1
|
Utagawa Y, Ino K, Shinoda Y, Yamazaki M, Abe H, Shiku H. Enzyme-Free In-Situ Electrochemical Measurement Using a Porous Membrane Electrode for Glucose Transport into Cell Spheroids. ACS Sens 2024; 9:4248-4255. [PMID: 39079053 PMCID: PMC11348417 DOI: 10.1021/acssensors.4c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Microphysiological systems have attracted attention because of their use in drug screening. However, it is challenging to measure cell functions in real time using a device. In this study, we developed a cell culture device using a porous membrane electrode for in situ electrochemical glucose measurements for cell analysis. First, a porous membrane electrode was fabricated and electrochemically evaluated for enzyme-free glucose measurement. Subsequently, the glucose uptake of MCF-7 spheroids was evaluated using living spheroids, fixed spheroids, supernatants, and glucose transporter inhibitor-treated spheroids. Conventionally, the direct optical measurement of glucose uptake requires fluorescence-labeled glucose derivatives. In addition, the glucose uptake can be evaluated by measuring the glucose concentration in the medium by optical or electrochemical measurements. However, glucose needs to be consumed in the entire cell culture medium, which needs a long culture time. In contrast, our system can measure glucose in approximately 5 min without any labels because of in situ electrochemical measurements. This system can be used for in situ measurements in in vitro cell culture systems, including organ-on-a-chip for drug screening.
Collapse
Affiliation(s)
- Yoshinobu Utagawa
- Graduate
School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Kosuke Ino
- Graduate
School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yasuhiko Shinoda
- Organic
Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., Ama 490-1207, Japan
| | - Masateru Yamazaki
- Organic
Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., Ama 490-1207, Japan
| | - Hiroya Abe
- Graduate
School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-0845, Japan
| | - Hitoshi Shiku
- Graduate
School of Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Yan Y, Ding L, Ding J, Zhou P, Su B. Recent Advances in Electrochemiluminescence Visual Biosensing and Bioimaging. Chembiochem 2024:e202400389. [PMID: 38899794 DOI: 10.1002/cbic.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Electrochemiluminescence (ECL) is one of the most powerful techniques that meet the needs of analysis and detection in a variety of scenarios, because of its highly analytical sensitivity and excellent spatiotemporal controllability. ECL combined with microscopy (ECLM) offers a promising approach for quantifying and mapping a wide range of analytes. To date, ECLM has been widely used to image biological entities and processes, such as cells, subcellular structures, proteins and membrane transport properties. In this review, we first introduced the mechanisms of several classic ECL systems, then highlighted the progress of visual biosensing and bioimaging by ECLM in the last decade. Finally, the characteristics of ECLM were summarized, as well as some of the current challenges. The future research interests and potential directions for the application of ECLM were also outlooked.
Collapse
Affiliation(s)
- Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Arias-Aranda LR, Salinas G, Kuhn A, Xu G, Kanoufi F, Bouffier L, Sojic N. Complex electrochemiluminescence patterns shaped by hydrodynamics at a rotating bipolar electrode. Chem Sci 2024; 15:8723-8730. [PMID: 38873074 PMCID: PMC11168095 DOI: 10.1039/d4sc02528h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Electrochemiluminescence (ECL) is a powerful analytical approach that enables the optical readout of electrochemical processes. Over the last few years, ECL has gained considerable attention due to its large number of applications, including chemical sensing, bioanalysis and microscopy. In these fields, the promotion of ECL at bipolar electrodes has offered unprecedented opportunities thanks to wireless electrochemical addressing. Herein, we take advantage of the synergy between ECL and bipolar electrochemistry (BE) for imaging light-emitting layers shaped by hydrodynamics, polarization effects and the nature of the electrochemical reactions taking place wirelessly on a rotating bipolar electrode. The proof-of-principle is established with the model ECL system [Ru(bpy)3]2+/tri-n-propylamine. Interestingly, the ECL-emitting region moves and expands progressively from the anodic bipolar pole to the cathodic one where ECL reactants should neither be generated nor ECL be observed. Therefore, it shows a completely unusual behavior in the ECL field since the region where ECL reagents are oxidized does not coincide with the zone where ECL light is emitted. In addition, the ECL patterns change progressively to an "ECL croissant" and then to a complete ring shape due to the hydrodynamic convection. Such an approach allows the visualization of complex light-emitting patterns, whose shape is directly controlled by the rotation speed, chemical reactivity and BE-induced polarization. Indeed, the bipolar electrochemical addressing of the electrode breaks the circular symmetry of the reported rotating system. This unexplored and a priori simple configuration yields unique ECL behavior and raises new curious questions from the theoretical and experimental points of view in analytical chemistry. Finally, this novel wireless approach will be useful for the development of original ECL systems for analytical chemistry, studies of electrochemical reactivity, coupling microfluidics with ECL and imaging.
Collapse
Affiliation(s)
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSMAC 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSMAC 33607 Pessac France
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China No. 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | | | - Laurent Bouffier
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSMAC 33607 Pessac France
| | - Neso Sojic
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSMAC 33607 Pessac France
| |
Collapse
|
4
|
Ino K, Wachi M, Utagawa Y, Konno A, Takinoue M, Abe H, Shiku H. Scanning electrochemical microscopy for determining oxygen consumption rates of cells in hydrogel fibers fabricated using an extrusion 3D bioprinter. Anal Chim Acta 2024; 1304:342539. [PMID: 38637037 DOI: 10.1016/j.aca.2024.342539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Three-dimensional (3D)-cultured cells have attracted the attention of researchers in tissue engineering- and drug screening-related fields. Among them, 3D cellular fibers have attracted significant attention because they can be stacked to prepare more complex tissues and organs. Cellular fibers are widely fabricated using extrusion 3D bioprinters. For these applications, it is necessary to evaluate cellular activities, such as the oxygen consumption rate (OCR), which is one of the major metabolic activities. We previously reported the use of scanning electrochemical microscopy (SECM) to evaluate the OCRs of cell spheroids. However, the SECM approach has not yet been applied to hydrogel fibers prepared using the bioprinters. To the best of our knowledge, this is the first study to evaluate the OCR of cellular fibers printed by extrusion 3D bioprinters. First, the diffusion theory was discussed to address this issue. Next, diffusion models were simulated to compare realistic models with this theory. Finally, the OCRs of MCF-7 cells in the printed hydrogel fibers were evaluated as a proof of concept. Our proposed approach could potentially be used to evaluate the OCRs of tissue-engineered fibers for organ transplantation and drug screening using in-vitro models.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| | - Mana Wachi
- School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshinobu Utagawa
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - An Konno
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki-aza Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
5
|
Li C, Feng M, Stanković D, Bouffier L, Zhang F, Wang Z, Sojic N. Wireless rotating bipolar electrochemiluminescence for enzymatic detection. Analyst 2024; 149:2756-2761. [PMID: 38563766 DOI: 10.1039/d4an00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 μM and with a limit of detection of 10 μM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.
Collapse
Affiliation(s)
- Chunguang Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Minghui Feng
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dalibor Stanković
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Laurent Bouffier
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, 33607 Pessac, France.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5255, 33607 Pessac, France.
| |
Collapse
|
6
|
Li Y, Wan Y, Fu X, Chen J, Wu W, Feng X, Man T, Huang Y, Piao Y, Zhu L, Lei J, Deng S. Sub-Second Electrochemiluminescence Imaging Assay of SARS-CoV-2 Nucleocapsid Protein Based on Reticulation of Endo-Coreactants. Anal Chem 2024. [PMID: 38335519 DOI: 10.1021/acs.analchem.3c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The nonphotodriven electrochemiluminescence (ECL) imageology necessitates concentrated coreacting additives plus longtime exposures. Seeking biosafe and streamlined ensembles can help lower the bar for quality ECL bioimaging to which call the crystallized endo-coreaction in nanoreticula might provide a potent solution. Herein, an exo-coreactant-free ECL visualizer was fabricated out in one-pot, which densified the dyad triethylamine analogue: 1,4-diazabicyclo-[2.2.2]octane (DABCO) in the lamellar hive of 9,10-di(p-carboxyphenyl)anthracene (DPA)-Zn2+. This biligated non-noble metal-organic framework (m-MOF) facilitated a self-contained anodic ECL with a yield as much as 70% of Ru(bPy)32+ in blank phosphate buffered saline. Its featured two-stage emissions rendered an efficient and endurant CCD imaging at 1.0 V under mere 0.5 s swift snapshots and 0.1 s step-pulsed stimulation. Upon structural and spectral cause analyses as well as parametric set optimization, simplistic ECL-graphic immunoassay was mounted in the in situ imager to enact an ultrasensitive measurement of coronaviral N-protein in both signal-on and off modes by the privilege of straight surface amidation on m-MOFs, resulting in a wide dynamic range (10-4-10 ng/mL), a competent detection limit down to 56 fg/mL, along with nice precision and parallelism in human saliva tests. The overall work manifests a rudimentary endeavor in self-sufficient ECL visuality for brisk, biocompatible, and brilliant production of point-of-care diagnostic "Big Data".
Collapse
Affiliation(s)
- Yuansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuanyu Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weihan Wu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuyu Feng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaqi Huang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhao Piao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianping Lei
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210003, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
7
|
Zhang H, Jiang H, Liu X, Wang X. A review of innovative electrochemical strategies for bioactive molecule detection and cell imaging: Current advances and challenges. Anal Chim Acta 2024; 1285:341920. [PMID: 38057043 DOI: 10.1016/j.aca.2023.341920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
Cellular heterogeneity poses a major challenge for tumor theranostics, requiring high-resolution intercellular bioanalysis strategies. Over the past decades, the advantages of electrochemical analysis, such as high sensitivity, good spatio-temporal resolution, and ease of use, have made it the preferred method to uncover cellular differences. To inspire more creative research, herein, we highlight seminal works in electrochemical techniques for biomolecule analysis and bioimaging. Specifically, micro/nano-electrode-based electrochemical techniques enable real-time quantitative analysis of electroactive substances relevant to life processes in the micro-nanostructure of cells and tissues. Nanopore-based technique plays a vital role in biosensing by utilizing nanoscale pores to achieve high-precision detection and analysis of biomolecules with exceptional sensitivity and single-molecule resolution. Electrochemiluminescence (ECL) technology is utilized for real-time monitoring of the behavior and features of individual cancer cells, enabling observation of their dynamic processes due to its capability of providing high-resolution and highly sensitive bioimaging of cells. Particularly, scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) which are widely used in real-time observation of cell surface biological processes and three-dimensional imaging of micro-nano structures, such as metabolic activity, ion channel activity, and cell morphology are introduced in this review. Furthermore, the expansion of the scope of cellular electrochemistry research by innovative functionalized electrodes and electrochemical imaging models and strategies to address future challenges and potential applications is also discussed in this review.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
8
|
Liu M, Salinas G, Yu J, Cornet A, Li H, Kuhn A, Sojic N. Endogenous and exogenous wireless multimodal light-emitting chemical devices. Chem Sci 2023; 14:10664-10670. [PMID: 37829015 PMCID: PMC10566513 DOI: 10.1039/d3sc03678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Multimodal imaging is a powerful and versatile approach that integrates and correlates multiple optical modalities within a single device. This concept has gained considerable attention due to its potential applications ranging from sensing to medicine. Herein, we develop several wireless multimodal light-emitting chemical systems by coupling two light sources based on different physical principles: electrochemiluminescence (ECL) occurring at the electrode interface and a light-emitting diode (LED) switched on by an electrochemically triggered electron flow. Endogenous (thermodynamically spontaneous redox process) and exogenous (requiring an external power source) bipolar electrochemistry acts as a driving force to trigger both light emissions at different wavelengths. The results presented here interconnect optical imaging and electrochemical reactions, providing a novel and so far unexplored alternative to design autonomous hybrid systems with multimodal and multicolor optical readouts for complex bio-chemical systems.
Collapse
Affiliation(s)
- Miaoxia Liu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Gerardo Salinas
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Jing Yu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Antoine Cornet
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Haidong Li
- College of Chemistry and Chemical Engineering, Yangzhou University 225002 Yangzhou China
| | - Alexander Kuhn
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| |
Collapse
|
9
|
Nashimoto Y, Shishido S, Onuma K, Ino K, Inoue M, Shiku H. Oxygen metabolism analysis of a single organoid for non-invasive discrimination of cancer subpopulations with different growth capabilities. Front Bioeng Biotechnol 2023; 11:1184325. [PMID: 37274161 PMCID: PMC10232988 DOI: 10.3389/fbioe.2023.1184325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Heterogeneous nature is a pivotal aspect of cancer, rendering treatment problematic and frequently resulting in recurrence. Therefore, advanced techniques for identifying subpopulations of a tumour in an intact state are essential to develop novel screening platforms that can reveal differences in treatment response among subpopulations. Herein, we conducted a non-invasive analysis of oxygen metabolism on multiple subpopulations of patient-derived organoids, examining its potential utility for non-destructive identification of subpopulations. We utilised scanning electrochemical microscopy (SECM) for non-invasive analysis of oxygen metabolism. As models of tumours with heterogeneous subpopulations, we used patient-derived cancer organoids with a distinct growth potential established using the cancer tissue-originated spheroid methodology. Scanning electrochemical microscopy measurements enabled the analysis of the oxygen consumption rate (OCR) for individual organoids as small as 100 µm in diameter and could detect the heterogeneity amongst studied subpopulations, which was not observed in conventional colorectal cancer cell lines. Furthermore, our oxygen metabolism analysis of pre-isolated subpopulations with a slow growth potential revealed that oxygen consumption rate may reflect differences in the growth rate of organoids. Although the proposed technique currently lacks single-cell level sensitivity, the variability of oxygen metabolism across tumour subpopulations is expected to serve as an important indicator for the discrimination of tumour subpopulations and construction of novel drug screening platforms in the future.
Collapse
Affiliation(s)
- Yuji Nashimoto
- Institute of Bioengineering and Biomaterials (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Shotaro Shishido
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | | | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Inoue
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Ding H, Su B, Jiang D. Recent Advances in Single Cell Analysis by Electrochemiluminescence. ChemistryOpen 2023; 12:e202200113. [PMID: 35880657 PMCID: PMC10152889 DOI: 10.1002/open.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding biological mechanisms operating in cells is one of the major goals of biology. Since heterogeneity is the fundamental property of cellular systems, single cell measurements can provide more accurate information about the composition, dynamics, and regulatory circuits of cells than population-averaged assays. Electrochemiluminescence (ECL), the light emission triggered by electrochemical reactions, is an emerging approach for single cell analysis. Numerous analytes, ranging from small biomolecules such as glucose and cholesterol, proteins and nucleic acids to subcellular structures, have been determined in single cells by ECL, which yields new insights into cellular functions. This review aims to provide an overview of research progress on ECL principles and systems for single cell analysis in recent years. The ECL reaction mechanisms are briefly introduced, and then the advances and representative works in ECL single cell analysis are summarized. Finally, outlooks and challenges in this field are addressed.
Collapse
Affiliation(s)
- Hao Ding
- State Key Laboratory of Analytical Chemistry for Life ScienceChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310058China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life ScienceChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
11
|
Electrochemical microwell sensor with Fe-N co-doped carbon catalyst to monitor nitric oxide release from endothelial cell spheroids. ANAL SCI 2022; 38:1297-1304. [PMID: 35895213 DOI: 10.1007/s44211-022-00160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 11/01/2022]
Abstract
Endothelial cells have been widely used for vascular biology studies; recent progress in tissue engineering have offered three-dimensional (3D) culture systems for vascular endothelial cells which can be considered as physiologically relevant models. To facilitate the studies, we developed an electrochemical device to detect nitric oxide (NO), a key molecule in the vasculature, for the evaluation of 3D cultured endothelial cells. Using an NO-sensitive catalyst composed of Fe-N co-doped reduced graphene oxide, the real-time monitoring of NO release from the endothelial cell spheroids was demonstrated.
Collapse
|
12
|
Iwama T, Inoue KY, Shiku H. Fabrication of High-Density Vertical Closed Bipolar Electrode Arrays by Carbon Paste Filling Method for Two-Dimensional Chemical Imaging. Anal Chem 2022; 94:8857-8866. [PMID: 35700401 DOI: 10.1021/acs.analchem.1c05354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a carbon paste filling method was proposed as a simple strategy for fabricating high-density bipolar electrode (BPE) arrays for bipolar electrochemical microscopy (BEM). High spatiotemporal resolution imaging was achieved using the fabricated BPE array. BEM, which is an emerging microscopic system in recent years, achieves label-free and high spatiotemporal resolution imaging of molecular distributions using high-density BPE arrays and electrochemiluminescence (ECL) signals. We devised a simple method to fabricate a BPE array by filling a porous plate with carbon paste and succeeded in fabricating a high-density BPE array (15 μm pitch). After a detailed observation of the surface of the BPE array using a scanning electron microscope, the basic electrochemical and ECL emission characteristics were evaluated using potassium ferricyanide solution as a sample solution. Moreover, inflow imaging of the sample molecules was conducted to evaluate the imaging ability of the prepared BPE array. In addition, Prussian Blue containing carbon ink was applied to the sample solution side of the BPE array to provide catalytic activity to hydrogen peroxide, and the quantification and inflow imaging of hydrogen peroxide by ECL signals was achieved. This simple fabrication method of the BPE array can accelerate the research and development of BEM. Furthermore, hydrogen peroxide imaging by BEM is an important milestone for achieving bioimaging with high spatiotemporal resolution such as biomolecule imaging using enzymes.
Collapse
Affiliation(s)
- Tomoki Iwama
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Kumi Y Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan.,Center for Basic Education, Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan.,Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
13
|
Bezuneh TT, Fereja TH, Kitte SA, Li H, Jin Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022; 248:123611. [PMID: 35660995 DOI: 10.1016/j.talanta.2022.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Since the content levels of biomarkers at the early stage of many diseases are generally lower than the detection threshold concentration, achieving ultrasensitive and accurate detection of these biomarkers is still one of the major goals in bio-analysis. To achieve ultrasensitive and reliable bioassay, it requires developing highly sensitive biosensors. Among all kinds of biosensors, electrogenerated chemiluminescence (ECL) based biosensors have attracted enormous attention due to their excellent properties. In order to improve the performance of ECL biosensors, gold nanoparticles (Au NPs) have been widely utilized as signal amplification tags. The introduction of Au NPs could dramatically enhance the performance of the constructed ECL biosensors via diverse ways such as electrode modification material, efficient energy acceptor in ECL resonant energy transfer (ECL-RET), reaction catalyst, surface plasmon resonance (SPR) enhancer, and as nanocarrier. Herein, we summarize recent developments and progress of ECL biosensors based on Au NPs signal amplification strategies. We will cover ECL applications of Au NPs as a signal amplification tag in the detection of proteins, metal ions, nucleic acids, small molecules, living cells, exosomes, and cell imaging. Finally, brief summary and future outlooks of this field will be presented.
Collapse
Affiliation(s)
- Terefe Tafese Bezuneh
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China; Department of Chemistry, College of Natural Sciences, Arbaminch University, P.O. Box 21, Arbaminch, Ethiopia
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; Department of Pharmacy, College of Medicine and Health Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China.
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
14
|
Electrochemiluminescence imaging of cellular adhesion in vascular endothelial cells during tube formation on hydrogel scaffolds. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Wang Y, Jeon H. 3D cell cultures toward quantitative high-throughput drug screening. Trends Pharmacol Sci 2022; 43:569-581. [DOI: 10.1016/j.tips.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/16/2023]
|
16
|
Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosens Bioelectron 2022; 201:113932. [DOI: 10.1016/j.bios.2021.113932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022]
|
17
|
Confined electrochemiluminescence imaging microarray for high-throughput biosensing of single cell-released dopamine. Biosens Bioelectron 2022; 201:113959. [PMID: 34999521 DOI: 10.1016/j.bios.2021.113959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
The quantitative detection of single cell secretions is always limited by their accurate collection and the heterogeneity of different cells. In this work, a confined electrochemiluminescence (ECL) imaging microarray (CEIM) chip was designed to capture single or a few cells in each cylindrical microwell for high-throughput quantitation of cell-secreted dopamine (DA). The ITO surface at the bottom of microwells was functionalized with the film of DA aptamer modified coreactant-embedded polymer dots (Pdots), which endowed the chip with the abilities to both in situ recognize the target DA secreted from the cells and emit the ECL signal for responding the secreted target without need of any additional coreactant. At the applied potential of +1.4 V, the Pdots in the film emitted strong ECL signal, which could be quenched by the electrochemical oxidation product of DA in individual microwell for sensitive detection of single cell-released DA. The practicability of the proposed CEIM chip along with the ECL imaging and biosensing strategy was demonstrated by evaluating the amounts of single cell-released DA in different microwells under hypoxia stimulation. This protocol revealed the heterogeneity of cell secretion, and could be extended for quantitation of other secretions from different kinds of single cells.
Collapse
|
18
|
Nashimoto Y, Abe M, Fujii R, Taira N, Ida H, Takahashi Y, Ino K, Ramon‐Azcon J, Shiku H. Topography and Permeability Analyses of Vasculature-on-a-Chip Using Scanning Probe Microscopies. Adv Healthc Mater 2021; 10:e2101186. [PMID: 34409770 DOI: 10.1002/adhm.202101186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Indexed: 11/08/2022]
Abstract
Microphysiological systems (MPS) or organs-on-chips (OoC) can emulate the physiological functions of organs in vitro and are effective tools for determining human drug responses in preclinical studies. However, the analysis of MPS has relied heavily on optical tools, resulting in difficulties in real-time and high spatial resolution imaging of the target cell functions. In this study, the role of scanning probe microscopy (SPM) as an analytical tool for MPS is evaluated. An access hole is made in a typical MPS system with stacked microchannels to insert SPM probes into the system. For the first study, a simple vascular model composed of only endothelial cells is prepared for SPM analysis. Changes in permeability and local chemical flux are quantitatively evaluated during the construction of the vascular system. The morphological changes in the endothelial cells after flow stimulation are imaged at the single-cell level for topographical analysis. Finally, the possibility of adapting the permeability and topographical analysis using SPM for the intestinal vascular system is further evaluated. It is believed that this study will pave the way for an in situ permeability assay and structural analysis of MPS using SPM.
Collapse
Affiliation(s)
- Yuji Nashimoto
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) Tohoku University Miyagi 980‐8578 Japan
- Graduate School of Engineering Tohoku University Miyagi 980‐8579 Japan
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| | - Minori Abe
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| | - Ryota Fujii
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| | - Noriko Taira
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| | - Hiroki Ida
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) Tohoku University Miyagi 980‐8578 Japan
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
- WPI‐Advanced Institute for Materials Research Tohoku University Miyagi 980‐8577 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Science and Technology Agency (JST) Saitama 332‐0012 Japan
| | - Yasufumi Takahashi
- Precursory Research for Embryonic Science and Technology (PRESTO) Science and Technology Agency (JST) Saitama 332‐0012 Japan
- WPI‐Nano Life Science Institute Kanazawa University Ishikawa 920‐1192 Japan
| | - Kosuke Ino
- Graduate School of Engineering Tohoku University Miyagi 980‐8579 Japan
| | - Javier Ramon‐Azcon
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Barcelona 08028 Spain
- Institució Catalana de Reserca I Estudis Avançats (ICREA) Passeig de Lluís Companys, 23 Barcelona E08010 Spain
| | - Hitoshi Shiku
- Graduate School of Engineering Tohoku University Miyagi 980‐8579 Japan
- Graduate School of Environmental Studies Tohoku University Miyagi 980‐8579 Japan
| |
Collapse
|
19
|
Utagawa Y, Hiramoto K, Nashimoto Y, Ino K, Shiku H. In vitro electrochemical assays for vascular cells and organs. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yoshinobu Utagawa
- Graduate School of Environmental Studies Tohoku University Aoba‐ku Sendai Japan
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies Tohoku University Aoba‐ku Sendai Japan
| | - Yuji Nashimoto
- Frontier Research Institute for Interdisciplinary Sciences Tohoku University Aoba‐ku Sendai Japan
- Graduate School of Engineering Tohoku University Aoba‐ku Sendai Japan
| | - Kosuke Ino
- Graduate School of Engineering Tohoku University Aoba‐ku Sendai Japan
| | - Hitoshi Shiku
- Graduate School of Engineering Tohoku University Aoba‐ku Sendai Japan
| |
Collapse
|
20
|
Abstract
Electrochemistry represents an important analytical technique used to acquire and assess chemical information in detail, which can aid fundamental investigations in various fields, such as biological studies. For example, electrochemistry can be used as simple and cost-effective means for bio-marker tracing in applications, such as health monitoring and food security screening. In combination with light, powerful spatially-resolved applications in both the investigation and manipulation of biochemical reactions begin to unfold. In this article, we focus primarily on light-addressable electrochemistry based on semiconductor materials and light-readable electrochemistry enabled by electrochemiluminescence (ECL). In addition, the emergence of multiplexed and imaging applications will also be introduced.
Collapse
|