1
|
Shin W, Choi HJ, Kang B, Lee K, Choi YS, Choi JH, Kim HA, Choi MK, Chung K. Materials design and characterization of injectable and degradable oxidized alginate PANI:PSS hydrogels for photothermal therapy. Carbohydr Polym 2025; 347:122652. [PMID: 39486920 DOI: 10.1016/j.carbpol.2024.122652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
Photothermal therapy has gained great attention as an alternative candidate for radiation therapy or chemotherapy for cancers. However, photothermal agents for photothermal therapy are generally in the form of nanoparticles that are too small to remain in the target tissue, and therefore, the agents are rather quickly removed from the targeted site. Furthermore, conventional photothermal agents are generally expensive or complicated to synthesize. As an approach to these issues, here we present new hydrogels with oxidized alginate ionically crosslinked with Ca2+, bearing polyaniline:poly(sodium 4-styrenesulfonate) (PANI:PSS) nanoparticles in the polymer network. The presented oxidized alginate PANI:PSS hydrogels exhibited excellent injectability as well as a gradual degradation rate from several days to several months depending on the oxidation degree of alginate chains. The presented oxidized alginate PANI:PSS hydrogels showed an excellent photothermal effect even under a neutral pH environment by showing temperature increased to 53 °C in 5 min upon NIR irradiation, which provide strong potential as a candidate for photothermal agent in photothermal therapy.
Collapse
Affiliation(s)
- Woohyeon Shin
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hui Ju Choi
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bongkyun Kang
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyueui Lee
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Biomedical Research Institute, Kyungpook National University Hospital, Daegu 41940, Republic of Korea
| | - Yoon-Seong Choi
- Department of Carbon and Fiber Composite, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin Hyun Choi
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Carbon and Fiber Composite, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeon Ah Kim
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Carbon and Fiber Composite, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeongwoon Chung
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Carbon and Fiber Composite, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Çamurcu T, Sanko V, Ömeroğlu İ, Tümay SO, Şenocak A. Sulfonated-polypyrene aniline/polyaniline composite fortified with Cu-GQD@ZIF8 as an electrochemical enzymatic urea biosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6696-6707. [PMID: 39254379 DOI: 10.1039/d4ay01397b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The determination of urea concentration is essential for human health owing to its crucial role in the ability to metabolize nitrogen-containing substances. This study developed new electrochemical enzymatic detection systems via the synergistic effect of the superior features of novel electropolymerizable pyranine-aniline (PA, 4), polyaniline (PANI) compounds, graphene quantum dots (GQDs) and zeolitic imidazolate framework-8 (ZIF8). The novel compound 4 was characterized via1H-NMR, 13C-NMR, FTIR, and MALDI-TOF mass spectroscopies. Furthermore, Cu-GQD@ZIF8 hybrid materials containing GQD and integrated electroactive Cu metal were prepared in this study. The surface morphology of the prepared Cu-GQD@ZIF8 hybrid material was investigated through microscopic methods such as SEM and TEM, and chemical characterizations were performed using FTIR, XPS, XRD, and TGA analyses. After the characterization of the novel materials, the urease (Urs) enzyme was bound to the new modified electrode surface. Next, the enzymatic biosensor properties of the Urs/Cu-GQD@ZIF8/PANI/PA/GCE sensor electrode for urea detection via reduction of PANI were investigated by DPV and CV techniques. The LOD and LOQ values of the presented sensor were calculated to be 0.77 μM and 2.31 μM, respectively, in the linear range of 1.0-80.0 μM, based on DPV measurements. The presented biosensor system determined the amount of urea in an artificial serum sample, and its accuracy was confirmed via the recovery test and GC-MS analysis.
Collapse
Affiliation(s)
- Taşkın Çamurcu
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
| | - Vildan Sanko
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
- METU MEMS Center, Ankara, 06530, Turkey
| | - İpek Ömeroğlu
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
| | | | - Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
| |
Collapse
|
3
|
Huang Y, Yang R, Zhong H, Lee CKW, Pan Y, Tan M, Chen Y, Jiang N, Li MG. High-Throughput Automatic Laser Printing Strategy toward Cost-effective Portable Integrated Urea Tele-Monitoring System. SMALL METHODS 2024; 8:e2301184. [PMID: 38019189 DOI: 10.1002/smtd.202301184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/21/2023] [Indexed: 11/30/2023]
Abstract
A portable sweat urea sensing system is a promising solution to satisfy the booming requirement of kidney function tele-monitoring. However, the complicated manufacturing route and the cumbersome electrochemical testing system still need to be improved to develop the urea point-of-care testing (POCT) and tele-monitoring devices. Here, a universal technical route based on a high-throughput automatic laser printing strategy for fabricating the portable integrated urea monitoring system is proposed. This integrated system includes a high-performance laser-printed urea sensing electrode, a planar three-electrode system, and a self-developed wireless mini-electrochemical workstation. A precursor donor layer is activated by laser scribing and in situ transferred into functional nanoparticles for the drop-on-demand printing of the urea sensing electrode. The obtained electrodes show high sensitivity, low detection limit, fast response time, high selectivity, good average recovery, and long-term stability for urea sensing. Additionally, a laser-induced graphene circuit-based miniature planar three-electrode system and a wireless mini-electrochemical workstation are designed for sensing data collection and transmitting, achieving real-time urea POCT and tele-monitoring. This scalable method provides a universal solution for high-throughput and ultra-fast fabrication of urea-sensing electrodes. The portable integrated urea monitoring system is a competitive option to achieve cost-effective POCT and tele-monitoring for kidney function.
Collapse
Affiliation(s)
- Yangyi Huang
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Rongliang Yang
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Haosong Zhong
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Connie Kong Wai Lee
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yexin Pan
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Min Tan
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yi Chen
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Na Jiang
- Department of Nephrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai, 200127, P. R. China
| | - Mitch Guijun Li
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
4
|
Mohebbi Najm Abad J, Farahbakhsh A, Mir M, Alizadeh R, Hekmatmanesh A. Urea-Self Powered Biosensors: A Predictive Evolutionary Model for Human Energy Harvesting. SENSORS (BASEL, SWITZERLAND) 2023; 23:8180. [PMID: 37837010 PMCID: PMC10575137 DOI: 10.3390/s23198180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The objective of this study is to create a reliable predictive model for the electrochemical performance of self-powered biosensors that rely on urea-based biological energy sources. Specifically, this model focuses on the development of a human energy harvesting model based on the utilization of urea found in sweat, which will enable the development of self-powered biosensors. In the process, the potential of urea hydrolysis in the presence of a urease enzyme is employed as a bioreaction for self-powered biosensors. The enzymatic reaction yields a positive potential difference that can be harnessed to power biofuel cells (BFCs) and act as an energy source for biosensors. This process provides the energy required for self-powered biosensors as biofuel cells (BFCs). To this end, initially, the platinum electrodes are modified by multi-walled carbon nanotubes to increase their conductivity. After stabilizing the urease enzyme on the surface of the platinum electrode, the amount of electrical current produced in the process is measured. The optimal design of the experiments is performed based on the Taguchi method to investigate the effect of urea concentration, buffer concentration, and pH on the generated electrical current. A general equation is employed as a prediction model and its coefficients calculated using an evolutionary strategy. Also, the evaluation of effective parameters is performed based on error rates. The obtained results show that the established model predicts the electrical current in terms of urea concentration, buffer concentration, and pH with high accuracy.
Collapse
Affiliation(s)
- Javad Mohebbi Najm Abad
- Department of Computer Engineering, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
| | - Afshin Farahbakhsh
- Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
| | - Massoud Mir
- Department of Mechanical Engineering, Quchan University of Technology, Quchan 9477177870, Iran;
| | - Rasool Alizadeh
- Department of Mechanical Engineering, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, LUT University, 53850 Lappeenranta, Finland
| |
Collapse
|
5
|
Wang D, Mao X, Liang Y, Cai Y, Tu T, Zhang S, Li T, Fang L, Zhou Y, Wang Z, Jiang Y, Ye X, Liang B. Multi-Parameter Detection of Urine Based on Electropolymerized PANI: PSS/AuNPs/SPCE. BIOSENSORS 2023; 13:272. [PMID: 36832037 PMCID: PMC9954737 DOI: 10.3390/bios13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Urine analysis is widely used in clinical practice to indicate human heathy status and is important for diagnosing chronic kidney disease (CKD). Ammonium ions (NH4+), urea, and creatinine metabolites are main clinical indicators in urine analysis of CKD patients. In this paper, NH4+ selective electrodes were prepared using electropolymerized polyaniline-polystyrene sulfonate (PANI: PSS), and urea- and creatinine-sensing electrodes were prepared by modifying urease and creatinine deiminase, respectively. First, PANI: PSS was modified on the surface of an AuNPs-modified screen-printed electrode, as a NH4+-sensitive film. The experimental results showed that the detection range of the NH4+ selective electrode was 0.5~40 mM, and the sensitivity reached 192.6 mA M-1 cm-2 with good selectivity, consistency, and stability. Based on the NH4+-sensitive film, urease and creatinine deaminase were modified by enzyme immobilization technology to achieve urea and creatinine detection, respectively. Finally, we further integrated NH4+, urea, and creatinine electrodes into a paper-based device and tested real human urine samples. In summary, this multi-parameter urine testing device offers the potential for point-of-care testing of urine and benefits the efficient chronic kidney disease management.
Collapse
Affiliation(s)
- Dong Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xiyu Mao
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yu Cai
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Tingting Tu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shanshan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Tianyu Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yue Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhaoyang Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yu Jiang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
6
|
Zhang X, Tan X, Wang P, Qin J. Application of Polypyrrole-Based Electrochemical Biosensor for the Early Diagnosis of Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:674. [PMID: 36839042 PMCID: PMC9967576 DOI: 10.3390/nano13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Although colorectal cancer (CRC) is easy to treat surgically and can be combined with postoperative chemotherapy, its five-year survival rate is still not optimistic. Therefore, developing sensitive, efficient, and compliant detection technology is essential to diagnose CRC at an early stage, providing more opportunities for effective treatment and intervention. Currently, the widely used clinical CRC detection methods include endoscopy, stool examination, imaging modalities, and tumor biomarker detection; among them, blood biomarkers, a noninvasive strategy for CRC screening, have shown significant potential for early diagnosis, prediction, prognosis, and staging of cancer. As shown by recent studies, electrochemical biosensors have attracted extensive attention for the detection of blood biomarkers because of their advantages of being cost-effective and having sound sensitivity, good versatility, high selectivity, and a fast response. Among these, nano-conductive polymer materials, especially the conductive polymer polypyrrole (PPy), have been broadly applied to improve sensing performance due to their excellent electrical properties and the flexibility of their surface properties, as well as their easy preparation and functionalization and good biocompatibility. This review mainly discusses the characteristics of PPy-based biosensors, their synthetic methods, and their application for the detection of CRC biomarkers. Finally, the opportunities and challenges related to the use of PPy-based sensors for diagnosing CRC are also discussed.
Collapse
|
7
|
Sanko V, Şenocak A, Oğuz Tümay S, Demirbas E. A novel comparative study for electrochemical urea biosensor design: effect of different ferrite nanoparticles (MFe2O4, M: Cu, Co, Ni, Zn) in urease immobilized composite system. Bioelectrochemistry 2022; 149:108324. [DOI: 10.1016/j.bioelechem.2022.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
8
|
Li Z, Zhang J, Huang Y, Zhai J, Liao G, Wang Z, Ning C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Korent A, Trafela Š, Soderžnik KŽ, Samardžija Z, Šturm S, Rožman KŽ. Au-decorated electrochemically synthesised polyaniline-based sensory platform for amperometric detection of aqueous ammonia in biological fluids. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Wang X, Lu D, Liu Y, Wang W, Ren R, Li M, Liu D, Liu Y, Liu Y, Pang G. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation. BIOSENSORS 2022; 12:bios12080566. [PMID: 35892464 PMCID: PMC9394270 DOI: 10.3390/bios12080566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 05/07/2023]
Abstract
Biosensors are powerful analytical tools used to identify and detect target molecules. Electrochemical biosensors, which combine biosensing with electrochemical analysis techniques, are efficient analytical instruments that translate concentration signals into electrical signals, enabling the quantitative and qualitative analysis of target molecules. Electrochemical biosensors have been widely used in various fields of detection and analysis due to their high sensitivity, superior selectivity, quick reaction time, and inexpensive cost. However, the signal changes caused by interactions between a biological probe and a target molecule are very weak and difficult to capture directly by using detection instruments. Therefore, various signal amplification strategies have been proposed and developed to increase the accuracy and sensitivity of detection systems. This review serves as a reference for biosensor and detector research, as it introduces the research progress of electrochemical signal amplification strategies in olfactory and taste evaluation. It also discusses the latest signal amplification strategies currently being employed in electrochemical biosensors for nanomaterial development, enzyme labeling, and nucleic acid amplification techniques, and highlights the most recent work in using cell tissues as biosensitive elements.
Collapse
Affiliation(s)
- Xinqian Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Dingqiang Lu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Ruijuan Ren
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China;
| | - Ming Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Danyang Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yujiao Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yixuan Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Guangchang Pang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| |
Collapse
|
11
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Amperometric biosensors for L-arginine and creatinine assay based on recombinant deiminases and ammonium-sensitive Cu/Zn(Hg)S nanoparticles. Talanta 2022; 238:122996. [PMID: 34857329 DOI: 10.1016/j.talanta.2021.122996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
There are limited data on amperometric biosensors (ABSs) based on deiminases that produce ammonium as a byproduct of enzymatic reaction. The most frequently proposed biosensors utilizing such a mode are based on potentiometric transducers, which contain at least two enzymes in the bioselective layer; this complicates the procedure and increases the cost of analysis. Thus, the construction of a one-enzyme ABS is a practical problem. In our manuscript ABSs for the direct measurement of creatinine (Crn) and l-arginine (Arg), based on the recombinant bacterial creatinine deiminase (CDI) and arginine deiminase (ADI), are described. To choose the best chemosensor on ammonium ions, a number of nanoparticles (NPs) were synthesized and characterized using cyclic voltammetry. Hybrid Cu/Zn(Hg)S-NPs, having a good selectivity and an extremely high sensitivities towards ammonium ions (5660 A M-1 m-2 at +170 mV and 1870 A M-1 m-2 at -300 mV, respectively), was selected for the development of deiminase-based ABSs. The novel biosensors exhibited very high sensitivities (2660 A M-1 m-2 to Crn for CDI-ABS; 1570 A M-1 m-2 to Arg for ADI-ABS), broad linear ranges, low limits of detection, satisfactory storage stabilities and good selectivities towards natural substrates. The constructed CDI-ABS and ADI-ABS were tested on real samples of biological fluids and juices for Crn and Arg assay, respectively. High correlations of the obtained results with the reference methods were demonstrated for the target analytes.
Collapse
|
14
|
Kongkaew S, Meng L, Limbut W, Kanatharana P, Thavarungkul P, Mak WC. Evaluation on the Intrinsic Physicoelectrochemical Attributes and Engineering of Micro-, Nano-, and 2D-Structured Allotropic Carbon-Based Papers for Flexible Electronics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14302-14313. [PMID: 34859679 PMCID: PMC8675137 DOI: 10.1021/acs.langmuir.1c02121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/18/2021] [Indexed: 05/14/2023]
Abstract
Flexible electronics have gained more attention for emerging electronic devices such as sensors, biosensors, and batteries with advantageous properties including being thin, lightweight, flexible, and low-cost. The development of various forms of allotropic carbon papers provided a new dry-manufacturing route for the fabrication of flexible and wearable electronics, while the electrochemical performance and the bending stability are largely influenced by the bulk morphology and the micro-/nanostructured domains of the carbon papers. Here, we evaluate systematically the intrinsic physicoelectrochemical properties of allotropic carbon-based conducting papers as flexible electrodes including carbon-nanotubes-paper (CNTs-paper), graphene-paper (GR-paper), and carbon-fiber-paper (CF-paper), followed by functionalization of the allotropic carbon papers for the fabrication of flexible electrodes. The morphology, chemical structure, and defects originating from the allotropic nanostructured carbon materials were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, followed by evaluating the electrochemical performance of the corresponding flexible electrodes by cyclic voltammetry and electrochemical impedance spectroscopy. The electron-transfer rate constants of the CNTs-paper and GR-paper electrodes were ∼14 times higher compared with the CF-paper electrode. The CNTs-paper and GR-paper electrodes composed of nanostructured carbon showed significantly higher bending stabilities of 5.61 and 4.96 times compared with the CF-paper. The carbon-paper flexible electrodes were further functionalized with an inorganic catalyst, Prussian blue (PB), forming the PB-carbon-paper catalytic electrode and an organic conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), forming the PEDOT-carbon-paper capacitive electrode. The intrinsic attribute of different allotropic carbon electrodes affects the deposition of PB and PEDOT, leading to different electrocatalytic and capacitive performances. These findings are insightful for the future development and fabrication of advanced flexible electronics with allotropic carbon papers.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Biosensors
and Bioelectronics Centre, Division of Sensor and Actuator Systems,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Lingyin Meng
- Biosensors
and Bioelectronics Centre, Division of Sensor and Actuator Systems,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Warakorn Limbut
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Center
of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center
of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wing Cheung Mak
- Biosensors
and Bioelectronics Centre, Division of Sensor and Actuator Systems,
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
15
|
Uzuncar S, Ozdogan N, Ak M. Enzyme-free detection of hydrogen peroxide with a hybrid transducing system based on sodium carboxymethyl cellulose, poly(3,4-ethylenedioxythiophene) and prussian blue nanoparticles. Anal Chim Acta 2021; 1172:338664. [PMID: 34119021 DOI: 10.1016/j.aca.2021.338664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Herein, we report a two-layered hybrid catalytic interface composed of carboxymethyl cellulose (CMC), poly (3,4-ethylene dioxythiophene) (PEDOT), Prussian blue (PB) nanoparticles and Nickel-Hexacyanoferrate (Ni-HCF) layer for the enzyme-free detection of hydrogen peroxide (H2O2). Whereas the first layer, CMC:PEDOT:PB, is responsible for generating amperometric signals toward H2O2, Ni-HCF on CMC:PEDOT:PB layer is playing an active role as an operational stability-enhancer. In the study, where the systematic optimization of the sensor electrode is presented using cyclic voltammetry (CV), amperometry and electrochemical impedance spectroscopy (EIS) technique, the physical and chemical properties of the hybrid composite systems constructed is also supported by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) techniques. The amperometric signal generation of the H2O2 sensor was linear between 1 and 100 μM (R2 = 0.999) with a sensitivity of 416.11 μA mM-1cm-2, providing a limit of detection (LOD) of 0.33 μM. The sensing system, which was not affected by the various interfering molecules, creates a successful sensor platform for H2O2 measurements in tap water with a high recovery value between 94.0% and 110.5% and relatively small RSD in the range of 0.4-5.2%.
Collapse
Affiliation(s)
- Sinan Uzuncar
- Environmental Engineering Department, Engineering Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| | - Nizamettin Ozdogan
- Environmental Engineering Department, Engineering Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey.
| | - Metin Ak
- Chemistry Department, Faculty of Art and Science, Pamukkale University, 20070, Denizli, Turkey.
| |
Collapse
|
16
|
Camargo JR, Orzari LO, Araújo DAG, de Oliveira PR, Kalinke C, Rocha DP, Luiz dos Santos A, Takeuchi RM, Munoz RAA, Bonacin JA, Janegitz BC. Development of conductive inks for electrochemical sensors and biosensors. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|