1
|
Huo Z, Yu Z, Xu W, Xu S. Super-Resolution Microscopic Imaging of Lipid Droplets in Living Cells via Carbonized Polymer Dot-Based Polarity-Responsive Nanoprobe. ACS MEASUREMENT SCIENCE AU 2024; 4:593-598. [PMID: 39430970 PMCID: PMC11487779 DOI: 10.1021/acsmeasuresciau.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024]
Abstract
Lipid droplets (LDs) are dynamic subcellular organelles that participate in various physiological processes, and their abnormality can also lead to various diseases. Tracing the dynamics of LDs in living cells will be valuable for understanding cell physiological states. Here, we employed a structured light illumination super-resolution imaging assisted with a carbonized polymer dot (CPD)-based fluorescence nanoprobe to track the travel paths of LDs and other organelles. The CPDs we developed are highly biocompatible with living cells and exhibit a highly sensitive response to solvent polarity, allowing for high specificity in staining LDs in living cells. Aided by these nanoprobes, we successfully observed many real-time LD-involved dynamics in living cells, such as intracellular LD interactions, communications with other organelles, and dynamic behaviors under external stimuli (oxidative stress inducer). These studies deepen our comprehension of the physiological role of LDs and drive the advancement of super-resolution fluorescent probes.
Collapse
Affiliation(s)
- Zepeng Huo
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zitong Yu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuping Xu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Center
for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Liu G, Zheng H, Zhou R, Li H, Dai J, Wei J, Li D, Meng X, Wang C, Lu G. Ultrabright organic fluorescent probe for quantifying the dynamics of cytosolic/nuclear lipid droplets. Biosens Bioelectron 2023; 241:115707. [PMID: 37783066 DOI: 10.1016/j.bios.2023.115707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Lipid droplets (LDs) are extremely active organelles that play a crucial role in energy metabolism, membrane formation, and the production of lipid-derived signaling molecules by regulating lipid storage and release. Nevertheless, directly limited by the lack of superior fluorescent probes, studies of LDs dynamic motion velocity have been rarely reported, especially for nuclear LDs. Herein, a novel organic fluorescent probe Lipi-Bright has been rationally developed based on bridged cyclization of distyrylbenzene. The fully ring-fused molecule structure endows the probe with high photostability. Moreover, this new fluorescent probe displays the features of excellent LDs staining specificity as well as ultrahigh fluorescence brightness. Lipi-Bright labeled LDs was dozens of times brighter than representative probes BODIPY 493/503 or Nile Red. Consequently, by in-situ time-lapse fluorescence imaging, the dynamics of LDs have been quantitatively studied. For instance, the velocities of cytosolic LDs (37 ± 15 nm/s) are found to be obviously faster than those of nuclear LDs (24 ± 4 nm/s), and both the cytosolic LDs and the nuclear LDs would be moved faster or slower depend on the various stimulations. Overall, this work providing plentiful information on LDs dynamics will greatly facilitate the in-depth investigation of lipid metabolism.
Collapse
Affiliation(s)
- Guannan Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Huanlong Zheng
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Ri Zhou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Huaiyu Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jianan Dai
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jinbei Wei
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Li
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xing Meng
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
3
|
Samanta S, Lai K, Wu F, Liu Y, Cai S, Yang X, Qu J, Yang Z. Xanthene, cyanine, oxazine and BODIPY: the four pillars of the fluorophore empire for super-resolution bioimaging. Chem Soc Rev 2023; 52:7197-7261. [PMID: 37743716 DOI: 10.1039/d2cs00905f] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the realm of biological research, the invention of super-resolution microscopy (SRM) has enabled the visualization of ultrafine sub-cellular structures and their functions in live cells at the nano-scale level, beyond the diffraction limit, which has opened up a new window for advanced biomedical studies to unravel the complex unknown details of physiological disorders at the sub-cellular level with unprecedented resolution and clarity. However, most of the SRM techniques are highly reliant on the personalized special photophysical features of the fluorophores. In recent times, there has been an unprecedented surge in the development of robust new fluorophore systems with personalized features for various super-resolution imaging techniques. To date, xanthene, cyanine, oxazine and BODIPY cores have been authoritatively utilized as the basic fluorophore units in most of the small-molecule-based organic fluorescent probe designing strategies for SRM owing to their excellent photophysical characteristics and easy synthetic acquiescence. Since the future of next-generation SRM studies will be decided by the availability of advanced fluorescent probes and these four fluorescent building blocks will play an important role in progressive new fluorophore design, there is an urgent need to review the recent advancements in designing fluorophores for different SRM methods based on these fluorescent dye cores. This review article not only includes a comprehensive discussion about the recent developments in designing fluorescent probes for various SRM techniques based on these four important fluorophore building blocks with special emphasis on their effective integration into live cell super-resolution bio-imaging applications but also critically evaluates the background of each of the fluorescent dye cores to highlight their merits and demerits towards developing newer fluorescent probes for SRM.
Collapse
Affiliation(s)
- Soham Samanta
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Kaitao Lai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Feihu Wu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yingchao Liu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Songtao Cai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xusan Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhigang Yang
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Yang W, Luo D, Li G, Luo Q, Banwell MG, Chen L. Synthesis of Pyridin-1(2 H)-ylacrylates and the Effects of Different Functional Groups on Their Fluorescence. Molecules 2023; 28:6511. [PMID: 37764287 PMCID: PMC10536652 DOI: 10.3390/molecules28186511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
While fluorescent organic materials have many potential as well as proven applications and so have attracted significant attention, pyridine-olefin conjugates remain a less studied subset of such systems. Herein, therefore, we report on the development of the straightforward syntheses of pyridin-1(2H)-ylacrylates and the outcomes of a study of the effects of substituents on their fluorescent properties. Such compounds were prepared using a simple, metal-free and three-component coupling reaction involving 2-aminopyridines, sulfonyl azides and propiolates. The fluorescent properties of the ensuing products are significantly affected by the positions of substituents on the cyclic framework, with those located in central positions having the greatest impact. Electron-withdrawing groups tend to induce blue shifts while electron-donating ones cause red shifts. This work highlights the capacity that the micro-modification of fluorescent materials provides for fine-tuning their properties such that they may be usefully applied to, for example, the study of luminescent materials.
Collapse
Affiliation(s)
- Weiguang Yang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Danyang Luo
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Guanrong Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Martin G. Banwell
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
- Institute for Advanced and Applied Chemical Synthesis (IAACS), Jinan University, Guangzhou 510632, China
| | - Lanmei Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| |
Collapse
|
5
|
Dai J, Wu Z, Li D, Peng G, Liu G, Zhou R, Wang C, Yan X, Liu F, Sun P, Zhou J, Lu G. Super-resolution dynamic tracking of cellular lipid droplets employing with a photostable deep red fluorogenic probe. Biosens Bioelectron 2023; 229:115243. [PMID: 36989580 DOI: 10.1016/j.bios.2023.115243] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Lipid droplets (LDs) are critical organelles involved in many physiological processes in eukaryotic cells. To visualize and study LDs, particular the small/nascent LDs, the emerging super-resolution fluorescence imaging techniques with nanoscale resolution would be much more powerful in comparison to the conventional confocal/wide-field imaging techniques. However, directly limited by the availability of advanced LDs probes, super-resolution fluorescence imaging of LDs is a practically challenging task. In this context, a superior LDs fluorescent probe named Lipi-Deep Red is newly developed for structured illumination microscopy (SIM) super-resolution imaging. This fluorescent probe features with the advantages of strong deep red/NIR emission, fluorogenic character, high LDs specificity, and outstanding photostability. These advantages enable the fluorescent probe to be finely applied in SIM super-resolution imaging, e.g. time-lapse imaging (up to 1000 frames) to monitor the LDs dynamics at nanoscale (159 nm), two-color time-lapse imaging to discover the nearby contact/interaction between LDs and mitochondria. Consequently, the fusion processes of LDs are impressively visualized at a high spatial and temporal resolution. Two kinds of contact models between LDs and mitochondria (dynamic contact and stable contact) newly proposed in the recent literatures are successfully revealed.
Collapse
|
6
|
Ri CC, Mf CR, D RV, T PC, F TC, Ir S, A AG, Ma SU. Boron-Containing Compounds for Prevention, Diagnosis, and Treatment of Human Metabolic Disorders. Biol Trace Elem Res 2023; 201:2222-2239. [PMID: 35771339 DOI: 10.1007/s12011-022-03346-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The application of natural and synthetic boron-containing compounds (BCC) in biomedical field is expanding. BCC have effects in the metabolism of living organisms. Some boron-enriched supplements are marketed as they exert effects in the bone and skeletal muscle; but also, BCC are being reported as acting on the enzymes and transporters of membrane suggesting they could modify the carbohydrate metabolism linked to some pathologies of high global burden, as an example is diabetes mellitus. Also, some recent findings are showing effects of BCC on lipid metabolism. In this review, information regarding the effects and interaction of these compounds was compiled, as well as the potential application for treating human metabolic disorders is suggested.
Collapse
Affiliation(s)
- Córdova-Chávez Ri
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Carrasco-Ruiz Mf
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Rodríguez-Vera D
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Pérez-Capistran T
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Tamay-Cach F
- Academia de Bioquímica Médica Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Scorei Ir
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Abad-García A
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico.
| | - Soriano-Ursúa Ma
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico.
| |
Collapse
|
7
|
An imidazole-derived polarity sensitive probe for lipid droplet target and in vivo tumor imaging. Talanta 2023; 252:123903. [DOI: 10.1016/j.talanta.2022.123903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022]
|
8
|
Hu L, Pan J, Zhang C, Yu K, Shen S, Wang Y, Shen X, Gu X, Han J, Wang H. Polarity-sensitive and lipid droplet-specific red emission fluorophore for identifying fatty liver of living mice through in vivo imaging. Biosens Bioelectron 2022; 216:114618. [DOI: 10.1016/j.bios.2022.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
|
9
|
Cao M, Zhu T, Zhao M, Meng F, Liu Z, Wang J, Niu G, Yu X. Structure Rigidification Promoted Ultrabright Solvatochromic Fluorescent Probes for Super-Resolution Imaging of Cytosolic and Nuclear Lipid Droplets. Anal Chem 2022; 94:10676-10684. [DOI: 10.1021/acs.analchem.2c00964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mingyue Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou 215123, P. R. China
| | - Ting Zhu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Mengying Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Fanda Meng
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Guangle Niu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou 215123, P. R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
10
|
Gao D, Zhang Y, Wu K, Min H, Wei D, Sun J, Yang H, Fan H. One-step synthesis of ultrabright amphiphilic carbon dots for rapid and precise tracking lipid droplets dynamics in biosystems. Biosens Bioelectron 2022; 200:113928. [PMID: 34990958 DOI: 10.1016/j.bios.2021.113928] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
Fluorescent probes enabling precisely labeling lipid droplets (LDs) in complex systems are highly desirable in life science for studying LDs-related physiological processes and metabolic diseases. However, most of the current LDs fluorophores fail to achieve rapid wash-free LDs labeling, especially in vivo labeling due to their strong hydrophobicity and poor water solubility. We report here one-step synthesis of highly efficient carbon dots (CDs) that feature robust solvatochromic emission, high quantum yield (QY) up to 76.35% in oil, good water solubility and lipophilicity, thus allowing to stain LDs in a bright and selective manner. Detailed characterizations reveal the presence of a well-defined molecule, 2-dimethylamino-5-fluorobenzimidazole in a large amount in CDs. Its D-π-A structure and dimethylamino-induced spatial torsion configuration and extended π-electron conjugation account for solvatochromic emission with high QY. Notably, the CDs can image LDs with many advanced merits (high brightness, ultrafast staining within 10 s, wash-free, excellent LDs specificity, good biocompatibility) and have been successfully applied to monitor cellular LDs dynamics. Moreover, the CDs for the first time allow in situ labeling of LDs and epidermal cell membranes simultaneously in live zebrafish. This work expands the diversity for optical properties and applications of CDs, facilitating the design of new LDs-targeting CDs.
Collapse
Affiliation(s)
- Dong Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Hanyun Min
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Huaqing Yang
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
11
|
Zhao Y, Shi W, Li X, Ma H. Recent advances in fluorescent probes for lipid droplets. Chem Commun (Camb) 2022; 58:1495-1509. [PMID: 35019910 DOI: 10.1039/d1cc05717k] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) have been known as a non-negligible cellular organelle for lipid storage and metabolism. Fluorescent probes for imaging LDs would be paramount for depicting their functions in cells. Although commercially available Nile Red and BODIPYtm 493/503 have been widely used for labelling LDs, they exhibit unsatisfactory specificity and spectroscopic properties. This feature article reviews the recent advances in organic fluorescent probes for imaging LDs. We first introduce the key points for probe design, including regulating hydrophobicity and enhancing fluorescence quantum yield in LDs. Then, we summarize the structural features and biological applications of some representative LD probes classified by their frameworks. In addition, the current challenges and future research trends for the fluorescent probes of LDs are discussed as well.
Collapse
Affiliation(s)
- Yanyan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Cui WL, Wang MH, Yang YH, Qu J, Zhang H, Zhu X, Wang JY. A water-soluble polymer fluorescent probe via RAFT polymerization for dynamic monitoring cellular lipid droplet levels and zebrafish imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj03226k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The realization of dynamic detection of intracellular lipid droplet levels carries far-reaching implications for both the prevention of major diseases and the monitoring of therapeutic environments. Based on such purpose,...
Collapse
|
13
|
Liu G, Peng G, Dai J, Zhou R, Wang C, Yan X, Jia X, Liu X, Gao Y, Wang L, Lu G. STED Nanoscopy Imaging of Cellular Lipid Droplets Employing a Superior Organic Fluorescent Probe. Anal Chem 2021; 93:14784-14791. [PMID: 34704744 DOI: 10.1021/acs.analchem.1c03474] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipid droplets (LDs) are spherical organelles that participate in numerous biological processes. In order to visualize LDs on the nanoscale, nanoscopy fluorescence imaging is considered as the most attractive technique but is substantially limited by the characteristics of fluorescent probes. Thus, the development of a superior fluorescent probe that is capable of nanoscopy fluorescence imaging has attracted enormous attention. Herein, a benzodithiophene-tetraoxide-based molecule Lipi-BDTO has been developed that can easily undergo the stimulated emission depletion (STED) process and displays high photostability. These two characteristics of fluorescent probes finely satisfy the requirements of STED nanoscopy imaging. Indeed, applying the probe for STED imaging achieves a high resolution of 65 nm, belonging to one of the leading results of LDs fluorescence imaging. Furthermore, the high photostability of this fluorescent probe enables it to monitor the dynamics of LDs by time-lapse STED imaging as well as to visualize the three-dimensional (3D) spatial distribution of LDs by 3D STED imaging. Notably, the resolution of the 3D STED image represents one of the best LDs fluorescence imaging results so far. Besides STED nanoscopy imaging, the superior utility of this fluorescent probe has been also demonstrated in two-color 3D confocal imaging and four-color confocal imaging.
Collapse
Affiliation(s)
- Guannan Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Guishan Peng
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Jianan Dai
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Ri Zhou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yuan Gao
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China.,State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
14
|
Fan L, Wang X, Zan Q, Fan L, Li F, Yang Y, Zhang C, Shuang S, Dong C. Lipid Droplet-Specific Fluorescent Probe for In Vivo Visualization of Polarity in Fatty Liver, Inflammation, and Cancer Models. Anal Chem 2021; 93:8019-8026. [PMID: 34037378 DOI: 10.1021/acs.analchem.1c01125] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elucidating the intrinsic relationship between diseases and lipid droplet (LD) polarity remains a great challenge owing to the lack of the research on multiple disease models. Until now, the visualization of abnormal LD polarity in models of inflammation and clinical cancer patient samples has not been achieved. To meet the urgent challenge, we facilely synthesized a robust LD-specific and polarity-sensitive fluorescent probe (LD-TTP), which consists of a triphenylamine segment as an electron-donor group (D) and a pyridinium as an electron-acceptor moiety (A), forming a typical D-π-A molecular configuration. Owing to the unique intramolecular charge transfer effect, LD-TTP exhibits high sensitivity to polarity change in the linear range from Δf = 0.258 to 0.312, with over 278-fold fluorescence enhancement. Moreover, we revealed that LD-TTP possessed satisfactory ability for sensitively monitoring LD-polarity changes in living cells. Using LD-TTP, we first demonstrated the detection of LD-polarity changes in fatty liver tissues and inflammatory living mice via confocal laser scanning fluorescence imaging. Surprisingly, the visualization of LD polarity has been achieved not only at the cellular levels and living organs but also in surgical specimens from cancer patients, thus holding great potential in the clinical diagnosis of human cancer. All these features render LD-TTP an effective tool for medical diagnosis of LD polarity-related diseases.
Collapse
Affiliation(s)
- Li Fan
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiaodong Wang
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Qi Zan
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Feng Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Yongming Yang
- Laboratory Animal Center, Shanxi Cancer Hospital, Taiyuan 030013, P. R. China
| | - Caihong Zhang
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shaomin Shuang
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
15
|
Wang H, Hu L, Shen S, Yu K, Wang Y. A polarity-sensitive fluorescent probe based on a difluoroboron derivative for monitoring the variation of lipid droplets. NEW J CHEM 2021. [DOI: 10.1039/d1nj04264e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We design LD-L, a polarity-sensitive fluorescent probe, which can specifically detect lipid droplets and monitor variations in their number.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, P. R. China
| | - Lei Hu
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, P. R. China
| | - Shuting Shen
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, P. R. China
| | - Kun Yu
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, P. R. China
| | - Yaxuan Wang
- Department of Chemistry, Wannan Medical College, Wuhu, 241002, P. R. China
| |
Collapse
|