1
|
Varghese S, Madanan AS, Abraham MK, Shkhair AI, Indongo G, Rajeevan G, Arathy BK, George S. Quantum dot-to-dye-based fluorescent ratiometric immunoassay for GFAP: a biomarker for ischaemic stroke and glioblastoma multiforme. Analyst 2024. [PMID: 39665509 DOI: 10.1039/d4an01292e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Ischaemic stroke and glioma, as leading causes of mortality and long-term disability, pose critical challenges to healthcare systems, necessitating innovative approaches to enable early and cost-effective diagnosis for timely intervention. Glial fibrillary acidic protein (GFAP), an astrocyte-produced protein, is highly responsive to both ischaemic stroke and glioblastoma multiforme, with its levels correlating to the extent of brain damage. In this study, we present the development of an immunoassay probe for the ratiometric fluorescent detection of glial fibrillary acidic protein (GFAP), employing a monoclonal GFAP antibody-conjugated silicon quantum dots (Ab@SiQDs) and rhodamine B dye (RhB)-based immunoprobe. The developed probe exhibited a fluorescence emission shift from 580 nm to 530 nm in response to GFAP, demonstrating a linear detection range from 31.15 pg mL-1 to 243 pg mL-1, with a limit of detection of 0.7 pg mL-1. Additionally, the immunoprobe showed high selectivity for GFAP, effectively discriminating it from other potential interfering biomolecules and ions. The probe was also capable of detecting GFAP in spiked serum samples, achieving a recovery rate ranging from 83% to 111%. Notably, a cost-effective paper strip assay was developed, offering significant potential for the visual detection of GFAP under ultraviolet illumination.
Collapse
Affiliation(s)
- Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
- College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - B K Arathy
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
- International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India
| |
Collapse
|
2
|
Liu LL, Xiang L, Chai YQ, Yuan R. Confinement-enhanced electrochemiluminescence of copper nanoclusters on 3D layered double hydroxide for ultrasensitive detection of GFAP. Biosens Bioelectron 2024; 265:116685. [PMID: 39178716 DOI: 10.1016/j.bios.2024.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
In this work, the copper nanoclusters (Cu NCs) were confined on 3D layered double hydroxide (3D-LDH) to form Cu NCs@3D-LDH with outstanding electrochemiluminescence (ECL) for constructing ultrasensitive biosensor to detect of glial fibrillary acidic protein (GFAP) implicated in Alzheimer's Disease (AD). More importantly, compared to the individual Cu NCs, Cu NCs@3D-LDH presented strong and stable ECL response, since 3D-LDH could not only gather more Cu NCs but also limit the intramolecular free motion to reduce nonradiative transition for obtaining high ECL intensity. In addition, the improved cascade amplification method combining proximity ligation assay (PLA) with DNAzyme could transform tiny amount of target protein into a large amount of output DNA to improve sensitivity of biosensor. The ECL biosensor realized ultrasensitive detection of GFAP with the detection limit of 2 ag/mL and it had been successfully applied to the evaluation of GFAP in the serum of patients with neurological diseases. This research offered a general and facile method to improve ECL performance of Cu NCs for sensitive detection of biomarkers for disease diagnosis.
Collapse
Affiliation(s)
- Lin-Lei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lian Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Yu S, Pan Y, Tang L, Wu S, Liang C, Zhang GJ, Li YT. Integrated Microfluidic-Transistor Sensing System for Multiplexed Detection of Traumatic Brain Injury Biomarkers. ACS Sens 2024; 9:3017-3026. [PMID: 38889364 DOI: 10.1021/acssensors.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Traumatic brain injury (TBI) is widely recognized as a global public health crisis, affecting millions of people each year, leading to permanent neurologic, emotional, and occupational disability, and highlighting the urgent need for rapid, sensitive, and early assessment. Here, we design a novel and simple lithography-free method for preparing dual-channel graphene-based field-effect transistors (G-FETs) and integrating them with microfluidic channels for simultaneously multiplexed detection of key blood TBI biomarkers: neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP). The G-FET utilizes an ingenious dual-channel electrode array design, where the source is shared between channels and the drains are independent of each other, which is the key to achieving simultaneous output of dual detection signals. At the same time, the microfluidic chip realizes microscale fluidic control and fast sample response time. This integrated detection system shows excellent sensitivity in biological fluids for the TBI biomarkers with detection limits as low as 55.63 fg/mL for NFL and 144.45 fg/mL for GFAP in phosphate-buffered saline (PBS) buffer, respectively. Finally, the clinical sample analysis shows promising performance for TBI detection, with an area under the curve (AUC) of 0.98 for the two biomarkers. And the combined dual-protein assay is also a good predictor of intracranial injury findings on computed tomography (CT) scans (AUC = 0.907). The integrated microfluidic G-FET device with a dual-signal output strategy has important potential for application in clinical practice, providing more comprehensive information for brain injury assessment.
Collapse
Affiliation(s)
- Shanshan Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Yuling Pan
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Shimin Wu
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Huiji Road, Wuhan 430030, China
| | - Chunzi Liang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China
| |
Collapse
|
4
|
Zhou HY, Wang YC, Wang T, Wu W, Cao YY, Zhang BC, Wang MD, Mao P. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle. Oncol Lett 2024; 27:206. [PMID: 38516683 PMCID: PMC10956385 DOI: 10.3892/ol.2024.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Glioblastoma (GBM) is characterized by significant heterogeneity, leading to poor survival outcomes for patients, despite the implementation of comprehensive treatment strategies. The roles of cyclin A2 (CCNA2) and NIMA related kinase 2 (NEK2) have been extensively studied in numerous cancers, but their specific functions in GBM remain to be elucidated. The present study aimed to investigate the potential molecular mechanisms of CCNA2 and NEK2 in GBM. CCNA2 and NEK2 expression and prognosis in glioma were evaluated by bioinformatics methods. In addition, the distribution of CCNA2 and NEK2 expression in GBM subsets was determined using pseudo-time analysis and tricycle position of single-cell sequencing. Gene Expression Omnibus and Kyoto Encyclopedia of Genes and Genome databases were employed and enrichment analyses were conducted to investigate potential signaling pathways in GBM subsets and a nomogram was established to predict 1-, 2- and 3-year overall survival probability in GBM. CCNA2 and NEK2 expression levels were further validated by western blot analysis and immunohistochemical staining in GBM samples. High expression of CCNA2 and NEK2 in glioma indicates poor clinical outcomes. Single-cell sequencing of GBM revealed that these genes were upregulated in a subset of positive neural progenitor cells (P-NPCs), which showed significant proliferation and progression properties and may activate G2M checkpoint pathways. A comprehensive nomogram predicts 1-, 2- and 3-year overall survival probability in GBM by considering P-NPCs, age, chemotherapy and radiotherapy scores. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle, thus indicating the potential of novel therapy directed to CCNA2 and NEK2 in GBM.
Collapse
Affiliation(s)
- Hao-Yu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi-Chang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi-Yang Cao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bei-Chen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
5
|
Mukherjee P, Kundu S, Ganguly R, Barui A, RoyChaudhuri C. Deformed graphene FET biosensor on textured glass coupled with dielectrophoretic trapping for ultrasensitive detection of GFAP. NANOTECHNOLOGY 2024; 35:295502. [PMID: 38604130 DOI: 10.1088/1361-6528/ad3d65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Numerous efforts have been undertaken to mitigate the Debye screening effect of FET biosensors for achieving higher sensitivity. There are few reports that show sub-femtomolar detection of biomolecules by FET mechanisms but they either suffer from significant background noise or lack robust control. In this aspect, deformed/crumpled graphene has been recently deployed by other researchers for various biomolecule detection like DNA, COVID-19 spike proteins and immunity markers like IL-6 at sub-femtomolar levels. However, the chemical vapor deposition (CVD) approach for graphene fabrication suffers from various surface contamination while the transfer process induces structural defects. In this paper, an alternative fabrication methodology has been proposed where glass substrate has been initially texturized by wet chemical etching through the sacrificial layer of synthesized silver nanoparticles, obtained by annealing of thin silver films leading to solid state dewetting. Graphene has been subsequently deposited by thermal reduction technique from graphene oxide solution. The resulting deformed graphene structure exhibits higher sensor response towards glial fibrillary acidic protein (GFAP) detection with respect to flat graphene owing to the combined effect of reduced Debye screening and higher surface area for receptor immobilization. Additionally, another interesting aspect of the reported work lies in the biomolecule capture by dielectrophoretic (DEP) transport on the crests of the convex surfaces of graphene in a coplanar gated topology structure which has resulted in 10 aM and 28 aM detection limits of GFAP in buffer and undiluted plasma respectively, within 15 min of application of analyte. The detection limit in buffer is almost four decades lower than that documented for GFAP using biosensors which is is expected to pave way for advancing graphene FET based sensors towards ultrasensitive point-of-care diagnosis of GFAP, a biomarker for traumatic brain injury.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - S Kundu
- Dr Bholanath Chakraborty Memorial Fundamental Research Laboratory (under CCRH), Centre of Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - R Ganguly
- Centre of Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - A Barui
- Centre of Healthcare Science & Technology, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| | - C RoyChaudhuri
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering Science & Technology, Shibpur, Howrah, India
| |
Collapse
|
6
|
Gammaldi N, Doccini S, Bernardi S, Marchese M, Cecchini M, Ceravolo R, Rapposelli S, Ratto GM, Rocchiccioli S, Pezzini F, Santorelli FM. Dem-Aging: autophagy-related pathologies and the "two faces of dementia". Neurogenetics 2024; 25:39-46. [PMID: 38117343 DOI: 10.1007/s10048-023-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Neuronal ceroid lipofuscinosis (NCL) is an umbrella term referring to the most frequent childhood-onset neurodegenerative diseases, which are also the main cause of childhood dementia. Although the molecular mechanisms underlying the NCLs remain elusive, evidence is increasingly pointing to shared disease pathways and common clinical features across the disease forms. The characterization of pathological mechanisms, disease modifiers, and biomarkers might facilitate the development of treatment strategies.The DEM-AGING project aims to define molecular signatures in NCL and expedite biomarker discovery with a view to identifying novel targets for monitoring disease status and progression and accelerating clinical trial readiness in this field. In this study, we fused multiomic assessments in established NCL models with similar data on the more common late-onset neurodegenerative conditions in order to test the hypothesis of shared molecular fingerprints critical to the underlying pathological mechanisms. Our aim, ultimately, is to combine data analysis, cell models, and omic strategies in an effort to trace new routes to therapies that might readily be applied in the most common forms of dementia.
Collapse
Affiliation(s)
- N Gammaldi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - S Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.
| | - S Bernardi
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - M Marchese
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - M Cecchini
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute-National Research Council (CNR) and Scuola Normale Superiore, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - R Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - G M Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute-National Research Council (CNR) and Scuola Normale Superiore, Pisa, Italy
| | - S Rocchiccioli
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - F Pezzini
- Department of Surgery, Dentistry, Pediatrics and Gynecology (Child Neurology and Psychiatry), University of Verona, Verona, Italy
| | - F M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
7
|
Arya S, Bahuguna D, Bajad G, Loharkar S, Devangan P, Khatri DK, Singh SB, Madan J. Colloidal therapeutics in the management of traumatic brain injury: Portray of biomarkers and drug-targets, preclinical and clinical pieces of evidence and future prospects. Colloids Surf B Biointerfaces 2023; 230:113509. [PMID: 37595379 DOI: 10.1016/j.colsurfb.2023.113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
Complexity associated with the aberrant physiology of traumatic brain injury (TBI) makes its therapeutic targeting vulnerable. The underlying mechanisms of pathophysiology of TBI are yet to be completely illustrated. Primary injury in TBI is associated with contusions and axonal shearing whereas excitotoxicity, mitochondrial dysfunction, free radicals generation, and neuroinflammation are considered under secondary injury. MicroRNAs, proinflammatory cytokines, and Glial fibrillary acidic protein (GFAP) recently emerged as biomarkers in TBI. In addition, several approved therapeutic entities have been explored to target existing and newly identified drug-targets in TBI. However, drug delivery in TBI is hampered due to disruption of blood-brain barrier (BBB) in secondary TBI, as well as inadequate drug-targeting and retention effect. Colloidal therapeutics appeared helpful in providing enhanced drug availability to the brain owing to definite targeting strategies. Moreover, immense efforts have been put together to achieve increased bioavailability of therapeutics to TBI by devising effective targeting strategies. The potential of colloidal therapeutics to efficiently deliver drugs at the site of injury and down-regulate the mediators of TBI are serving as novel policies in the management of TBI. Therefore, in present manuscript, we have illuminated a myriad of molecular-targets currently identified and recognized in TBI. Moreover, particular emphasis is given to frame armamentarium of repurpose drugs which could be utilized to block molecular targets in TBI in addition to drug delivery barriers. The critical role of colloidal therapeutics such as liposomes, nanoparticles, dendrimers, and exosomes in drug delivery to TBI through invasive and non-invasive routes has also been highlighted.
Collapse
Affiliation(s)
- Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Deepankar Bahuguna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gopal Bajad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Soham Loharkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pawan Devangan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Zhao X, Sun L, Wang J, Xu X, Ni S, Liu M, Hu K. Nose to brain delivery of Astragaloside IV by β-Asarone modified chitosan nanoparticles for multiple sclerosis therapy. Int J Pharm 2023; 644:123351. [PMID: 37640088 DOI: 10.1016/j.ijpharm.2023.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Multiple sclerosis (MS), an autoimmune disease, has been considered an inflammatory disorder of the central nervous system (CNS) with demyelination and axonal damage. Although there are certain first-line therapies to treat MS, their unsatisfactory efficacy is partly due to the limited CNS access after systemic administration. Besides, there is an urgent need to treat MS by enhancing remyelination or neuroprotection, or dampen the activity of microglia. Astragaloside IV (ASI) bears anti-inflammatory, antioxidant, remyelination and neuroprotective activity. While its poor permeability, relatively high molecular weight and low lipophilicity restrict it to reach the brain. Therefore, β-asarone modified ASI loaded chitosan nanoparticles (ASI-βCS-NP) were prepared to enhance the nose-to-brain delivery and therapeutic effects of ASI on EAE mice. The prepared ASI-βCS-NP showed mean size of about 120 nm, and zeta potential from +19 to +25 mV. DiR-βCS-NP was confirmed with good nose-to-brain targeting ability. After intranasal administration, the ASI-βCS-NP significantly reduced behavioral scores, decreased weight loss, suppressed inflammatory infiltration and astrocyte/microglial activation, reduced demyelination and increased remyelination on a mice EAE model. Our findings indicate that ASI-βCS-NP may be a potent treatment for MS after nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lixue Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jing Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiaolu Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Mei Liu
- Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
9
|
Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosens Bioelectron 2023; 225:115100. [PMID: 36709589 DOI: 10.1016/j.bios.2023.115100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.
Collapse
|
10
|
Tomaiuolo R, Zibetti M, Di Resta C, Banfi G. Challenges of the Effectiveness of Traumatic Brain Injuries Biomarkers in the Sports-Related Context. J Clin Med 2023; 12:jcm12072563. [PMID: 37048647 PMCID: PMC10095236 DOI: 10.3390/jcm12072563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic brain injury affects 69 million people every year. One of the main limitations in managing TBI patients is the lack of univocal diagnostic criteria, including the absence of standardized assessment methods and guidelines. Computerized axial tomography is the first-choice examination, despite the limited prevalence of positivity; moreover, its performance is undesirable due to the risk of radiological exposure, prolonged stay in emergency departments, inefficient use of resources, high cost, and complexity. Furthermore, immediacy and accuracy in diagnosis and management of TBIs are critically unmet medical needs. Especially in the context of sports-associated TBI, there is a strong need for prognostic indicators to help diagnose and identify at-risk subjects to avoid their returning to play while the brain is still highly vulnerable. Fluid biomarkers may emerge as new prognostic indicators to develop more accurate prediction models, improving risk stratification and clinical decision making. This review describes the current understanding of the cellular sources, temporal profile, and potential utility of leading and emerging blood-based protein biomarkers of TBI; its focus is on biomarkers that could improve the management of mild TBI cases and can be measured readily and directly in the field, as in the case of sports-related contexts.
Collapse
Affiliation(s)
- Rossella Tomaiuolo
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Martina Zibetti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Chiara Di Resta
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence:
| | - Giuseppe Banfi
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- IRCCS Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
11
|
Shahub S, Lin KC, Muthukumar S, Prasad S. A Proof-of-Concept Electrochemical Skin Sensor for Simultaneous Measurement of Glial Fibrillary Acidic Protein (GFAP) and Interleukin-6 (IL-6) for Management of Traumatic Brain Injuries. BIOSENSORS 2022; 12:bios12121095. [PMID: 36551062 PMCID: PMC9775589 DOI: 10.3390/bios12121095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 05/28/2023]
Abstract
This work demonstrates the use of a noninvasive, sweat-based dual biomarker electrochemical sensor for continuous, prognostic monitoring of a Traumatic Brain Injury (TBI) with the aim of enhancing patient outcomes and reducing the time to treatment after injury. A multiplexed SWEATSENSER was used for noninvasive continuous monitoring of glial fibrillary acidic protein (GFAP) and Interleukin-6 (IL-6) in a human sweat analog and in human sweat. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to measure the sensor response. The assay chemistry was characterized using Fourier Transform Infrared Spectroscopy (FTIR). The SWEATSENSER was able to detect GFAP and IL-6 in sweat over a dynamic range of 3 log orders for GFAP and 2 log orders for IL-6. The limit of detection (LOD) for GFAP detection in the sweat analog was estimated to be 14 pg/mL using EIS and the LOD for IL-6 was estimated to be 10 pg/mL using EIS. An interference study was performed where the specific signal was significantly higher than the non-specific signal. Finally, the SWEATSENSER was able to distinguish between GFAP and IL-6 in simulated conditions of a TBI in human sweat. This work demonstrates the first proof-of-feasibility of a multiplexed TBI marker combined with cytokine and inflammatory marker detection in passively expressed sweat in a wearable form-factor that can be utilized toward better management of TBIs. This is the first step toward demonstrating a noninvasive enabling technology that can enable baseline tracking of an inflammatory response.
Collapse
Affiliation(s)
- Sarah Shahub
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- EnLiSense LLC, Allen, TX 75013, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
12
|
Gagliardi M, Agostini M, Lunardelli F, Miranda A, Luminare AG, Cervelli F, Gambineri F, Cecchini M. A Surface Acoustic Wave (SAW)-Based Lab-on-Chip for the Detection of Active α-Glycosidase. BIOSENSORS 2022; 12:1010. [PMID: 36421128 PMCID: PMC9688093 DOI: 10.3390/bios12111010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Enzyme detection in liquid samples is a complex laboratory procedure, based on assays that are generally time- and cost-consuming, and require specialized personnel. Surface acoustic wave sensors can be used for this application, overcoming the cited limitations. To give our contribution, in this work we present the bottom-up development of a surface acoustic wave biosensor to detect active α-glycosidase in aqueous solutions. Our device, optimized to work at an ultra-high frequency (around 740 MHz), is functionalized with a newly synthesized probe 7-mercapto-1-eptyl-D-maltoside, bringing one maltoside terminal moiety. The probe is designed ad hoc for this application and tested in-cuvette to analyze the enzymatic conversion kinetics at different times, temperatures and enzyme concentrations. Preliminary data are used to optimize the detection protocol with the SAW device. In around 60 min, the SAW device is able to detect the enzymatic conversion of the maltoside unit into glucose in the presence of the active enzyme. We obtained successful α-glycosidase detection in the concentration range 0.15-150 U/mL, with an increasing signal in the range up to 15 U/mL. We also checked the sensor performance in the presence of an enzyme inhibitor as a control test, with a signal decrease of 80% in the presence of the inhibitor. The results demonstrate the synergic effect of our SAW Lab-on-a-Chip and probe design as a valid alternative to conventional laboratory tests.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Matteo Agostini
- INTA S.R.L., Intelligent Acoustics Systems, Via Nino Pisano 14, 56122 Pisa, Italy
| | - Francesco Lunardelli
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
- INTA S.R.L., Intelligent Acoustics Systems, Via Nino Pisano 14, 56122 Pisa, Italy
| | - Alessio Miranda
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | | | | | | | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
- INTA S.R.L., Intelligent Acoustics Systems, Via Nino Pisano 14, 56122 Pisa, Italy
| |
Collapse
|
13
|
Mehmandoust M, Erk EE, Soylak M, Erk N, Karimi F. Metal–Organic Framework Based Electrochemical Immunosensor for Label-Free Detection of Glial Fibrillary Acidic Protein as a Biomarker. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad Mehmandoust
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06100 Ankara, Turkey
| | - Erknaz Ecehan Erk
- Institute of Neurological Sciences and Psychiatry, Hacettepe University 06230 Ankara, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, 38039 Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, 38039 Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, 06700 Ankara, Turkey
| | - Nevin Erk
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06100 Ankara, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, 9477177870 Quchan, Iran
| |
Collapse
|
14
|
Serapinas S, Gineitytė J, Butkevičius M, Danilevičius R, Dagys M, Ratautas D. Biosensor prototype for rapid detection and quantification of DNase activity. Biosens Bioelectron 2022; 213:114475. [PMID: 35714494 DOI: 10.1016/j.bios.2022.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
DNases are enzymes that cleave phosphodiesteric bonds of deoxyribonucleic acid molecules and are found everywhere in nature, especially in bodily fluids, i.e., saliva, blood, or sweat. Rapid and sensitive detection of DNase activity is highly important for quality control in the pharmaceutical and biotechnology industries. For clinical diagnostics, recent reports indicate that increased DNase activity could be related to various diseases, such as cancers. In this paper, we report a new bioelectronic device for the determination of nuclease activity in various fluids. The system consists of a sensor electrode, a custom design DNA target to maximize the DNase cleavage rate, a signal analysis algorithm, and supporting electronics. The developed sensor enables the determination of DNase activity in the range of 3.4 × 10-4 - 3.0 × 10-2 U mL-1 with a limit of detection of up to 3.4 × 10-4 U mL-1. The sensor was tested by measuring nuclease activity in real human saliva samples and found to demonstrate high accuracy and reproducibility compared to the industry standard DNaseAlert™️. Finally, the entire detection system was implemented as a prototype device system utilizing single-use electrodes, custom-made cells, and electronics. The developed technology can improve nuclease quality control processes in the pharmaceutical/biotechnology industry and provide new insights into the importance of nucleases for medical applications.
Collapse
Affiliation(s)
- Skomantas Serapinas
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Laboratorija 1", Pamėnkalnio g. 36, LT-01114, Vilnius, Lithuania
| | - Justina Gineitytė
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Bioanalizės sistemos", Saulėtekio al. 15, LT-10224, Vilnius, Lithuania
| | - Marius Butkevičius
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Laboratorija 1", Pamėnkalnio g. 36, LT-01114, Vilnius, Lithuania
| | | | - Marius Dagys
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Bioanalizės sistemos", Saulėtekio al. 15, LT-10224, Vilnius, Lithuania
| | - Dalius Ratautas
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania; UAB "Bioanalizės sistemos", Saulėtekio al. 15, LT-10224, Vilnius, Lithuania.
| |
Collapse
|
15
|
Assisting dementia diagnosis through the electrochemical immunosensing of glial fibrillary acidic protein. Talanta 2022; 246:123526. [DOI: 10.1016/j.talanta.2022.123526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/10/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
16
|
Design, Elaboration, and Characterization of an Immunosensor for the Detection of a Fungal Toxin in Foodstuff Analyses. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work describes the complete elaboration of an immunosensor for the detection of the fungal B1 aflatoxin (AFB1). In a first step, a system made of three screen-printed electrodes (SPEs) was manufactured using gold, silver/silver chloride, and carbon pastes. Raman spectroscopy showed that the thermal treatment applied to the electrodes enabled a strong decrease in the amount of undesirable organic molecules for each paste. Atomic Force Microscopy was also used to reveal the morphology of the electrode surfaces. In a second step, an autonomous and cheap electronic system was designed for the control of the sensor and electrochemical measurements, showing current variations significantly higher than those observed with a commercial system. In a last step, the gold working electrode of this system was functionalized by a simple self-assembly method, optimized in a previous work, with a molecular architecture including an antibody recognizing specifically AFB1. The complete device was finally realized by combining the SPEs and the electronic platform. The resulting setup was able to detect AFB1 toxin in a buffer with an LOD of about 50 fg/mL. It was then applied to the detection of AFB1 in rice milk, a more realistic medium comparable with those met in an agrifood context. The electrochemical detection of AFB1 was possible in a range of concentration between 0.5 pg/mL and 2.5 pg/mL, with the sensor behaving linearly in this range.
Collapse
|
17
|
Jović M, Prim D, Saini E, Pfeifer ME. Towards a Point-of-Care (POC) Diagnostic Platform for the Multiplex Electrochemiluminescent (ECL) Sensing of Mild Traumatic Brain Injury (mTBI) Biomarkers. BIOSENSORS 2022; 12:172. [PMID: 35323442 PMCID: PMC8946848 DOI: 10.3390/bios12030172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Globally, 70 million people are annually affected by TBI. A significant proportion of all TBI cases are actually mild TBI (concussion, 70-85%), which is considerably more difficult to diagnose due to the absence of apparent symptoms. Current clinical practice of diagnosing mTBI largely resides on the patients' history, clinical aspects, and CT and MRI neuroimaging observations. The latter methods are costly, time-consuming, and not amenable for decentralized or accident site measurements. As an alternative (and/or complementary), mTBI diagnostics can be performed by detection of mTBI biomarkers from patients' blood. Herein, we proposed two strategies for the detection of three mTBI-relevant biomarkers (GFAP, h-FABP, and S100β), in standard solutions and in human serum samples by using an electrochemiluminescence (ECL) immunoassay on (i) a commercial ECL platform in 96-well plate format, and (ii) a "POC-friendly" platform with disposable screen-printed carbon electrodes (SPCE) and a portable ECL reader. We further demonstrated a proof-of-concept for integrating three individually developed mTBI assays ("singleplex") into a three-plex ("multiplex") assay on a single SPCE using a spatially resolved ECL approach. The presented methodology demonstrates feasibility and a first step towards the development of a rapid POC multiplex diagnostic system for the detection of a mTBI biomarker panel on a single SPCE.
Collapse
Affiliation(s)
| | | | | | - Marc Emil Pfeifer
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), 1950 Sion, Switzerland; (M.J.); (D.P.); (E.S.)
| |
Collapse
|
18
|
Habli Z, Kobeissy F, Khraiche ML. Advances in point-of-care platforms for traumatic brain injury: recent developments in diagnostics. Rev Neurosci 2022; 33:327-345. [PMID: 35170265 DOI: 10.1515/revneuro-2021-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity, affecting 2 million people annually in the US alone, with direct and indirect costs of $76.3 billion per year. TBI is a progressive disease with no FDA-approved drug for treating patients. Early, accurate and rapid diagnosis can have significant implications for successful triaging and intervention. Unfortunately, current clinical tests for TBI rely on CT scans and MRIs, both of which are expensive, time-consuming, and not accessible to everyone. Recent evidence of biofluid-based biomarkers being released right after a TBI incident has ignited interest in developing point-of-care (POC) platforms for early and on-site TBI diagnosis. These efforts face many challenges to accurate, sensitive, and specific diagnosis and monitoring of TBI. This review includes a deep dive into the latest advances in chemical, mechanical, electrical, and optical sensing systems that hold promise for TBI-POC diagnostic testing platforms. It also focuses on the performance of these proposed biosensors compared to biofluid-based orthodox diagnostic techniques in terms of sensitivity, specificity, and limits of detection. Finally, it examines commercialized TBI-POCs present in the market, the challenges associated with them, and the future directions and prospects of these technologies and the field.
Collapse
Affiliation(s)
- Zeina Habli
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Massoud L Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
19
|
Xu L, Ramadan S, Akingbade OE, Zhang Y, Alodan S, Graham N, Zimmerman KA, Torres E, Heslegrave A, Petrov PK, Zetterberg H, Sharp DJ, Klein N, Li B. Detection of Glial Fibrillary Acidic Protein in Patient Plasma Using On-Chip Graphene Field-Effect Biosensors, in Comparison with ELISA and Single-Molecule Array. ACS Sens 2022; 7:253-262. [PMID: 34908400 PMCID: PMC8805154 DOI: 10.1021/acssensors.1c02232] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Glial
fibrillary
acidic protein (GFAP) is a discriminative blood
biomarker for many neurological diseases, such as traumatic brain
injury. Detection of GFAP in buffer solutions using biosensors has
been demonstrated, but accurate quantification of GFAP in patient
samples has not been reported, yet in urgent need. Herein, we demonstrate
a robust on-chip graphene field-effect transistor (GFET) biosensing
method for sensitive and ultrafast detection of GFAP in patient plasma.
Patients with moderate–severe traumatic brain injuries, defined
by the Mayo classification, are recruited to provide plasma samples.
The binding of target GFAP with the specific antibodies that are conjugated
on a monolayer GFET device triggers the shift of its Dirac point,
and this signal change is correlated with the GFAP concentration in
the patient plasma. The limit of detection (LOD) values of 20 fg/mL
(400 aM) in buffer solution and 231 fg/mL (4 fM) in patient plasma
have been achieved using this approach. In parallel, for the first
time, we compare our results to the state-of-the-art single-molecule
array (Simoa) technology and the classic enzyme-linked immunosorbent
assay (ELISA) for reference. The GFET biosensor shows competitive
LOD to Simoa (1.18 pg/mL) and faster sample-to-result time (<15
min), and also it is cheaper and more user-friendly. In comparison
to ELISA, GFET offers advantages of total detection time, detection
sensitivity, and simplicity. This GFET biosensing platform holds high
promise for the point-of-care diagnosis and monitoring of traumatic
brain injury in GP surgeries and patient homes.
Collapse
Affiliation(s)
- Lizhou Xu
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Sami Ramadan
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Oluwatomi E. Akingbade
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| | - Yuanzhou Zhang
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Sarah Alodan
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Neil Graham
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| | - Karl A. Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| | - Elias Torres
- Graphenea Semiconductor, Paseo Mikeletegi 83, San Sebastián 20009, Spain
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, University College London, London WC1E 6BT, U.K
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, U.K
| | - Peter K. Petrov
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, University College London, London WC1E 6BT, U.K
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, U.K
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal 43141, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43141, Sweden
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong 999077, China
| | - David J. Sharp
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| | - Norbert Klein
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Bing Li
- Department of Brain Sciences, Imperial College London, London W12 0BZ, U.K
- Care Research & Technology Centre, UK Dementia Research Institute, London W12 0BZ, U.K
| |
Collapse
|
20
|
Detection of Oenological Polyphenols via QCM-D Measurements. NANOMATERIALS 2022; 12:nano12010166. [PMID: 35010116 PMCID: PMC8746829 DOI: 10.3390/nano12010166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Polyphenols are a family of compounds present in grapes, musts, and wines. Their dosage is associated with the grape ripening, correct must fermentation, and final wine properties. Owing to their anti-inflammatory properties, they are also relevant for health applications. To date, such compounds are detected mainly via standard chemical analysis, which is costly for constant monitoring and requires a specialized laboratory. Cheap and portable sensors would be desirable to reduce costs and speed up measurements. This paper illustrates the development of strategies for sensor surface chemical functionalization for polyphenol detection. We perform measurements by using a commercial quartz crystal microbalance with dissipation monitoring apparatus. Chemical functionalizations are based on proteins (bovine serum albumin and gelatin type A) or customized peptides derived from istatine-5 and murine salivary protein-5. Commercial oenological additives containing pure gallic tannins or proanthocyanidins, dissolved in water or commercial wine, are used for the analysis. Results indicate that selected functionalizations enable the detection of the two different tannin families, suggesting a relationship between the recorded signal and concentration. Gelatin A also demonstrates the ability to discriminate gallic tannins from proanthocyanidins. Outcomes are promising and pave the way for the exploitation of such devices for precision oenology.
Collapse
|
21
|
Gao S, Guisán JM, Rocha-Martin J. Oriented immobilization of antibodies onto sensing platforms - A critical review. Anal Chim Acta 2022; 1189:338907. [PMID: 34815045 DOI: 10.1016/j.aca.2021.338907] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.
Collapse
Affiliation(s)
- Shipeng Gao
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - José M Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
22
|
Krausz AD, Korley FK, Burns MA. The Current State of Traumatic Brain Injury Biomarker Measurement Methods. BIOSENSORS 2021; 11:319. [PMID: 34562909 PMCID: PMC8469272 DOI: 10.3390/bios11090319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Dias A, Silva I, Pinto IM, Maia LF. Timely and Blood-Based Multiplex Molecular Profiling of Acute Stroke. Life (Basel) 2021; 11:816. [PMID: 34440560 PMCID: PMC8398526 DOI: 10.3390/life11080816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of death and disability in the world. To address such a problem, early diagnosis and tailored acute treatment represent one of the major priorities in acute stroke care. Since the efficacy of reperfusion treatments is highly time-dependent, there is a critical need to optimize procedures for faster and more precise diagnosis. We provide a concise review of the most relevant and well-documented blood-protein biomarkers that exhibit greater potential for translational to clinical practice in stroke differential diagnosis and to differentiate ischemic stroke from hemorrhagic stroke, followed by an overview of the most recent point-of-care technological approaches to address this problem. The integration of fluid-based biomarker profiling, using point-of-care biosensors with demographic, clinical, and neuroimaging parameters in multi-dimensional clinical decision-making algorithms, will be the next step in personalized stroke care.
Collapse
Affiliation(s)
- Alexandre Dias
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel Silva
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Molecular Neurobiology, IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Luís F. Maia
- Department of Neurology, Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal; (A.D.); (I.S.)
- Portugal and Molecular Neurobiology, IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
24
|
The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021; 126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Bioactive surfaces modified with functional peptides are critical for both fundamental research and practical application of implant materials and tissue repair. However, when bioactive molecules are tethered on biomaterial surfaces, their functions can be compromised due to unwanted fouling (mainly nonspecific protein adsorption and cell adhesion). In recent years, researchers have continuously studied antifouling strategies to obtain low background noise and effectively present the function of bioactive molecules. In this review, we describe several commonly used antifouling strategies and analyzed their advantages and drawbacks. Among these strategies, antifouling molecules are widely used to construct the antifouling layer of various bioactive surfaces. Subsequently, we summarize various structures of antifouling molecules and their surface grafting methods and characteristics. Application of these functionalized surfaces in microarray, biosensors, and implants are also introduced. Finally, we discuss the primary challenges associated with antifouling layers in fabricating bioactive surfaces and provide prospects for the future development of this field. STATEMENT OF SIGNIFICANCE: The nonspecific protein adsorption and cell adhesion will cause unwanted background "noise" on the surface of biological materials and detecting devices and compromise the performance of functional molecules and, therefore, impair the performance of materials and the sensitivity of devices. In addition, the selection of antifouling surfaces with proper chain length and high grafting density is also of great importance and requires further studies. Otherwise, the surface-tethered bioactive molecules may not function in their optimal status or even fail to display their functions. Based on these two critical issues, we summarize antifouling molecules with different structures, variable grafting methods, and diverse applications in biomaterials and biomedical devices reported in literature. Overall, we expect to shed some light on choosing the appropriate antifouling molecules in fabricating bioactive surfaces.
Collapse
|