1
|
Nava G, Carzaniga T, Casiraghi L, Bot E, Zanchetta G, Damin F, Chiari M, Weber G, Bellini T, Mollica L, Buscaglia M. Weak-cooperative binding of a long single-stranded DNA chain on a surface. Nucleic Acids Res 2024; 52:8661-8674. [PMID: 38989620 PMCID: PMC11347152 DOI: 10.1093/nar/gkae576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Binding gene-wide single-stranded nucleic acids to surface-immobilized complementary probes is an important but challenging process for biophysical studies and diagnostic applications. The challenge comes from the conformational dynamics of the long chain that affects its accessibility and weakens its hybridization to the probes. We investigated the binding of bacteriophage genome M13mp18 on several different 20-mer probes immobilized on the surface of a multi-spot, label-free biosensor, and observed that only a few of them display strong binding capability with dissociation constant as low as 10 pM. Comparing experimental data and computational analysis of the M13mp18 chain structural features, we found that the capturing performance of a specific probe is directly related to the multiplicity of binding sites on the genomic strand, and poorly connected with the predicted secondary and tertiary structure. We show that a model of weak cooperativity of transient bonds is compatible with the measured binding kinetics and accounts for the enhancement of probe capturing observed when more than 20 partial pairings with binding free energy lower than -10 kcal mol-1 are present. This mechanism provides a specific pattern of response of a genomic strand on a panel of properly selected oligomer probe sequences.
Collapse
Affiliation(s)
- Giovanni Nava
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Thomas Carzaniga
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Luca Casiraghi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Erik Bot
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Giuliano Zanchetta
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Francesco Damin
- Istituto di Scienze e Tecnologie Chimiche ‘Giulio Natta’, National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, 20131 Milano, Italy
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche ‘Giulio Natta’, National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, 20131 Milano, Italy
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Tommaso Bellini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Luca Mollica
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| | - Marco Buscaglia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy
| |
Collapse
|
2
|
Wang HN, Vo-Dinh T. Cascade Amplified Plasmonics Molecular Biosensor for Sensitive Detection of Disease Biomarkers. BIOSENSORS 2023; 13:774. [PMID: 37622860 PMCID: PMC10452163 DOI: 10.3390/bios13080774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Recent advances in molecular technologies have provided various assay strategies for monitoring biomarkers, such as miRNAs for early detection of various diseases and cancers. However, there is still an urgent unmet need to develop practical and accurate miRNA analytical tools that could facilitate the incorporation of miRNA biomarkers into clinical practice and management. In this study, we demonstrate the feasibility of using a cascade amplification method, referred to as the "Cascade Amplification by Recycling Trigger Probe" (CARTP) strategy, to improve the detection sensitivity of the inverse Molecular Sentinel (iMS) nanobiosensor. The iMS nanobiosensor developed in our laboratory is a unique homogeneous multiplex bioassay technique based on surface-enhanced Raman scattering (SERS) detection, and was used to successfully detect miRNAs from clinical samples. The CARTP strategy based on the toehold-mediated strand displacement reaction is triggered by a linear DNA strand, called the "Recycling Trigger Probe" (RTP) strand, to amplify the iMS SERS signal. Herein, by using the CARTP strategy, we show a significantly improved detection sensitivity with the limit of detection (LOD) of 45 fM, which is 100-fold more sensitive than the non-amplified iMS assay used in our previous report. We envision that the further development and optimization of this strategy ultimately will allow multiplexed detection of miRNA biomarkers with ultra-high sensitivity for clinical translation and application.
Collapse
Affiliation(s)
- Hsin-Neng Wang
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Wei E, Bou-Nader C, Perry ML, Fattah R, Zhang J, Leppla SH, Bothra A. S9.6 Antibody-Enzyme Conjugates for the Detection of DNA-RNA Hybrids. Bioconjug Chem 2023; 34:834-844. [PMID: 37194248 DOI: 10.1021/acs.bioconjchem.2c00609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Diagnosis of infectious agents is increasingly done by the detection of unique nucleic acid sequences, typically using methods such as PCR that specifically amplify these sequences. A largely neglected alternative approach is to use antibodies that recognize nucleic acids. The unique monoclonal antibody S9.6 recognizes DNA-RNA hybrids in a largely sequence-independent manner. S9.6 has been used in several cases for the analysis of nucleic acids. Extending our recent determination of the structure of S9.6 Fab bound to a DNA-RNA hybrid, we have developed reagents and methods for the sensitive detection of specific DNA and RNA sequences. To facilitate the use in diagnostics, we conjugated the S9.6 Fab to the highly active and well-characterized reporter enzyme human-secreted embryonic alkaline phosphatase (SEAP). Two approaches were utilized for conjugation. The first used sortase A (SrtA), which generates a covalent peptide bond between short amino acid sequences added to recombinantly produced S9.6 Fab and SEAP. The second approach was to genetically fuse the S9.6 Fab and SEAP so that the two are produced as a single molecule. Using these two antibody-SEAP proteins, we developed a simplified ELISA format for the identification of synthetic DNA-RNA hybrids, which can be optimized for detecting nucleic acids of pathogens, as well as for other applications. We successfully used this immunosorbent assay, HC-S, to identify DNA-RNA hybrids in solution with high specificity and sensitivity.
Collapse
Affiliation(s)
- Elena Wei
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Megan L Perry
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Rasem Fattah
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Ankur Bothra
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| |
Collapse
|
4
|
Zhou Y, Xu R, Luo J, Li X, Zhong Y, Sun Z. Dysregulation of miR-204-5p/APLN axis affects malignant progression and cell stemness of esophageal cancer. Mutat Res 2022; 825:111791. [PMID: 35930907 DOI: 10.1016/j.mrfmmm.2022.111791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This study attempted to investigate the mechanism of miR-204-5p and its downstream gene in regulating bio-functions of esophageal cancer (EC). METHODS Bioinformatics analysis was performed to select the mature miRNAs, mRNAs, and clinical data of EC. The miRNA-mRNA regulatory axis was predicted through bioinformatics and used Dual-luciferase analysis to verify the interaction between miR-204-5p and APLN. qRT-PCR was applied to analyze expression of miR-204-5p and APLN mRNA. Western blot was utilized to detect APLN protein expression. Functional assays like CCK-8, wound healing, Transwell, and stem cell sphere formation assays were launched to confirm proliferative, migratory, invasive and stemness of cells in different treatment groups. RESULTS MiR-204-5p was lowly expressed while its target gene APLN was highly expressed in tumor tissues. Besides, miR-204-5p overexpression hindered proliferation, invasion, migration, and stemness of EC cells. Additionally, dual-luciferase assay verified the interaction of miR-204-5p and APLN. MiR-204-5p could downregulate APLN level and its overexpression reduced the effect of APLN on EC cell functions. CONCLUSION Dysregulation of miR-204-5p/APLN axis was linked with malignant progression of EC. MiR-204-5p/APLN may be an underlying candidate for the design of anticarcinogens.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Thoracic Cardiovascular Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning City, Guangxi 530021, China.
| | - Ruihong Xu
- Department of Thoracic Cardiovascular Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning City, Guangxi 530021, China
| | - Jinlong Luo
- Department of Thoracic Cardiovascular Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning City, Guangxi 530021, China
| | - Xiangwei Li
- Department of Thoracic Cardiovascular Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning City, Guangxi 530021, China
| | - Yonglong Zhong
- Department of Thoracic Cardiovascular Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning City, Guangxi 530021, China
| | - Zhendong Sun
- Department of Thoracic Cardiovascular Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning City, Guangxi 530021, China
| |
Collapse
|
5
|
Salahandish R, Haghayegh F, Ayala-Charca G, Hyun JE, Khalghollah M, Zare A, Far B, Berenger BM, Niu YD, Ghafar-Zadeh E, Sanati-Nezhad A. Bi-ECDAQ: An electrochemical dual-immuno-biosensor accompanied by a customized bi-potentiostat for clinical detection of SARS-CoV-2 Nucleocapsid proteins. Biosens Bioelectron 2022; 203:114018. [PMID: 35114466 PMCID: PMC8786409 DOI: 10.1016/j.bios.2022.114018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 01/10/2023]
Abstract
Multiplex electrochemical biosensors have been used for eliminating the matrix effect in complex bodily fluids or enabling the detection of two or more bioanalytes, overall resulting in more sensitive assays and accurate diagnostics. Many electrochemical biosensors lack reliable and low-cost multiplexing to meet the requirements of point-of-care detection due to either limited functional biosensors for multi-electrode detection or incompatible readout systems. We developed a new dual electrochemical biosensing unit accompanied by a customized potentiostat to address the unmet need for point-of-care multi-electrode electrochemical biosensing. The two-working electrode system was developed using screen-printing of a carboxyl-rich nanomaterial containing ink, with both working electrodes offering active sites for recognition of bioanalytes. The low-cost bi-potentiostat system (∼$80) was developed and customized specifically to the bi-electrode design and used for rapid, repeatable, and accurate measurement of electrochemical impedance spectroscopy signals from the dual biosensor. This binary electrochemical data acquisition (Bi-ECDAQ) system accurately and selectively detected SARS-CoV-2 Nucleocapsid protein (N-protein) in both spiked samples and clinical nasopharyngeal swab samples of COVID-19 patients within 30 min. The two working electrodes offered the limit of detection of 116 fg/mL and 150 fg/mL, respectively, with the dynamic detection range of 1-10,000 pg/mL and the sensitivity range of 2744-2936 Ω mL/pg.mm2 for the detection of N-protein. The potentiostat performed comparable or better than commercial Autolab potentiostats while it is significantly lower cost. The open-source Bi-ECDAQ presents a customizable and flexible approach towards addressing the need for rapid and accurate point-of-care electrochemical biosensors for the rapid detection of various diseases.
Collapse
Affiliation(s)
- Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Giancarlo Ayala-Charca
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada
| | - Jae Eun Hyun
- Alberta Public Health Laboratory, Alberta Precision Laboratories, 3330 Hospital Drive, Calgary, Alberta, T2N 4W4, Canada
| | - Mahmood Khalghollah
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Azam Zare
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Behrouz Far
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Byron M Berenger
- Alberta Public Health Laboratory, Alberta Precision Laboratories, 3330 Hospital Drive, Calgary, Alberta, T2N 4W4, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd, Calgary, Alberta, T2L 1Y1, Canada
| | - Yan Dong Niu
- Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd, Calgary, Alberta, T2L 1Y1, Canada; Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
6
|
Galati E, Bosio MC, Novarina D, Chiara M, Bernini GM, Mozzarelli AM, García-Rubio ML, Gómez-González B, Aguilera A, Carzaniga T, Todisco M, Bellini T, Nava GM, Frigè G, Sertic S, Horner DS, Baryshnikova A, Manzari C, D'Erchia AM, Pesole G, Brown GW, Muzi-Falconi M, Lazzaro F. VID22 counteracts G-quadruplex-induced genome instability. Nucleic Acids Res 2021; 49:12785-12804. [PMID: 34871443 PMCID: PMC8682794 DOI: 10.1093/nar/gkab1156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.
Collapse
Affiliation(s)
- Elena Galati
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Maria C Bosio
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Daniele Novarina
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Giulia M Bernini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Alessandro M Mozzarelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Maria L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Marco Todisco
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Giulia M Nava
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Gianmaria Frigè
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sarah Sertic
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - David S Horner
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anastasia Baryshnikova
- Department of Molecular Genetics and Donnelly Centre, University of Toronto, Toronto, Canada
| | - Caterina Manzari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anna M D'Erchia
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari 'A. Moro', Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari 'A. Moro', Bari, Italy
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Ontario M5S 3E1, Toronto, Canada
| | - Marco Muzi-Falconi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Federico Lazzaro
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
7
|
Vanjur L, Carzaniga T, Casiraghi L, Zanchetta G, Damin F, Sola L, Chiari M, Buscaglia M. Copolymer Coatings for DNA Biosensors: Effect of Charges and Immobilization Chemistries on Yield, Strength and Kinetics of Hybridization. Polymers (Basel) 2021; 13:polym13223897. [PMID: 34833198 PMCID: PMC8625010 DOI: 10.3390/polym13223897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
The physical–chemical properties of the surface of DNA microarrays and biosensors play a fundamental role in their performance, affecting the signal’s amplitude and the strength and kinetics of binding. We studied how the interaction parameters vary for hybridization of complementary 23-mer DNA, when the probe strands are immobilized on different copolymers, which coat the surface of an optical, label-free biosensor. Copolymers of N, N-dimethylacrylamide bringing either a different type or density of sites for covalent immobilization of DNA probes, or different backbone charges, were used to functionalize the surface of a Reflective Phantom Interface multispot biosensor made of a glass prism with a silicon dioxide antireflective layer. By analyzing the kinetic hybridization curves at different probe surface densities and target concentrations in solution, we found that all the tested coatings displayed a common association kinetics of about 9 × 104 M−1·s−1 at small probe density, decreasing by one order of magnitude close to the surface saturation of probes. In contrast, both the yield of hybridization and the dissociation kinetics, and hence the equilibrium constant, depend on the type of copolymer coating. Nearly doubled signal amplitudes, although equilibrium dissociation constant was as large as 4 nM, were obtained by immobilizing the probe via click chemistry, whereas amine-based immobilization combined with passivation with diamine carrying positive charges granted much slower dissociation kinetics, yielding an equilibrium dissociation constant as low as 0.5 nM. These results offer quantitative criteria for an optimal selection of surface copolymer coatings, depending on the application.
Collapse
Affiliation(s)
- Luka Vanjur
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20054 Segrate, Italy; (L.V.); (T.C.); (L.C.); (G.Z.)
| | - Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20054 Segrate, Italy; (L.V.); (T.C.); (L.C.); (G.Z.)
| | - Luca Casiraghi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20054 Segrate, Italy; (L.V.); (T.C.); (L.C.); (G.Z.)
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20054 Segrate, Italy; (L.V.); (T.C.); (L.C.); (G.Z.)
| | - Francesco Damin
- Istituto di Scienze e Tecnologie Chimiche, Consiglio Nazionale delle Ricerche (CNR-SCITEC), 20131 Milano, Italy; (F.D.); (L.S.); (M.C.)
| | - Laura Sola
- Istituto di Scienze e Tecnologie Chimiche, Consiglio Nazionale delle Ricerche (CNR-SCITEC), 20131 Milano, Italy; (F.D.); (L.S.); (M.C.)
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche, Consiglio Nazionale delle Ricerche (CNR-SCITEC), 20131 Milano, Italy; (F.D.); (L.S.); (M.C.)
| | - Marco Buscaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20054 Segrate, Italy; (L.V.); (T.C.); (L.C.); (G.Z.)
- Correspondence: ; Tel.: +39-0250330352
| |
Collapse
|