [PMID: 35616262 DOI: 10.1021/acs.analchem.2c01132] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Visual one-step simultaneous detection of low-abundance methylation is a crucial challenge in early cancer diagnosis in a simple manner. Through the design of a closed split bipolar electrochemistry system (BE), detection of promoter methylation of tumor suppressor genes in papillary thyroid cancer, RASSF1A and SLC5A8, was achieved using electrochemiluminescence. For this purpose, electrochemiluminescence of luminol loaded into the Fe3O4@UiO-66 and gold nanorod-functionalized graphite-like carbon nitride nanosheet (AuNRs@C3N4 NS), separately, on the anodic and cathodic pole bipolar electrodes (BPEs) in two different chambers of a bipolar cell were recorded on a smartphone camera. To provide the same electric potential (ΔEelec) through the BPEs to conduct simultaneous light emission, as well as to achieve higher sensitivity, anodic and cathodic poles BPEs were separately connected to ruthenium nanoparticles electrodeposited on nitrogen-doped graphene-coated Cu foam (fCu/N-GN/RuNPs) to provide a hydrogen evolution reaction (HER) and polycatechol-modified reduced graphene oxide/pencil graphite electrode (PC-rGO/PGE) to provide electrooxidation of hydrazine. Moreover, taking advantages of the strong cathodic ECL activity due to the roles of AuNRs, as well as the high density of capture probes on the UiO-66 and Fe3O4 roles in improving the signal-to-background ratio (S/B) in complicated plasma media, a sensitive visual ECL immunosensor was developed to detect two different genes as model target analytes in patient plasma samples. The ability of discrimination of methylation levels as low as 0.01% and above 90% clinical sensitivity in thyroid cancer patient plasma implies that the present strategy is able to diagnose cancer early, as well as monitor responses of patients to therapeutic agents.
Collapse
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd 6869199-69737, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Islamic Republic of Iran
| | - Parisa Seyed Dorraji
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 199389373, Iran
| | - Mohsen Shayan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road B3H 4R2 Halifax, Canada
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Islamic Republic of Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Iran
| |
Collapse
|
25
|
A novel methyl-dependent DNA endonuclease GlaI coupling with double cascaded strand displacement amplification and CRISPR/Cas12a for ultra-sensitive detection of DNA methylation. Anal Chim Acta 2022; 1212:339914. [DOI: 10.1016/j.aca.2022.339914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
|
26
|
Du Y, Zhang P, Liu W, Tian J. Optical Imaging of Epigenetic Modifications in Cancer: A Systematic Review. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:88-101. [PMID: 36939779 PMCID: PMC9590553 DOI: 10.1007/s43657-021-00041-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence has demonstrated that abnormal epigenetic modifications are strongly related to cancer initiation. Thus, sensitive and specific detection of epigenetic modifications could markedly improve biological investigations and cancer precision medicine. A rapid development of molecular imaging approaches for the diagnosis and prognosis of cancer has been observed during the past few years. Various biomarkers unique to epigenetic modifications and targeted imaging probes have been characterized and used to discriminate cancer from healthy tissues, as well as evaluate therapeutic responses. In this study, we summarize the latest studies associated with optical molecular imaging of epigenetic modification targets, such as those involving DNA methylation, histone modification, noncoding RNA regulation, and chromosome remodeling, and further review their clinical application on cancer diagnosis and treatment. Lastly, we further propose the future directions for precision imaging of epigenetic modification in cancer. Supported by promising clinical and preclinical studies associated with optical molecular imaging technology and epigenetic drugs, the central role of epigenetics in cancer should be increasingly recognized and accepted.
Collapse
Affiliation(s)
- Yang Du
- grid.9227.e0000000119573309CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- grid.410726.60000 0004 1797 8419The University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Pei Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Supportive Care Center and Day Oncology Unit, Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Wei Liu
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Supportive Care Center and Day Oncology Unit, Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Jie Tian
- grid.9227.e0000000119573309CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191 China
- grid.440736.20000 0001 0707 115XSchool of Life Science and Technology, Xidian University, Xi’an, 710071 Shaanxi China
| |
Collapse
|
27
|
|
28
|
He S, Yu S, Feng Y, He L, Liu L, Effah CY, Wu Y. A digital immuno-PCR assay for simultaneous determination of 5-methylcytosine and 5-hydroxymethylcytosine in human serum. Anal Chim Acta 2022; 1192:339321. [DOI: 10.1016/j.aca.2021.339321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
|
29
|
Tang SY, Zhou PJ, Meng Y, Zeng FR, Deng GT. Gastric cancer: An epigenetic view. World J Gastrointest Oncol 2022; 14:90-109. [PMID: 35116105 PMCID: PMC8790429 DOI: 10.4251/wjgo.v14.i1.90] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) poses a serious threat worldwide with unfavorable prognosis mainly due to late diagnosis and limited therapies. Therefore, precise molecular classification and search for potential targets are required for diagnosis and treatment, as GC is complicated and heterogeneous in nature. Accumulating evidence indicates that epigenetics plays a vital role in gastric carcinogenesis and progression, including histone modifications, DNA methylation and non-coding RNAs. Epigenetic biomarkers and drugs are currently under intensive evaluations to ensure efficient clinical utility in GC. In this review, key epigenetic alterations and related functions and mechanisms are summarized in GC. We focus on integration of existing epigenetic findings in GC for the bench-to-bedside translation of some pivotal epigenetic alterations into clinical practice and also describe the vacant field waiting for investigation.
Collapse
Affiliation(s)
- Si-Yuan Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pei-Jun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, School of Basic Medicine Science, Central South University 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Rong Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guang-Tong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
30
|
Liu WJ, Zhang X, Hu J, Zhang CY. A label-free and self-circulated fluorescent biosensor for sensitive detection of ten-eleven translocation 1 in cancer cells. Chem Commun (Camb) 2022; 58:7996-7999. [DOI: 10.1039/d2cc03019e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a label-free and self-circulated fluorescent biosensor to sensitively detect ten-eleven translocation 1 (TET1) activity in cancer cells.
Collapse
Affiliation(s)
- Wen-jing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
31
|
Zhang Q, Han Y, Li CC, Zou X, Ma F, Zhang CY. Construction of a dual-functional dumbbell probe-based fluorescent biosensor for cascade amplification detection of miRNAs in lung cancer cells and tissues. Chem Commun (Camb) 2022; 58:5538-5541. [DOI: 10.1039/d2cc01341j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a dual-functional dumbbell probe-based fluorescent biosensor for cascade amplification detection of miRNAs in lung cancer cells and tissues by integrating primer exchange reaction (PER) with CRISPR-Cas12a system. This...
Collapse
|
32
|
Wang K, Liu T, Zhan R, Yang Y, Yang Y. Rapid Fluorescent Determination of DNA Based on Trimetallic Zinc Nickel Aluminum-Layered Double Hydroxides and Carboxytetramethylrhodamine. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2009494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kaiyong Wang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Tian Liu
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Rujun Zhan
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Yan Yang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Yi Yang
- School of Public Health, Southwest Medical University, Luzhou, China
- Center of Public Health Research, School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Zhou J, Li Z, Hu J, Wang C, Liu R, Lv Y. HOGG1-assisted DNA methylation analysis via a sensitive lanthanide labelling strategy. Talanta 2021; 239:123136. [PMID: 34920255 DOI: 10.1016/j.talanta.2021.123136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
The assessment of DNA methylation level is an important indicator for the diagnosis and treatment of some diseases. DNA methylation assays are usually based on nucleic acid amplification strategies, which are time-consuming and complicated in operation procedures. Herein, we proposed a sensitive lanthanide-labelled ICP-MS method for DNA methylation analysis that exploited the feature of Human 8-oxoGuanine DNA Glycosylase (hOGG1), which specifically recognizes 8-oxo-G/5mC base pairs to effectively distinguish methylated DNA. A low limit of detection of 84 pM was achieved, and a 0.1% methylation level can be discriminated in the mixture, without any amplification procedure. Compared with commonly used nucleic acid amplification strategies, this proposed method is time-saving and low probability of false positive. Moreover, this work has been successfully validated in human serum samples, the recovery rates is between 96.7% and 105%, and the relative standard deviation (RSD) is in the range of 3.0%-3.5%, indicating that this method has the potential to be applied in clinical and biological samples quantitative analysis.
Collapse
Affiliation(s)
- Jing Zhou
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Ziyan Li
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jianyu Hu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Chaoqun Wang
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 WangJiang Road, Chengdu, 610064, PR China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China; Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 WangJiang Road, Chengdu, 610064, PR China.
| |
Collapse
|
34
|
RFID-Based Microwave Biosensor for Non-Contact Detection of Glucose Solution. BIOSENSORS 2021; 11:bios11120480. [PMID: 34940237 PMCID: PMC8699373 DOI: 10.3390/bios11120480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
Due to the increasing number of diabetic patients, early monitoring of glucose levels is particularly important; therefore, glucose biosensors have attracted enormous attention from researchers. In this paper, we propose a glucose microwave biosensor based on RFID and achieve a non-contact measurement of the concentration of glucose solutions. The Reader is a complementary split-ring resonator (CSRR), and the Tag is comprised of a squared spiral capacitor (SSC). A polydimethylsiloxane microfluidic quantitative cavity with a volume of 1.56 μL is integrated on the Tag to ensure that the glucose solution can be accurately set to the sensitive area and fully contacted with the electromagnetic flux. Because the SSC exhibits different capacitances when it contacts glucose solutions of different concentrations, changing the resonant frequency of the CSRR, we can use the relationship to characterize the biosensing response. Measurement results show that bare CSRR and RFID-based biosensors have achieved sensitivities of 0.31 MHz/mg·dL−1 and 10.27 kHz/mg·dL−1, and detection limits of 13.79 mg/dL and 1.19 mg/dL, respectively, and both realize a response time of less than 1 s. Linear regression analysis of the abovementioned biosensors showed an excellent linear relationship. The proposed design provides a feasible solution for microwave biosensors aiming for the non-contact measurement of glucose concentration.
Collapse
|
35
|
Zhang C, Sultan SA, T R, Chen X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. BIORESOUR BIOPROCESS 2021; 8:72. [PMID: 38650197 PMCID: PMC10992897 DOI: 10.1186/s40643-021-00425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
In the biosynthesis of natural products, methylation is a common and essential transformation to alter molecules' bioavailability and bioactivity. The main methylation reaction is performed by S-adenosylmethionine (SAM)-dependent methyltransferases (MTs). With advancements in genomic and chemical profiling technologies, novel MTs have been discovered to accept complex substrates and synthesize industrially valuable natural products. However, to achieve a high yield of small molecules in microbial hosts, many methyltransferase activities have been reported to be insufficient. Moreover, inadequate co-factor supplies and feedback inhibition of the by-product, S-adenosylhomocysteine (SAH), further limit MTs' activities. Here, we review recent advances in SAM-dependent MTs to produce and diversify natural products. First, we surveyed recently identified novel methyltransferases in natural product biosynthesis. Second, we summarized enzyme engineering strategies to improve methyltransferase activity, with a particular focus on high-throughput assay design and application. Finally, we reviewed innovations in co-factor regeneration and diversification, both in vitro and in vivo. Noteworthily, many MTs are able to accept multiple structurally similar substrates. Such promiscuous methyltransferases are versatile and can be tailored to design de novo pathways to produce molecules whose biosynthetic pathway is unknown or non-existent in nature, thus broadening the scope of biosynthesized functional molecules.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stella Amelia Sultan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
36
|
Choi JH, Ha T, Shin M, Lee SN, Choi JW. Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis. Biomedicines 2021; 9:928. [PMID: 34440132 PMCID: PMC8392676 DOI: 10.3390/biomedicines9080928] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Nucleic acids, including DNA and RNA, have received prodigious attention as potential biomarkers for precise and early diagnosis of cancers. However, due to their small quantity and instability in body fluids, precise and sensitive detection is highly important. Taking advantage of the ease-to-functionality and plasmonic effect of nanomaterials, fluorescence resonance energy transfer (FRET) and metal-enhanced fluorescence (MEF)-based biosensors have been developed for accurate and sensitive quantitation of cancer-related nucleic acids. This review summarizes the recent strategies and advances in recently developed nanomaterial-based FRET and MEF for biosensors for the detection of nucleic acids in cancer diagnosis. Challenges and opportunities in this field are also discussed. We anticipate that the FRET and MEF-based biosensors discussed in this review will provide valuable information for the sensitive detection of nucleic acids and early diagnosis of cancers.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Minkyu Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| |
Collapse
|
37
|
Olejnik B, Kozioł A, Brzozowska E, Ferens-Sieczkowska M. Application of selected biosensor techniques in clinical diagnostics. Expert Rev Mol Diagn 2021; 21:925-937. [PMID: 34289786 DOI: 10.1080/14737159.2021.1957833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Examination of disease biomarkers mostly performed on crude materials, such as serum, meets some obstacles, resulting from sample complexity and the wide range of concentrations and sizes of the components. Techniques currently used in clinical diagnostics are usually time-consuming and expensive. The more sensitive and portable devices are needed for early diagnostics. Chemical sensors are devices that convert chemical information into parameters suitable for fast and precise processing and measurement. AREA COVERED We review the use of biosensors and their possible application in early diagnostics of some diseases like cancer or viral infections. We focus on different types of biorecognition and some technical modifications, lowering the limit of detection potentially attractive to medical practitioners. EXPERT OPINION Among the new diagnostic strategies, the use of biosensors is of increasing interest. In these techniques, the capture ligand interacts with the analyte of interest. Measuring interactions between partners in real time by surface plasmon resonance yields valuable information about kinetics and affinity in a short time and without labels. Importantly, the tendency in such techniques is to make biosensor devices smaller and the test results apparent with the naked eye, so they can be used in point-of-care medicine.
Collapse
Affiliation(s)
- Beata Olejnik
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Wrocław, Poland
| | - Agata Kozioł
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Wrocław, Poland
| | - Ewa Brzozowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Laboratory of Medical Microbiology, Wrocław, Poland
| | | |
Collapse
|
38
|
Hu X, Ricci S, Naranjo S, Hill Z, Gawason P. Protein and Polysaccharide-Based Electroactive and Conductive Materials for Biomedical Applications. Molecules 2021; 26:4499. [PMID: 34361653 PMCID: PMC8348981 DOI: 10.3390/molecules26154499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Electrically responsive biomaterials are an important and emerging technology in the fields of biomedical and material sciences. A great deal of research explores the integral role of electrical conduction in normal and diseased cell biology, and material scientists are focusing an even greater amount of attention on natural and hybrid materials as sources of biomaterials which can mimic the properties of cells. This review establishes a summary of those efforts for the latter group, detailing the current materials, theories, methods, and applications of electrically conductive biomaterials fabricated from protein polymers and polysaccharides. These materials can be used to improve human life through novel drug delivery, tissue regeneration, and biosensing technologies. The immediate goal of this review is to establish fabrication methods for protein and polysaccharide-based materials that are biocompatible and feature modular electrical properties. Ideally, these materials will be inexpensive to make with salable production strategies, in addition to being both renewable and biocompatible.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (S.R.); (Z.H.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.N.); (P.G.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Samuel Ricci
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (S.R.); (Z.H.)
| | - Sebastian Naranjo
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.N.); (P.G.)
| | - Zachary Hill
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (S.R.); (Z.H.)
| | - Peter Gawason
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.N.); (P.G.)
| |
Collapse
|
39
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
40
|
Park HJ, Kim Y, Yoo TH. One-pot colorimetric detection of molecules based on proximity proteolysis reaction. Biosens Bioelectron 2021; 188:113349. [PMID: 34030090 DOI: 10.1016/j.bios.2021.113349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Various types of molecules serve as biomarkers of diseases, and numerous methods have been reported to detect and quantify them. Recently, research efforts have been made to develop point-of-care (POC) tests, which contribute to early diagnoses of diseases, particularly in resource-limited settings. An assay performed in a homogeneous phase is an obvious route to develop these methods. Here, simple homogeneous methods based on proximity proteolysis reactions (PPR) are reported to detect biological molecules. A typical PPR system has been designed such that the proteolysis reaction between protease and zymogen is enhanced in the presence of a target analyte. The activated zymogen generates a color signal by hydrolyzing a chromophore. A protease and zymogen are linked to target binders using specific hybridization between complementary single-stranded DNAs, and several molecules, including proteins, antibodies, aptamers, and small molecules, are used as target binders. The developed assay methods successfully detected several kinds of analytes at subnanomolar concentrations with the one-step procedure and color signal. The modular design of the PPR-based assay will enable the development of simple POC diagnostics for various biomarkers.
Collapse
Affiliation(s)
- Hyeon Ji Park
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Yuseon Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yengtong-gu, Suwon, 16499, South Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, 206 World Cup-ro, Yengtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
41
|
Foroughi MM, Jahani S, Aramesh-Broujeni Z, Rostaminasab Dolatabad M. A label-free electrochemical biosensor based on 3D cubic Eu 3+/Cu 2O nanostructures with clover-like faces for the determination of anticancer drug cytarabine. RSC Adv 2021; 11:17514-17525. [PMID: 35479699 PMCID: PMC9033006 DOI: 10.1039/d1ra01372f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present research utilized a simplified procedure for developing a novel electro-chemical DNA biosensor based on a carbon paste electrode (CPE) modified with three-dimensional (3D) cubic Eu3+/Cu2O nanostructures with clover-like faces (Eu3+/Cu2O CLFNs). The modified electrode was applied to monitor electro-chemical interactions between dsDNA and cytarabine for the first time. Then, the decreased oxidation signal of guanine following the interactions between cytarabine and dsDNA was utilized as an indicator for selectively determining cytarabine using differential pulse voltammetry (DPV). According to the findings, the oxidation peak current of guanine was linearly proportionate with the cytarabine concentration in the range between 0.01 and 90 μM. Additionally, the limit of quantification (LOQ) and the limit of detection (LOD) respectively equaled 9.4 nM and 2.8 nM. In addition, the repeatability, applicability and reproducibility of this analysis to drug dosage forms and human serum samples were investigated. Furthermore, UV-vis spectroscopy, DPV, docking and viscosity measurements were applied to elucidate the interaction mechanism of dsDNA with cytarabine. It was found that this DNA biosensor may be utilized to sensitively, accurately and rapidly determine cytarabine.
Collapse
Affiliation(s)
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
| | - Zahra Aramesh-Broujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences Isfahan Iran
| | | |
Collapse
|
42
|
Martisova A, Holcakova J, Izadi N, Sebuyoya R, Hrstka R, Bartosik M. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int J Mol Sci 2021; 22:ijms22084247. [PMID: 33921911 PMCID: PMC8073724 DOI: 10.3390/ijms22084247] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation, i.e., addition of methyl group to 5′-carbon of cytosine residues in CpG dinucleotides, is an important epigenetic modification regulating gene expression, and thus implied in many cellular processes. Deregulation of DNA methylation is strongly associated with onset of various diseases, including cancer. Here, we review how DNA methylation affects carcinogenesis process and give examples of solid tumors where aberrant DNA methylation is often present. We explain principles of methods developed for DNA methylation analysis at both single gene and whole genome level, based on (i) sodium bisulfite conversion, (ii) methylation-sensitive restriction enzymes, and (iii) interactions of 5-methylcytosine (5mC) with methyl-binding proteins or antibodies against 5mC. In addition to standard methods, we describe recent advances in next generation sequencing technologies applied to DNA methylation analysis, as well as in development of biosensors that represent their cheaper and faster alternatives. Most importantly, we highlight not only advantages, but also disadvantages and challenges of each method.
Collapse
|
43
|
Plasmonic Biosensors for Single-Molecule Biomedical Analysis. BIOSENSORS-BASEL 2021; 11:bios11040123. [PMID: 33921010 PMCID: PMC8071374 DOI: 10.3390/bios11040123] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
The rapid spread of epidemic diseases (i.e., coronavirus disease 2019 (COVID-19)) has contributed to focus global attention on the diagnosis of medical conditions by ultrasensitive detection methods. To overcome this challenge, increasing efforts have been driven towards the development of single-molecule analytical platforms. In this context, recent progress in plasmonic biosensing has enabled the design of novel detection strategies capable of targeting individual molecules while evaluating their binding affinity and biological interactions. This review compiles the latest advances in plasmonic technologies for monitoring clinically relevant biomarkers at the single-molecule level. Functional applications are discussed according to plasmonic sensing modes based on either nanoapertures or nanoparticle approaches. A special focus was devoted to new analytical developments involving a wide variety of analytes (e.g., proteins, living cells, nucleic acids and viruses). The utility of plasmonic-based single-molecule analysis for personalized medicine, considering technological limitations and future prospects, is also overviewed.
Collapse
|
44
|
Liu M, Qiu JG, Ma F, Zhang CY. Advances in single-molecule fluorescent nanosensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1716. [PMID: 33779063 DOI: 10.1002/wnan.1716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Single-molecule detection represents the ultimate sensitivity in measurement science with the characteristics of simplicity, rapidity, low sample consumption, and high signal-to-noise ratio and has attracted considerable attentions in biosensor development. In recent years, a variety of functional nanomaterials with unique chemical, optical, mechanical, and electronic features have been synthesized. The integration of single-molecule detection with functional nanomaterials enables the construction of novel single-molecule fluorescent nanosensors with excellent performance. Herein, we review the advance in single-molecule fluorescent nanosensors constructed by novel nanomaterials including quantum dots, gold nanoparticles, upconversion nanoparticles, fluorescent conjugated polymer nanoparticles, nanosheets, and magnetic nanoparticles in the past decade (2011-2020), and discuss the strategies, features, and applications of single-molecule fluorescent nanosensors in the detection of microRNAs, DNAs, enzymes, proteins, viruses, and live cells. Moreover, we highlight the future direction and challenges in this area. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| |
Collapse
|
45
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
46
|
Zhang Y, Hu J, Zou X, Ma F, Qiu JG, Zhang CY. Integration of single-molecule detection with endonuclease IV-assisted signal amplification for sensitive DNA methylation assay. Chem Commun (Camb) 2021; 57:2073-2076. [PMID: 33507186 DOI: 10.1039/d0cc08306b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate the development of a new fluorescent biosensor for sensitive DNA methylation assay by integrating single-molecule detection with endo IV-assisted signal amplification. This biosensor possesses the characteristics of good selectivity and high sensitivity with a detection limit of 7.3 × 10-17 M. It can distinguish as low as 0.01% methylation level, and can analyze genomic DNA methylation even in a single cancer cell.
Collapse
Affiliation(s)
- Yan Zhang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
47
|
Li CC, Chen HY, Dong YH, Luo X, Hu J, Zhang CY. Advances in Detection of Epigenetic Modification—5-Hydroxymethylcytosine. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20120564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Label-Free DNA Biosensor Using Modified Reduced Graphene Oxide Platform as a DNA Methylation Assay. MATERIALS 2020; 13:ma13214936. [PMID: 33153095 PMCID: PMC7663213 DOI: 10.3390/ma13214936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
This work reports the use of modified reduced graphene oxide (rGO) as a platform for a label-free DNA-based electrochemical biosensor as a possible diagnostic tool for a DNA methylation assay. The biosensor sensitivity was enhanced by variously modified rGO. The rGO decorated with three nanoparticles (NPs)—gold (AuNPs), silver (AgNPs), and copper (CuNPs)—was implemented to increase the electrode surface area. Subsequently, the thiolated DNA probe (single-stranded DNA, ssDNA−1) was hybridized with the target DNA sequence (ssDNA-2). After the hybridization, the double-stranded DNA (dsDNA) was methylated by M.SssI methyltransferase (MTase) and then digested via a HpaII endonuclease specific site sequence of CpG (5′-CCGG-3′) islands. For monitoring the MTase activity, differential pulse voltammetry (DPV) was used, whereas the best results were obtained by rGO-AuNPs. This assay is rapid, cost-effective, sensitive, selective, highly specific, and displays a low limit of detection (LOD) of 0.06 U·mL−1. Lastly, this study was enriched with the real serum sample, where a 0.19 U·mL−1 LOD was achieved. Moreover, the developed biosensor offers excellent potential in future applications in clinical diagnostics, as this approach can be used in the design of other biosensors.
Collapse
|