1
|
Wei Y, Hu Y, Wang L, Liu C, Abdullaewich YS, Yang Z, Mao H, Wan Y. Ultrasensitive detection of Salmonella typhi using a PAM-free Cas14a-based biosensor. Biosens Bioelectron 2024; 259:116408. [PMID: 38781698 DOI: 10.1016/j.bios.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The effectiveness of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas14a1, widely utilized for pathogenic microorganism detection, has been limited by the requirement of a protospacer adjacent motif (PAM) on the target DNA strands. To overcome this limitation, this study developed a Single Primer isothermal amplification integrated-Cas14a1 biosensor (SPCas) for detecting Salmonella typhi that does not rely on a PAM sequence. The SPCas biosensor utilizes a novel primer design featuring an RNA-DNA primer and a 3'-biotin-modified primer capable of binding to the same single-stranded DNA (ssDNA) in the presence of the target gene. The RNA-DNA primer undergoes amplification and is blocked at the biotin-modified end. Subsequently, strand replacement is initiated to generate ssDNA assisted by RNase H and Bst enzymes, which activate the trans-cleavage activity of Cas14a1 even in the absence of a PAM sequence. Leveraging both cyclic chain replacement reaction amplification and Cas14a1 trans-cleavage activity, the SPCas biosensor exhibits a remarkable diagnostic sensitivity of 5 CFU/mL. Additionally, in the assessment of 20 milk samples, the SPCas platform demonstrated 100% diagnostic accuracy, which is consistent with the gold standard qPCR. This platform introduces a novel approach for developing innovative CRISPR-Cas-dependent biosensors without a PAM sequence.
Collapse
Affiliation(s)
- Yangdao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yuanzhao Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Luchao Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yuldoshov Sherzod Abdullaewich
- Department of Cellulose and its Derivatives Chemistry and Technology, Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, str. A. Khodiriy 7b, Tashkent, 100128, Uzbekistan
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China.
| | - Haimei Mao
- Products Quality Supervision and Testing Institute of Hainan Province, Haikou, 570003, China.
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| |
Collapse
|
2
|
Rafiq MS, Shabbir MA, Raza A, Irshad S, Asghar A, Maan MK, Gondal MA, Hao H. CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance. BioDrugs 2024; 38:387-404. [PMID: 38605260 DOI: 10.1007/s40259-024-00656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system's potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Muhammad Shahzad Rafiq
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Ahmed Raza
- Livestock and Dairy Development Department, Punjab, Pakistan
| | - Shoaib Irshad
- Livestock and Dairy Development Department, Punjab, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Kashif Maan
- Department of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mushtaq Ahmed Gondal
- Institute of Continuing Education and Extension, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Lan H, Shu W, Jiang D, Yu L, Xu G. Cas-based bacterial detection: recent advances and perspectives. Analyst 2024; 149:1398-1415. [PMID: 38357966 DOI: 10.1039/d3an02120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Persistent bacterial infections pose a formidable threat to global health, contributing to widespread challenges in areas such as food safety, medical hygiene, and animal husbandry. Addressing this peril demands the urgent implementation of swift and highly sensitive detection methodologies suitable for point-of-care testing and large-scale screening. These methodologies play a pivotal role in the identification of pathogenic bacteria, discerning drug-resistant strains, and managing and treating diseases. Fortunately, new technology, the CRISPR/Cas system, has emerged. The clustered regularly interspaced short joint repeats (CRISPR) system, which is part of bacterial adaptive immunity, has already played a huge role in the field of gene editing. It has been employed as a diagnostic tool for virus detection, featuring high sensitivity, specificity, and single-nucleotide resolution. When applied to bacterial detection, it also surpasses expectations. In this review, we summarise recent advances in the detection of bacteria such as Mycobacterium tuberculosis (MTB), methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), Salmonella and Acinetobacter baumannii (A. baumannii) using the CRISPR/Cas system. We emphasize the significance and benefits of this methodology, showcasing the capability of diverse effector proteins to swiftly and precisely recognize bacterial pathogens. Furthermore, the CRISPR/Cas system exhibits promise in the identification of antibiotic-resistant strains. Nevertheless, this technology is not without challenges that need to be resolved. For example, CRISPR/Cas systems must overcome natural off-target effects and require high-quality nucleic acid samples to improve sensitivity and specificity. In addition, limited applicability due to the protospacer adjacent motif (PAM) needs to be addressed to increase its versatility. Despite the challenges, we are optimistic about the future of bacterial detection using CRISPR/Cas. We have already highlighted its potential in medical microbiology. As research progresses, this technology will revolutionize the detection of bacterial infections.
Collapse
Affiliation(s)
- Huatao Lan
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Weitong Shu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Dan Jiang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
4
|
Qi J, Qi Q, Zhou Z, Wu Y, Cai A, Wu J, Chen B, Wang Q, Chen L, Wang F. PER-CRISPR/Cas14a system-based electrochemical biosensor for the detection of ctDNA EGFR L858R. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:51-61. [PMID: 38058174 DOI: 10.1039/d3ay01615c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The detection of epidermal growth factor receptor (EGFR) mutation L858R in circulating tumor DNA (ctDNA) is beneficial for the clinical diagnosis and personalized therapy of non-small cell lung cancer (NSCLC). Herein, for the first time, the combination of the primer exchange reaction (PER) and clustered regularly interspaced short palindromic repeats (CRISPR) and its associated nucleases (Cas) 14a was used in electrochemical biosensor construction for the detection of ctDNA EGFR L858R. EGFR L858R, as the target, induced the isothermal amplification of the PER reaction, and then the CRISPR/Cas14a system was activated; subsequently, the substrate ssDNA-MB was cleaved and the electron on the surface of the gold electrode transferred, resulting in the fluctuation of the electrochemical redox signal on the electrode surface, whereas the electrochemical signal will be stable when EGFR L858R is absent. Therefore, the concentration of EGFR L858R can be quantified by electrochemical signal analysis. The low detection limit is 0.34 fM and the dynamic detection range is from 1 fM to 1 μM in this work. The PER-CRISPR/Cas14a electrochemical biosensor greatly improved the analytical sensitivity. In addition, this platform also exhibited excellent specificity, reproducibility, stability and good recovery. This study provides an efficient and novel strategy for the detection of ctDNA EGFR L858R, which has great potential for application in the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Jing Qi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Qianyi Qi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhou Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yixuan Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Aiting Cai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jinran Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Bairong Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Qingxiang Wang
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, China.
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People's Hospital Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, China.
| | - Feng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Huang S, Wang X, Chen X, Liu X, Xu Q, Zhang L, Huang G, Wu J. Rapid and sensitive detection of Pseudomonas aeruginosa by isothermal amplification combined with Cas12a-mediated detection. Sci Rep 2023; 13:19199. [PMID: 37932335 PMCID: PMC10628258 DOI: 10.1038/s41598-023-45766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
CRISPR based technologies have been used for fast and sensitive detection of pathogens. To test the possibility of CRISPR based detection strategy in Pseudomonas aeruginosa infections, a combined method of recombinase polymerase amplification followed by Cas12a-mediated detection via fluorescence reader or lateral flow biosensor (named Cas12a-RCFL) has been established in this study. The Cas12a-RCFL can detect as low as 50 CFU/mL Pseudomonas aeruginosa. The whole detection process can be finished within one hour with satisfied detection specificity. Cas12a-RCFL also shows good sensitivity of detecting Pseudomonas aeruginosa inStaphylococcus aureus and Acinetobacter baumannii contaminated samples. For the detection of 22 clinical samples, Cas12a-RCFL matches with PCR sequencing result exactly without DNA purification. This Cas12a-RCFL is rapid and sensitive with low cost, which shows good quality to be adopted as a point-of-care testing method.
Collapse
Affiliation(s)
- Siyi Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xinchong Chen
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoyu Liu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Qiuqing Xu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Lijun Zhang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
6
|
Tan X, Yang X, Qiao Y, Wei Y, Shang W, Cai H, Luo X, Hou H, Dzantiev BB, Wan Y, Song F, Li J. Ligation-dependent Cas14a1-Activated biosensor for one-pot pathogen diagnostic. Anal Chim Acta 2023; 1271:341470. [PMID: 37328250 DOI: 10.1016/j.aca.2023.341470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Pathogen identification requires nucleic acid diagnosis with simple equipment and fast manipulation. Our work established an all-in-one strategy assay with excellent sensitivity and high specificity, Transcription-Amplified Cas14a1-Activated Signal Biosensor (TACAS), for the fluorescence-based bacterial RNA detection. The DNA as a promoter probe and a reporter probe directly ligated via SplintR ligase once specifically hybridized to the single-stranded target RNA sequence, with the ligation product transcribed into Cas14a1 RNA activators by T7 RNA polymerase. This forming sustained isothermal one-pot ligation-transcription cascade produced RNA activators constantly and enabled Cas14a1/sgRNA complex to generate fluorescence signal, thus leading to a sensitive detection limit of 1.52 CFU mL-1E. coli within 2 h of incubation time. TACAS was applied in contrived E. coli infected fish and milk samples, and a significant signal differentiation between positive (infected) and negative (uninfected) samples was reached. Meanwhile, E. coli colonization and transmit time in vivo were explored and the TACAS assay promoted the understanding of the infection mechanisms of the E. coli infection, demonstrating an excellent detection capability.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiufen Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yuefeng Qiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yangdao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Wenkai Shang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Huiying Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xidan Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Fengge Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Yang H, Ledesma-Amaro R, Gao H, Ren Y, Deng R. CRISPR-based biosensors for pathogenic biosafety. Biosens Bioelectron 2023; 228:115189. [PMID: 36893718 DOI: 10.1016/j.bios.2023.115189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Pathogenic biosafety is a worldwide concern. Tools for analyzing pathogenic biosafety, that are precise, rapid and field-deployable, are highly demanded. Recently developed biotechnological tools, especially those utilizing CRISPR/Cas systems which can couple with nanotechnologies, have enormous potential to achieve point-of-care (POC) testing for pathogen infection. In this review, we first introduce the working principle of class II CRISPR/Cas system for detecting nucleic acid and non-nucleic acid biomarkers, and highlight the molecular assays that leverage CRISPR technologies for POC detection. We summarize the application of CRISPR tools in detecting pathogens, including pathogenic bacteria, viruses, fungi and parasites and their variants, and highlight the profiling of pathogens' genotypes or phenotypes, such as the viability, and drug-resistance. In addition, we discuss the challenges and opportunities of CRISPR-based biosensors in pathogenic biosafety analysis.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Guo Y, Dai X, Zhang Y, Ma S, Yang L, Bu Y, Hao Y. Universal Hydrogen-Treated TiO 2 Nanorod Array/Ti 2CO X MXene PEC Aptamer Sensor Modulated by the Transport Characteristic of Photogenerated Holes. Anal Chem 2023; 95:7560-7568. [PMID: 37134286 DOI: 10.1021/acs.analchem.3c00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A semiconductor photoelectrochemical (PEC) aptamer sensor has been widely researched in recent years because of its broad application prospects. However, a universal PEC sensor has not been achieved, and its sensing mechanism based on a photogenerated carrier transfer process has yet to be elucidated. Herein, a novel hydrogen-treated TiO2 nanorod array one-dimensional (1D)/Ti2COX MXene two-dimensional (2D) (H-TiO2/Ti2COX) PEC aptamer sensor is presented, which achieved a record detection range of 10-9-103 μg/L and a limit of detection (LOD) of 1 fg/L for microcystic toxins-LR detection. Besides, the PEC sensor can also test serotonin (5-HT), aflatoxin-B1, and prostate-specific antigen (PSA) with high performance by changing the aptamers, exhibiting favorable application universality. Furthermore, a new phenomenon of a switchable enhanced/suppressed photocurrent detection signal was discovered from H-TiO2/Ti2COX PEC aptamer sensors through the variation of the length of the TiO2 nanorod. Meanwhile, it reveals that the steric hindrance effect determines the photogenerated hole transfer and depolarization processes, which is proposed for the first time as the predominant mechanism of the switchable enhanced/suppressed photocurrent signal for PEC sensors, giving possibilities to develop PEC sensors with higher efficiency.
Collapse
Affiliation(s)
- Yiwei Guo
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Xianying Dai
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yan Zhang
- Xi'an Mental Health Center, Xi'an 710061, China
| | - Shenhui Ma
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Liu Yang
- Xi'an Mental Health Center, Xi'an 710061, China
| | - Yuyu Bu
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yue Hao
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| |
Collapse
|
9
|
Li Y, Kou J, Han X, Qiao J, Zhang W, Man S, Ma L. Argonaute-triggered visual and rebuilding-free foodborne pathogenic bacteria detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131485. [PMID: 37149945 DOI: 10.1016/j.jhazmat.2023.131485] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
Foodborne pathogenic bacteria are recognized as the main causes of microbial contamination in food safety. Early screening and ultrasensitive detection of foodborne pathogenic bacteria is critical procedure to guarantee food safety. Argonaute is emerging as a new tool for detection owing to the programmability and high specificity. We reported a Novel and One-step cleavage method based on Argonaute by integrating Tag-specific primer extension and Exonuclease I (Exo I) for the first time, termed as NOTE-Ago. In this method, the invA of Salmonella typhi and nuc gene of Staphylococcus aureus were amplified using Tag-specific primer and the remaining primers were digested by Exo I. Then amplicons were served as the guide DNA for PfAgo. Consequently, the fluorophore-quencher reporter could be cleaved via PfAgo, resulting in changes in fluorescent intensity. With this strategy, target nucleic acid could be dexterously converted into fluorescent signals. The NOTE-Ago assay could detect 1 CFU/mL with a dynamic range from 1 to 108 CFU/mL. The satisfactory selectivity of NOTE-Ago assay further facilitated its application for detecting S. typhi- and S. aureus-contaminated food samples. This work enriches the toolbox of Argonaute-based detection and provides a one-step cleavage and rebuilding-free method for ultrasensitive detection of bacteria.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenlu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
10
|
A label-free AuNP bioprobe-assisted CRISPR/Cas12a colorimetric platform for high-throughput detection of Staphylococcus aureus ST398. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Tao Z, Wang B, Cui Q, Wang P, Dzantiev BB, Wan Y, Wu J, Yang Z. A signal-off Cas14a1-based platform for highly specific detection of methicillin-resistant Staphylococcus aureus. Anal Chim Acta 2023; 1256:341154. [PMID: 37037633 DOI: 10.1016/j.aca.2023.341154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Antibiotic usage has become very widespread in aquaculture, and the abuse or overuse of antibiotics has led to the evolution of antibiotic-resistance bacteria, which has adverse effects on aquatic products and ecosystems. Moreover, this evolution can potentially cause harm to human health. Thus, there is an urgent need for diagnostic tools for antibiotic-resistant microorganisms. Herein, we proposed a signal-off Cas14a1-based platform (SOCP) for the detection of methicillin-resistant Staphylococcus aureus (MRSA). In this SOCP, we have designed single-stranded DNA (ssDNA) that not only can activate the trans-cleavage ability of dual Cas14a1-sgRNA complex but also can be used as the primers for the amplified methicilin-resistant gene (mecA). When MRSA is present, the primers can be transformed into products with amplification, leading to the signal decrease of trans-cleavage activity of Cas14a1. The SOCP showed high specificity and fair sensitivity for mecA gene and MRSA. In the detection of real samples, this platform also showed consistent results compared with qPCR. The SOCP could provide an alternative tool for the diagnosis of antibiotic-resistant bacteria in aquaculture, food industry and other fields.
Collapse
Affiliation(s)
- Zhenzhen Tao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou, 570228, China
| | - Buhua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou, 570228, China
| | - Qian Cui
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou, 570228, China
| | - Peng Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou, 570228, China
| | - Jiajia Wu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou, 570228, China; Rizhao Science and Technology Innovation Service Center, 369 Jining Road, Rizhao, Shandong, China.
| |
Collapse
|
12
|
Kadam US, Cho Y, Park TY, Hong JC. Aptamer-based CRISPR-Cas powered diagnostics of diverse biomarkers and small molecule targets. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:13. [PMID: 36843874 PMCID: PMC9937869 DOI: 10.1186/s13765-023-00771-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
CRISPR-Cas systems have been widely used in genome editing and transcriptional regulation. Recently, CRISPR-Cas effectors are adopted for biosensor construction due to its adjustable properties, such as simplicity of design, easy operation, collateral cleavage activity, and high biocompatibility. Aptamers' excellent sensitivity, specificity, in vitro synthesis, base-pairing, labeling, modification, and programmability has made them an attractive molecular recognition element for inclusion in CRISPR-Cas systems. Here, we review current advances in aptamer-based CRISPR-Cas sensors. We briefly discuss aptamers and the knowledge of Cas effector proteins, crRNA, reporter probes, analytes, and applications of target-specific aptamers. Next, we provide fabrication strategies, molecular binding, and detection using fluorescence, electrochemical, colorimetric, nanomaterials, Rayleigh, and Raman scattering. The application of CRISPR-Cas systems in aptamer-based sensing of a wide range of biomarkers (disease and pathogens) and toxic contaminants is growing. This review provides an update and offers novel insights into developing CRISPR-Cas-based sensors using ssDNA aptamers with high efficiency and specificity for point-of-care setting diagnostics.
Collapse
Affiliation(s)
- Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do 52828 Republic of Korea
| | - Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do 52828 Republic of Korea
| | - Tae Yoon Park
- Graduate School of Education, Yonsei University, Seoul, 03722 Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do 52828 Republic of Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
13
|
Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat 2023; 68:100948. [PMID: 36780840 DOI: 10.1016/j.drup.2023.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
The phenomenon of antibiotic resistance (AR) and its increasing global trends and destructive waves concerns patients and the healthcare system. In order to combat AR, it is necessary to explore new strategies when the current antibiotics fail to be effective. Thus, knowing the resistance mechanisms and appropriate diagnosis of bacterial infections may help enhance the sensitivity and specificity of novel strategies. On the other hand, resistance to antimicrobial compounds can spread from resistant populations to susceptible ones. Antimicrobial resistance genes (ARGs) significantly disseminate AR via horizontal and vertical gene transfer. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is a member of the bacterial immune system with the ability to remove the ARGs; therefore, it can be introduced as an effective and innovative strategy in the battle against AR. Here, we reviewed CRISPR-based bacterial diagnosis technologies. Moreover, the strategies to battle AR based on targeting bacterial chromosomes and resistance plasmids using the CRISPR-Cas system have been explained. Besides, we have presented the limitations of CRISPR delivery and potential solutions to help improve the future development of CRISPR-based platforms.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Melika Hoseinzadeh
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Mansoor Kodori
- Non communicable Diseases Research Center, Bam University of Medical sciences, Bam, the Islamic Republic of Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
14
|
Khandelwal G, Deswal S, Dahiya R. Triboelectric Nanogenerators as Power Sources for Chemical Sensors and Biosensors. ACS OMEGA 2022; 7:44573-44590. [PMID: 36530315 PMCID: PMC9753505 DOI: 10.1021/acsomega.2c06335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The recent advances of portable sensors in flexible and wearable form factors are drawing increasing attention worldwide owing to their requirement applications ranging from health monitoring to environment monitoring. While portability is critical for these applications, real-time data gathering also requires a reliable power supply-which is largely met with batteries. Besides the need for regular charging, the use of toxic chemicals in batteries makes it difficult to rely on them, and as a result different types of energy harvesters have been explored in recent years. Among these, triboelectric nanogenerators (TENGs) provide a promising platform for harnessing ambient energy and converting it into usable electric signals. The ease of fabrication and possibility to develop TENGs with a diverse range of easily available materials also make them attractive. This review focuses on the TENG technology and its efficient use as a power source for various types of chemical sensors and biosensors. The paper describes the underlying mechanism, various modes of working of TENGs, and representative examples of their utilization as power sources for sensing a multitude of analytes. The challenges associated with their adoption for commercial solutions are also discussed to stimulate further advances and innovations.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Swati Deswal
- Bendable
Electronics and Sensing Technologies Group, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Ravinder Dahiya
- Bendable Electronics
and Sustainable Technologies Group, Electrical and Computer
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Lu Y, Yang H, Bai J, He Q, Deng R. CRISPR-Cas based molecular diagnostics for foodborne pathogens. Crit Rev Food Sci Nutr 2022; 64:5269-5289. [PMID: 36476134 DOI: 10.1080/10408398.2022.2153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Foodborne pathogenic infection has brought multifaceted issues to human life, leading to an urgent demand for advanced detection technologies. CRISPR/Cas-based biosensors have the potential to address various challenges that exist in conventional assays such as insensitivity, long turnaround time and complex pretreatments. In this perspective, we review the relevant strategies of CRISPR/Cas-assisted diagnostics on foodborne pathogens, focusing on biosensing platforms for foodborne pathogens based on fluorescence, colorimetric, (electro)chemiluminescence, electrochemical, and surface-enhanced Raman scattering detection. It summarizes their detection principles by the clarification of foodborne pathogenic bacteria, fungi, and viruses. Finally, we discuss the current challenges or technical barriers of these methods against broad application, and put forward alternative solutions to improve CRISPR/Cas potential for food safety.
Collapse
Affiliation(s)
- Yunhao Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| | - Jinrong Bai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P.R. China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
16
|
Design and synthesis of DNA hydrogel based on EXPAR and CRISPR/Cas14a for ultrasensitive detection of creatine kinase MB. Biosens Bioelectron 2022; 218:114792. [DOI: 10.1016/j.bios.2022.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
17
|
Li J, Wang Y, Wang B, Lou J, Ni P, Jin Y, Chen S, Duan G, Zhang R. Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases. Diagnostics (Basel) 2022; 12:diagnostics12102455. [PMID: 36292145 PMCID: PMC9600689 DOI: 10.3390/diagnostics12102455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
The CRISPR/Cas system is a protective adaptive immune system against attacks from foreign mobile genetic elements. Since the discovery of the excellent target-specific sequence recognition ability of the CRISPR/Cas system, the CRISPR/Cas system has shown excellent performance in the development of pathogen nucleic-acid-detection technology. In combination with various biosensing technologies, researchers have made many rapid, convenient, and feasible innovations in pathogen nucleic-acid-detection technology. With an in-depth understanding and development of the CRISPR/Cas system, it is no longer limited to CRISPR/Cas9, CRISPR/Cas12, and other systems that had been widely used in the past; other CRISPR/Cas families are designed for nucleic acid detection. We summarized the application of CRISPR/Cas-related technology in infectious-disease detection and its development in SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Junwei Li
- International School of Public Health and One Health, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Juan Lou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Rongguang Zhang
- International School of Public Health and One Health, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
18
|
Li Y, Man S, Ye S, Liu G, Ma L. CRISPR-Cas-based detection for food safety problems: Current status, challenges, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:3770-3798. [PMID: 35796408 DOI: 10.1111/1541-4337.13000] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022]
Abstract
Food safety is one of the biggest public issues occurring around the world. Microbiological, chemical, and physical hazards can lead to food safety issues, which may occur at all stages of the supply chain. In order to tackle food safety issues and safeguard consumer health, rapid, accurate, specific, and field-deployable detection methods meeting diverse requirements are one of the imperative measures for food safety assurance. CRISPR-Cas system, a newly emerging technology, has been successfully repurposed in biosensing and has demonstrated huge potential to establish conceptually novel detection methods with high sensitivity and specificity. This review focuses on CRISPR-Cas-based detection and its current status and huge potential specifically for food safety inspection. We firstly illustrate the pending problems in food safety and summarize the popular detection methods. We then describe the potential applications of CRISPR-Cas-based detection in food safety inspection. Finally, the challenges and futuristic opportunities are proposed and discussed. Generally speaking, the current food safety detection methods are still unsatisfactory in some ways such as being time-consuming, displaying unmet sensitivity and specificity standards, and there is a comparative paucity of multiplexed testing and POCT. Recent studies have shown that CRISPR-Cas-based biosensing is an innovative and fast-expanding technology, which could make up for the shortcomings of the existing methods or even replace them. To sum up, the implementation of CRISPR-Cas and the integration of CRISPR-Cas with other techniques is promising and desirable, which is expected to provide "customized" and "smart" detection methods for food safety inspection in the coming future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
19
|
Chen Y, Zong N, Ye F, Mei Y, Qu J, Jiang X. Dual-CRISPR/Cas12a-Assisted RT-RAA for Ultrasensitive SARS-CoV-2 Detection on Automated Centrifugal Microfluidics. Anal Chem 2022; 94:9603-9609. [PMID: 35775831 DOI: 10.1021/acs.analchem.2c00638] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-based nucleic acid detection can be combined with recombinase-aided amplification (RAA) to enable rapid, accurate, and early detection of SARS-CoV-2. Current CRISPR-based approaches to detecting viral nucleic acid typically require immense manual operations to transfer RPA amplicons for CRISPR detection or suffer from compromised sensitivity by mixing the competing RPA amplification and CRISPR detection. Here, we develop dual-CRISPR/Cas12a-assisted RT-RAA assay and a ″sample-to-answer″ centrifugal microfluidic platform that can automatically detect 1 copy/μL of the SARS-CoV-2 within 30 min. This chip separates the amplification (RAA) from detection (CRISPR), such that sensitivity is maximized and the time consumption is decreased by a factor of 3. For the 26 positive and 8 negative clinical SARS-CoV-2 samples, this automated centrifugal microfluidics achieved 100% accuracy compared to the gold-standard RT-PCR technique. This point-of-care test, with the advantages of being one-step, automated, rapid, and sensitive, will have a significant potential for clinical diagnosis and disease prevention.
Collapse
Affiliation(s)
- Yong Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Nan Zong
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Feidi Ye
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong 518114, P. R. China
| | - Yixin Mei
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong 518114, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
20
|
Wang Y, Xue T, Wang M, Ledesma-Amaro R, Lu Y, Hu X, Zhang T, Yang M, Li Y, Xiang J, Deng R, Ying B, Li W. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. SENSORS AND ACTUATORS B-CHEMICAL 2022; 362:131765. [PMID: 35370361 PMCID: PMC8957482 DOI: 10.1016/j.snb.2022.131765] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 is one of the greatest threats to global human health. Point-of-care diagnostic tools for SARS-CoV-2 could facilitate rapid therapeutic intervention and mitigate transmission. In this work, we report CRISPR-Cas13a cascade-based viral RNA (Cas13C) assay for label-free and isothermal determination of SARS-CoV-2 and its mutations in clinical samples. Cas13a/crRNA was utilized to directly recognize the target of SARS-CoV-2 RNA, and the recognition events sequentially initiate the transcription amplification to produce light-up RNA aptamers for output fluorescence signal. The recognition of viral RNA via Cas13a-guide RNA ensures a high specificity to distinguish SARS-CoV-2 from MERS-CoV and SARS-CoV, as well as viral mutations. A post transcription amplification strategy was triggered after CRISPR-Cas13a recognition contributes to an amplification cascade that achieves high sensitivity for detecting SARS-CoV-2 RNA, with a limit of detection of 0.216 fM. In addition, the Cas13C assay could be able to discriminate single-nucleotide mutation, which was proven with N501Y in SARS-Cov-2 variant. This method was validated by a 100% agreement with RT-qPCR results from 12 clinical throat swab specimens. The Cas13C assay has the potential to be used as a routine nucleic acid test of SARS-CoV-2 virus in resource-limited regions.
Collapse
Affiliation(s)
- Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.,Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Xue
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Ying Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.,State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyue Hu
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ming Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Xiang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.,Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Selvam K, Ahmad Najib M, Khalid MF, Ozsoz M, Aziah I. CRISPR-Cas Systems-Based Bacterial Detection: A Scoping Review. Diagnostics (Basel) 2022; 12:diagnostics12061335. [PMID: 35741144 PMCID: PMC9221980 DOI: 10.3390/diagnostics12061335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, CRISPR-Cas system-based assays for bacterial detection have been developed. The aim of this scoping review is to map existing evidence on the utilization of CRISPR-Cas systems in the development of bacterial detection assays. A literature search was conducted using three databases (PubMed, Scopus, and Cochrane Library) and manual searches through the references of identified full texts based on a PROSPERO-registered protocol (CRD42021289140). Studies on bacterial detection using CRISPR-Cas systems that were published before October 2021 were retrieved. The Critical Appraisal Skills Programme (CASP) qualitative checklist was used to assess the risk of bias for all the included studies. Of the 420 studies identified throughout the search, 46 studies that met the inclusion criteria were included in the final analysis. Bacteria from 17 genera were identified utilising CRISPR-Cas systems. Most of the bacteria came from genera such as Staphylococcus, Escherichia, Salmonella, Listeria, Mycobacterium and Streptococcus. Cas12a (64%) is the most often used Cas enzyme in bacterial detection, followed by Cas13a (13%), and Cas9 (11%). To improve the signal of detection, 83% of the research exploited Cas enzymes’ trans-cleavage capabilities to cut tagged reporter probes non-specifically. Most studies used the extraction procedure, whereas only 17% did not. In terms of amplification methods, isothermal reactions were employed in 66% of the studies, followed by PCR (23%). Fluorescence detection (67%) was discovered to be the most commonly used method, while lateral flow biosensors (13%), electrochemical biosensors (11%), and others (9%) were found to be less commonly used. Most of the studies (39) used specific bacterial nucleic acid sequences as a target, while seven used non-nucleic acid targets, including aptamers and antibodies particular to the bacteria under investigation. The turnaround time of the 46 studies was 30 min to 4 h. The limit of detection (LoD) was evaluated in three types of concentration, which include copies per mL, CFU per mL and molarity. Most of the studies used spiked samples (78%) rather than clinical samples (22%) to determine LoD. This review identified the gap in clinical accuracy evaluation of the CRISPR-Cas system in bacterial detection. More research is needed to assess the diagnostic sensitivity and specificity of amplification-free CRISPR-Cas systems in bacterial detection for nucleic acid-based tests.
Collapse
Affiliation(s)
- Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.); (M.O.)
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.); (M.O.)
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.); (M.O.)
| | - Mehmet Ozsoz
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.); (M.O.)
- Department of Biomedical Engineering, Near East University, Nicosia 99138, Turkey
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.S.); (M.A.N.); (M.F.K.); (M.O.)
- Correspondence:
| |
Collapse
|
22
|
Chi Z, Wu Y, Chen L, Yang H, Khan MR, Busquets R, Huang N, Lin X, Deng R, Yang W, Huang J. CRISPR-Cas14a-integrated strand displacement amplification for rapid and isothermal detection of cholangiocarcinoma associated circulating microRNAs. Anal Chim Acta 2022; 1205:339763. [DOI: 10.1016/j.aca.2022.339763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
|
23
|
Shin J, Miller M, Wang YC. Recent advances in CRISPR-based systems for the detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2022; 21:3010-3029. [PMID: 35483732 DOI: 10.1111/1541-4337.12956] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Abstract
There has long been a need for more advanced forms of pathogen detection in the food industry. Though in its infancy, biosensing based on clustered regularly interspaced short palindromic repeats (CRISPR) has the potential to solve many problems that cannot be addressed using conventional methods. In this review, we briefly introduce and classify the various CRISPR/Cas protein effectors that have thus far been used in biosensors. We then assess the current state of CRISPR technology in food-safety contexts; describe how each Cas effector is utilized in foodborne-pathogen detection; and discuss the limitations of the current technology, as well as how it might usefully be applied in other areas of the food industry. We conclude that, if the limitations of existing CRISPR/Cas-based detection methods are overcome, they can be deployed on a wide scale and produce a range of positive food-safety outcomes.
Collapse
Affiliation(s)
- Jiyong Shin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Hu Z, Chen M, Zhang C, Li Z, Feng M, Wu L, Zhou M, Liang D. Cas14a1-Mediated Nucleic Acid Diagnostics for Spinal Muscular Atrophy. BIOSENSORS 2022; 12:bios12050268. [PMID: 35624569 PMCID: PMC9138763 DOI: 10.3390/bios12050268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 05/04/2023]
Abstract
Spinal muscular atrophy (SMA) is the main genetic cause of infant death. In >95% of the patients with SMA, the disease is caused by a single hotspot pathogenic mutation: homozygous deletion of exon 7 of the survival motor neuron 1 gene (SMN1). Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-based assays have been developed as a promising new option for nucleic acid detection. Here, we developed a Cas14a1-based assay combined with asymmetric PCR to establish a method for detection of the homozygous deletion of SMN1 exon 7 in SMA patients. The minimum detectable concentration of genomic DNA reached 5.26 aM with our method, and the assessment of its detection performance in 33 clinical samples revealed that the results were completely consistent with those of multiple ligation-dependent probe amplification and quantitative PCR. Thus, our novel nucleic acid diagnostics combining CRISPR/Cas14a1 and asymmetric PCR not only provides specific and sensitive testing of the deletion of SMN1 exon 7, but also holds promise for an accurate detection platform of genetic diseases and pathogens in multiple sample types.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miaojin Zhou
- Correspondence: (M.Z.); (D.L.); Tel.: +86-731-84805252(M.Z. & D.L.); Fax: +86-731-84478152 (M.Z. & D.L.)
| | - Desheng Liang
- Correspondence: (M.Z.); (D.L.); Tel.: +86-731-84805252(M.Z. & D.L.); Fax: +86-731-84478152 (M.Z. & D.L.)
| |
Collapse
|
25
|
Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. Biosens Bioelectron 2022; 211:114282. [DOI: 10.1016/j.bios.2022.114282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 01/04/2023]
|
26
|
Chen B, Li Y, Xu F, Yang X. Powerful CRISPR-Based Biosensing Techniques and Their Integration With Microfluidic Platforms. Front Bioeng Biotechnol 2022; 10:851712. [PMID: 35284406 PMCID: PMC8905290 DOI: 10.3389/fbioe.2022.851712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
In the fight against the worldwide pandemic coronavirus disease 2019 (COVID-19), simple, rapid, and sensitive tools for nucleic acid detection are in urgent need. PCR has been a classic method for nucleic acid detection with high sensitivity and specificity. However, this method still has essential limitations due to the dependence on thermal cycling, which requires costly equipment, professional technicians, and long turnover times. Currently, clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors have been developed as powerful tools for nucleic acid detection. Moreover, the CRISPR method can be performed at physiological temperature, meaning that it is easy to assemble into point-of-care devices. Microfluidic chips hold promises to integrate sample processing and analysis on a chip, reducing the consumption of sample and reagent and increasing the detection throughput. This review provides an overview of recent advances in the development of CRISPR-based biosensing techniques and their perfect combination with microfluidic platforms. New opportunities and challenges for the improvement of specificity and efficiency signal amplification are outlined. Furthermore, their various applications in healthcare, animal husbandry, agriculture, and forestry are discussed.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Xu, ; Xiaonan Yang,
| | - Xiaonan Yang
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Xu, ; Xiaonan Yang,
| |
Collapse
|
27
|
Wu P, Ye X, Wang D, Gong F, Wei X, Xiang S, Zhang J, Kai T, Ding P. A novel CRISPR/Cas14a system integrated with 2D porphyrin metal-organic framework for microcystin-LR determination through a homogeneous competitive reaction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127690. [PMID: 34799170 DOI: 10.1016/j.jhazmat.2021.127690] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Selective and sensitive detection of microcystin-LR (MC-LR) is of vital importance because of its high toxicity and broad distribution. Herein, a novel and versatile fluorescence sensor (Cas14-pMOFs fluorescence sensor) was developed by combining the CRISPR/Cas14a system with a 2D porphyrin metal-organic framework nanosheets (2D-pMOFs) for MC-LR determination. The designed CRISPR/Cas14a system was activated by the unbound complementary DNA (cDNA), which was positively correlated with MC-LR concentration. Furthermore, the activated Cas14a protein was utilized to indiscriminately cleave the FAM-labeled single-stranded DNA (ssDNA-FAM), which was pre-absorbed on Cu-TCPP(Fe) nanosheets. Because of the desorption of the cleaved ssDNA-FAM, the pre-quenched fluorescence signal was recovered. Owing to the excellent performance in quantifying cDNA using this Cas14-pMOFs fluorescence sensor with a limit of detection (LOD) of 0.12 nM, this Cas14-pMOFs fluorescence sensor was able to detect MC-LR in a range from 50 pg/mL to 1 μg/mL with the LOD of 19 pg/mL. This work not only provided a new insight for the exploration of fluorescence sensors based on 2D-pMOFs coupled with CRISPR/Cas14a, but also, demonstrated its universality in both nucleic acid and non-nucleic acid targets determination.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaosheng Ye
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Danqi Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Fangjie Gong
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaoqian Wei
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China.
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China.
| |
Collapse
|
28
|
Xue T, Lu Y, Yang H, Hu X, Zhang K, Ren Y, Wu C, Xia X, Deng R, Wang Y. Isothermal RNA Amplification for the Detection of Viable Pathogenic Bacteria to Estimate the Salmonella Virulence for Causing Enteritis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1670-1678. [PMID: 35099949 DOI: 10.1021/acs.jafc.1c07182] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viable foodborne pathogens can cause intestinal infection and food poisoning. Herein, we reported an RNA assay allowing for sensitive (close to 1 CFU and 1% viable bacteria detectable) and rapid (within 2.5 h) detection of viable pathogenic bacteria by coupling isothermal RNA amplification (nucleic acid sequence-based amplification, NASBA) with a CRISPR/Cas13a system. NASBA allowed direct amplification of 16S rRNA extracted from viable S. enterica (RNAs degrade rapidly in dead bacteria), and the specificity of amplification was ensured using Cas13a/crRNA to recognize the amplicons. We used the CRISPR/Cas13-based NASBA assay (termed cNASBA assay) to investigate the in vivo colonization and intestinal infection of S. enterica in mice. We found that S. enterica was mainly colonized at the cecum, colon, and rectum, and the severity of enteritis caused by S. enterica was determined by the number of viable S. enterica rather than the total count of S. enterica. The cNASBA assay can quantify viable S. enterica and thus can improve the accuracy of virulence estimation compared to qPCR. It shows promise as a reliable tool for monitoring pathogen contamination and biosafety control.
Collapse
Affiliation(s)
- Ting Xue
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Lu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Chengyong Wu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Zhang J, He F. Mycobacterium tuberculosis piezoelectric sensor based on AuNPs-mediated enzyme assisted signal amplification. Talanta 2022; 236:122902. [PMID: 34635273 DOI: 10.1016/j.talanta.2021.122902] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Rapid diagnosis of tuberculosis disease (TB) still remained a pressing need for TB control efforts all over the world. However, the existing detection approaches cannot satisfy demand of rapid detection of clinical Mycobacterium tuberculosis (M. tuberculosis) because of the long detection time and high cost. Herein, we proposed a new M. tuberculosis piezoelectric sensor based on AuNPs-mediated enzyme assisted signal amplification. A hairpin-shaped DNA duplex with a protrusion of the 3' end was designed. In the presence of specific 16 S rDNA fragment of M. tuberculosis, the hairpin probe was opened, which triggered the selective cleavage of hairpin probe by Exonuclease III (Exo III), resulting in the release of uncut DNA probe and target DNA. The released target DNA hybridized with another hairpin-shaped DNA duplex, and a new digestion cycle was started, thus generating large amounts of uncut DNA probes. The uncut DNA was pulled to the electrode surface by the hybridization with capture probe modified on the electrode. Subsequently detection probe labeled AuNPs was hybridized with uncut DNA and entered between the two electrodes. The AuNPs linked to hybridized detection probe were grown in the HAuCl4 and Nicotinamide adenine dinucleotide (NADH) solution and offered the conductive connection between the gaps of electrode. The changes were monitored by the piezoelectric sensor. The piezoelectric biosensor could achieve a detection of M. tuberculosis (102-108 CFU mL-1) within 3 h, the detection limit (LOD) was 30 CFU mL-1. The methodology could be transformed into different microbial targets, which is suitable for further development of small portable equipment and multifunctional detection.
Collapse
Affiliation(s)
- Jialin Zhang
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
30
|
Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, Ruan Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology 2021; 19:401. [PMID: 34863214 PMCID: PMC8642896 DOI: 10.1186/s12951-021-01132-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is spreading rapidly around the world and seriously impeding efforts to control microbial infections. Although nucleic acid testing is widely deployed for the detection of antibiotic resistant bacteria, the current techniques-mainly based on polymerase chain reaction (PCR)-are time-consuming and laborious. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance (AMR). The CRISPR-Cas system is an adaptive immune system found in many prokaryotes that presents attractive opportunities to target and edit nucleic acids with high precision and reliability. Engineered CRISPR-Cas systems are reported to effectively kill bacteria or even revert bacterial resistance to antibiotics (resensitizing bacterial cells to antibiotics). Strategies for combating antimicrobial resistance using CRISPR (i.e., Cas9, Cas12, Cas13, and Cas14) can be of great significance in detecting bacteria and their resistance to antibiotics. This review discusses the structures, mechanisms, and detection methods of CRISPR-Cas systems and how these systems can be engineered for the rapid and reliable detection of bacteria using various approaches, with a particular focus on nanoparticles. In addition, we summarize the most recent advances in applying the CRISPR-Cas system for virulence modulation of bacterial infections and combating antimicrobial resistance.
Collapse
Affiliation(s)
- Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Mohammed J Hakeem
- Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Venkatarao Selamneni
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Yang H, Chen J, Yang S, Zhang T, Xia X, Zhang K, Deng S, He G, Gao H, He Q, Deng R. CRISPR/Cas14a-Based Isothermal Amplification for Profiling Plant MicroRNAs. Anal Chem 2021; 93:12602-12608. [PMID: 34506121 DOI: 10.1021/acs.analchem.1c02137] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) play key roles in biological processes in plants, such as stress resistance, yet can hardly be quantified by an enzyme-involved terminal polymerization process due to their 2'-O-methyl modifications at the 3'-terminal. Herein, we proposed a CRISPR/Cas14a-based rolling circle amplification (termed Cas14R) assay, allowing reverse transcription-free and demethylation-free detection of plant miRNAs with single-nucleotide resolution. The employment of target-templated rolling circle amplification circumvents the extension of the unaccessible 2'-O-methyl group at the 3'-terminal. Particularly, the activated Cas14a confers the trans-cleavage activity for identifying target single-stranded DNA sequences without the necessity of the protospacer adjacent motif, generalizing the detection of miRNA sequences and the integration of different isothermal amplification techniques. Ultimately, the Cas14R assay has been applied to profile miR156a to evaluate the ripeness process of banana, indicating its feasibility in analyzing the roles of miRNAs in biological processes of plants.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Junbo Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Sen Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
Gong S, Zhang S, Lu F, Pan W, Li N, Tang B. CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection. Anal Chem 2021; 93:11899-11909. [PMID: 34427091 DOI: 10.1021/acs.analchem.1c02533] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Timely diagnosis is of great benefit to improve the survival rate of cancer patients. Body fluid cancer biomarker detection is a critical kind of noninvasive method for cancer diagnosis. Nevertheless, traditional methods for cancer biomarker detection always rely on a large-scale instrument and involve sophisticated operation. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based in vitro diagnosis can simplify the detection procedures and improve sensitivity and specificity, holding great promise as the next-generation molecular diagnostic technology. In this Feature, we introduce the working mechanisms of different kinds of CRISPR/Cas systems for biosensing and CRISPR/Cas-mediated detection strategies for different kinds of cancer biomarkers including nucleic acids, proteins, and extracellular vesicles. In addition, the perspective and challenges of CRISPR/Cas-based strategies for cancer biomarkers are discussed.
Collapse
Affiliation(s)
- Shaohua Gong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Shiqi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|