1
|
Cao M, Zhou H, Wu X, Chen X, Ren X, Cao L, Li Y, Wang S, Li Y, Liu Q. A photoelectrochemical sensor based on In 2S 3/AgInS 2 in situ Z-type heterojunction with "photo-modulated interface charge" for sensitive detection of Programmed Death-Ligand 1. Bioelectrochemistry 2024; 160:108791. [PMID: 39116675 DOI: 10.1016/j.bioelechem.2024.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
The construction of heterostructure photoelectrodes can enhance the performance of photoelectrochemical (PEC) sensors. However, it is still a critical challenge to achieve efficient transfer of interface carriers. In this paper, we propose a strategy of "photo-modulated interface charge" to design a PEC sensor based on a hollow hexagonal tubular In2S3/AgInS2 in situ Z-type heterojunction for the susceptible detection of Programmed Death-ligand 1 (PD-L1). The hollow structured In2S3/AgInS2 is ingeniously synthesized employing indium-sourced MIL-68 as a sacrificial template and in situ cation exchange technique. This composite material has close contact interfaces due to in situ growth, which facilitates the spontaneous establishment of a robust and stable built-in electric field between the interfaces. Moreover, the inner cavity structure promotes multiple light refractions and scatterings, significantly enhancing light trapping capability. Under the influence of both light irradiation and electric field force, the migration direction of the interfacial charge is reversed, forming a Z-transfer path, which effectively delays the compounding of the electron-hole pairs (e-/h+) and further improves the sensitivity of the sensor. The minimum detection threshold of the PEC sensor is 26.58 fg/mL, and the feasibility of real samples is investigated, providing new insights for early diagnosis and prognostic treatment of diseases.
Collapse
Affiliation(s)
- Ming Cao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hui Zhou
- Zibo Central Hospital, Zibo 255036, People's Republic of China
| | - Xiaoran Wu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Xiaoxia Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Xiaomin Ren
- Shinva Medical Instrument Co., Ltd, Zibo 255086, People's Republic of China
| | - Linlin Cao
- Zibo Central Hospital, Zibo 255036, People's Republic of China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China.
| |
Collapse
|
2
|
Ren X, Xue R, Luo Y, Wang S, Ge X, Yao X, Li L, Min J, Li M, Luo Z, Wang F. Programmable melanoma-targeted radio-immunotherapy via fusogenic liposomes functionalized with multivariate-gated aptamer assemblies. Nat Commun 2024; 15:5035. [PMID: 38866788 PMCID: PMC11169524 DOI: 10.1038/s41467-024-49482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Radio-immunotherapy exploits the immunostimulatory features of ionizing radiation (IR) to enhance antitumor effects and offers emerging opportunities for treating invasive tumor indications such as melanoma. However, insufficient dose deposition and immunosuppressive microenvironment (TME) of solid tumors limit its efficacy. Here we report a programmable sequential therapeutic strategy based on multifunctional fusogenic liposomes (Lip@AUR-ACP-aptPD-L1) to overcome the intrinsic radio-immunotherapeutic resistance of solid tumors. Specifically, fusogenic liposomes are loaded with gold-containing Auranofin (AUR) and inserted with multivariate-gated aptamer assemblies (ACP) and PD-L1 aptamers in the lipid membrane, potentiating melanoma-targeted AUR delivery while transferring ACP onto cell surface through selective membrane fusion. AUR amplifies IR-induced immunogenic death of melanoma cells to release antigens and damage-associated molecular patterns such as adenosine triphosphate (ATP) for triggering adaptive antitumor immunity. AUR-sensitized radiotherapy also upregulates matrix metalloproteinase-2 (MMP-2) expression that combined with released ATP to activate ACP through an "and" logic operation-like process (AND-gate), thus triggering the in-situ release of engineered cytosine-phosphate-guanine aptamer-based immunoadjuvants (eCpG) for stimulating dendritic cell-mediated T cell priming. Furthermore, AUR inhibits tumor-intrinsic vascular endothelial growth factor signaling to suppress infiltration of immunosuppressive cells for fostering an anti-tumorigenic TME. This study offers an approach for solid tumor treatment in the clinics.
Collapse
Affiliation(s)
- Xijiao Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China
| | - Rui Xue
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Yan Luo
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, PR China
| | - Shuang Wang
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Xinyue Ge
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, PR China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital School of Public Health Institute of Translational Medicine State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital School of Public Health Institute of Translational Medicine State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
- The First Affiliated Hospital Basic Medical Sciences, School of Public Health Hengyang Medical School University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
3
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
4
|
Neairat T, Al-Gawati M, Tul Ain Q, Assaifan AK, Alshamsan A, Alarifi A, Alodhayb AN, Alzahrani KE, Albrithen H. Development of a microcantilever-based biosensor for detecting Programmed Death Ligand 1. Saudi Pharm J 2024; 32:102051. [PMID: 38812944 PMCID: PMC11134855 DOI: 10.1016/j.jsps.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 05/31/2024] Open
Abstract
The ongoing global concern of cancer worldwide necessitates the development of advanced diagnostic and therapeutic strategies. The majority of recent detection strategies involve the employment of biomarkers. A critical biomarker for cancer immunotherapy efficacy and patient prognosis is Programmed Death Ligand 1 (PD-L1), which is a key immune checkpoint protein. PD-L1 can be particularly linked to cancer progression and therapy response. Current detection methods, such as enzyme-linked immunosorbent assay (ELISA), face limitations like high cost, time consumption, and complexity. This study introduces a microcantilever-based biosensor designed for the detection of soluble PD-L1 (sPD-L1), which has a specific association with PD-L1. The biosensor utilizes anti-PD-L1 as the sensing layer, capitalizing on the specific binding affinity between anti-PD-L1 and sPD-L1. The presence of the sensing layer was confirmed through Atomic Force Microscopy (AFM) and contact angle measurements. Binding between sPD-L1 and anti-PD-L1 induces a shift in the microcantilever's resonance frequency, which is proportional to the PD-L1 concentration. Notably, the resonance frequency shift demonstrates a robust linear relationship with the increasing biomarker concentration, ranging from 0.05 ng/ml to 500 ng/ml. The detection limit of the biosensor was determined to be approximately 10 pg/ml. The biosensor demonstrates excellent performance in detecting PD-L1 with high specificity even in complex biological matrices. This innovative approach not only provides a promising tool for early cancer diagnosis but also holds potential for monitoring immunotherapy efficacy, paving the way for personalized and effective cancer treatments.
Collapse
Affiliation(s)
- Tajweed Neairat
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmoud Al-Gawati
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Qura Tul Ain
- Department of Physics, The Women University Multan, Khawajabad, Multan, Pakistan
| | - Abdulaziz K. Assaifan
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alarifi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdullah N. Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E. Alzahrani
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hamad Albrithen
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Ma Y, Wu M, Mo F, Chen Z, Lu J, Sun D. Enhanced Electrochemical Characterization of the Immune Checkpoint Protein PD-L1 using Aptamer-Functionalized Magnetic Metal-Organic Frameworks. Adv Healthc Mater 2024; 13:e2303103. [PMID: 38164814 DOI: 10.1002/adhm.202303103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Programmed death ligand 1 (PD-L1) is highly expressed in cancer cells and participates in the immune escape process of tumor cells. However, as one of the most promising biomarkers for cancer immunotherapy monitoring, the key problem ahead of practical usage is how to effectively improve the detection sensitivity of PD-L1. Herein, an electrochemical aptasensor for the evaluation of tumor immunotherapy is developed based on the immune checkpoint protein PD-L1. The fundamental principle of this method involves the utilization of DNA nanotetrahedron (NTH)-based capture probes and aptamer-modified magnetic metal-organic framework nanocomposites as signaling probes. A synergistic enhancement is observed in the electrocatalytic effect between Fe3O4 and UiO-66 porous shells in Fe3O4@UiO-66 nanocomposites. Therefore, the integration of aptamer-modified Fe3O4@UiO-66@Au with NTH-assisted target immobilization as an electrochemical sensing platform can significantly enhance sensitivity and specificity for target detection. This method enables the detection of targets at concentrations as low as 7.76 pg mL-1 over a wide linear range (0.01 to 1000 ng mL-1). The authors have successfully employed this sensor for in situ characterization of PD-L1 on the cell surface and for monitoring changes in PD-L1 expression during drug therapy, providing a cost-effective yet robust alternative to highly expensive and expertise-dependent flow cytometry.
Collapse
Affiliation(s)
- Ying Ma
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Maoqiang Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Fayin Mo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Zuanguang Chen
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| |
Collapse
|
6
|
Long LL, Hu WX, Wang X, Yuan R, Chai YQ. Antibody-Protein-Aptamer Electrochemical Biosensor based on Highly Efficient Proximity-Induced DNA Hybridization on Tetrahedral DNA Nanostructure for Sensitive Detection of Insulin-like Growth Factor-1. Anal Chem 2024; 96:3837-3843. [PMID: 38384162 DOI: 10.1021/acs.analchem.3c05035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Herein, an antibody-protein-aptamer electrochemical biosensor was designed by highly efficient proximity-induced DNA hybridization on a tetrahedral DNA nanostructure (TDN) for ultrasensitive detection of human insulin-like growth factor-1 (IGF-1). Impressively, the IGF-1 antibody immobilized on the top vertex of the TDN could effectively capture the target protein with less steric effect, and the ferrocene-labeled signal probe (SP) bound on the bottom vertex of the TDN was close to the electrode surface for generating a strong initial signal. In the presence of target protein IGF-1 and an aptamer strand, an antibody-protein-aptamer sandwich could be formed on the top vertex of TDN, which would trigger proximity-induced DNA hybridization to release the SP on the bottom vertex of TDN; therefore, the signal response would decrease dramatically, enhancing the sensitivity of the biosensor. As a result, the linear range of the proposed biosensor for target IGF-1 was 1 fM to 1 nM with the limit of detection down to 0.47 fM, which was much lower than that of the traditional TDN designs on electrochemical biosensors. Surprisingly, the use of this approach offered an innovative approach for the sensitive detection of biomarkers and illness diagnosis.
Collapse
Affiliation(s)
- Lin-Lin Long
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Xi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Li Y, Liu W, Xu H, Zhou Y, Xie W, Guo Y, Liao Z, Jiang X, Liu J, Ren C. Aptamers combined with immune checkpoints for cancer detection and targeted therapy: A review. Int J Biol Macromol 2024; 262:130032. [PMID: 38342267 DOI: 10.1016/j.ijbiomac.2024.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In recent years, remarkable strides have been made in the field of immunotherapy, which has emerged as a standard treatment for many cancers. As a kind of immunotherapy drug, monoclonal antibodies employed in immune checkpoint therapy have proven beneficial for patients with diverse cancer types. However, owing to the extensive heterogeneity of clinical responses and the complexity and variability of the immune system and tumor microenvironment (TME), accurately predicting its efficacy remains a challenge. Recent advances in aptamers provide a promising approach for monitoring alterations within the immune system and TME, thereby facilitating targeted immunotherapy, particularly focused on immune checkpoint blockade, with enhanced antitumor efficiency. Aptamers have been widely used in tumor cell detection, biosensors, drug discovery, and biomarker screening due to their high specificity and high affinity with their targets. This review aims to comprehensively examine the research status and progress of aptamers in cancer diagnosis and immunotherapy, with a specific emphasis on those related to immune checkpoints. Additionally, we will discuss the future research directions and potential therapeutic targets for aptamer-based immune checkpoint therapy, aiming to provide a theoretical basis for targeting immunotherapy molecules and blocking tumor immune escape.
Collapse
Affiliation(s)
- Yihan Li
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Weidong Liu
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Hongjuan Xu
- NHC Key Laboratory of Biological Nanotechnology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Zhou
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Wen Xie
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Youwei Guo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ziling Liao
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xingjun Jiang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Liu
- Department of Critical care medicine, Hainan Hospital of Chinese PLA General Hosptial; project supported by Hainan Province Clinical Medical Center, China.
| | - Caiping Ren
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
8
|
Zhang Y, Chen S, Ma J, Zhou X, Sun X, Jing H, Lin M, Zhou C. Enzyme-catalyzed electrochemical aptasensor for ultrasensitive detection of soluble PD-L1 in breast cancer based on decorated covalent organic frameworks and carbon nanotubes. Anal Chim Acta 2023; 1282:341927. [PMID: 37923412 DOI: 10.1016/j.aca.2023.341927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Soluble programmed death-ligand 1 (sPD-L1) is critically involved in breast cancer recurrence and metastasis. However, the clinical application of highly sensitive sPD-L1 assays remains a challenge due to its low abundance in peripheral blood. To address this issue, for the first time, an enzyme-catalyzed electrochemical aptasensing platform was devised, incorporating covalent organic frameworks-gold nanoparticles-antibody-horseradish peroxidase (COFs-AuNPs-Ab-HRP) and polyethyleneimine-functionalized multiwalled carbon nanotubes (MWCNTs-PEI-AuNPs) for the highly specific and ultrasensitive detection of sPD-L1. RESULTS MWCNTs-PEI-AuNPs possessed an extensive specific surface area and exhibited excellent electrical conductivity, facilitating the immobilization of aptamer and amplifying the signal. COFs modified with AuNPs not only amplified the electrical signal but also proffered a loading platform for the Ab and HRP. The favorable biocompatibility of COFs contributed to the preservation of enzyme activity and stability. HRP acted in synergy with hydrogen peroxide (H2O2) to catalyze the oxidation of hydroquinone (HQ) to benzoquinone (BQ). Subsequently, BQ underwent electrochemical reduction to HQ, inducing an enzymatic redox cycle that amplified the electrochemical signal and enhanced the sensitivity and selectivity of the detection method. The developed aptasensor displayed a liner range for sPD-L1 identification from 1 pg mL-1 to 100 ng mL-1 and the detection limit reached 0.143 pg mL-1 (S/N = 3). SIGNIFICANCE Paving the way for clinical application, this strategy detected differences in sPD-L1 in cell supernatants and peripheral blood of breast cancer patients with higher sensitivity compared to commercial sPD-L1 ELISA kit. This work demonstrates significant potential in offering reference information for early diagnosis and disease surveillance of breast cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China; School of Public Health, Nantong University, 9 Qiangyuan Rd, Nantong, 226019, China.
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Jie Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Hongyun Jing
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Mei Lin
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
9
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
10
|
Bertrand P. Aptamers Targeting the PD-1/PD-L1 Axis: A Perspective. J Med Chem 2023; 66:10878-10888. [PMID: 37561598 DOI: 10.1021/acs.jmedchem.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Aptamers have emerged in recent years as alternatives to antibodies or small molecules to interfere with the immune check points by blocking the PD-1/PD-L1 interactions and represent an interesting perspective for immuno-oncology. Aptamers are RNA or DNA nucleotides able to bind to a target with high affinity, with the target ranging from small molecules to proteins and up to cells. Aptamers are identified by the SELEX method that can be modified for specific purposes. The range of applications of aptamers covers therapy as well as new alternative assay technologies similar to ELISA. Aptamers' limited plasma stability can be managed using delivery strategies. The goal of this Perspective is to give an overview of the current development of aptamers targeting the most studied immune checkpoint modulators, PD-1 and PD-L1, and analogous strategies with aptamers for other immuno-related targets.
Collapse
Affiliation(s)
- Philippe Bertrand
- University of Poitiers, IC2MP UMR 7285 CNRS, 4 rue Michel Brunet B27, TSA 51106, 86073 Poitiers cedex 9, France
| |
Collapse
|
11
|
Xia J, Zhong S, Hu X, Koh K, Chen H. Perspectives and trends in advanced optical and electrochemical biosensors based on engineered peptides. Mikrochim Acta 2023; 190:327. [PMID: 37495747 DOI: 10.1007/s00604-023-05907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
With the advancement of life medicine, in vitro diagnostics (IVD) technology has become an auxiliary tool for early diagnosis of diseases. However, biosensors for IVD now face some disadvantages such as poor targeting, significant antifouling properties, low density of recognized molecules, and poor stability. In recent years, peptides have been demonstrated to have various functions in unnatural biological systems, such as targeting properties, antifouling properties, and self-assembly properties, which indicates that peptides can be engineered. These properties of peptides, combined with their good biocompatibility, can be well applied to the design of biosensors to solve the problems mentioned above. This review provides an overview of the properties of engineered functional peptides and their applications in enhancing biosensor performance, mainly in the field of optics and electrochemistry.
Collapse
Affiliation(s)
- Junjie Xia
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Suyun Zhong
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
12
|
Jiang Y, Zhu P, Zhao J, Li S, Wu Y, Xiong X, Zhang X, Liu Y, Bai J, Wang Z, Xu S, Wang M, Song T, Wang Z, Wang W, Han J. Sensitive biosensors based on topological insulator Bi 2Se 3 and peptide. Anal Chim Acta 2023; 1239:340655. [PMID: 36628700 DOI: 10.1016/j.aca.2022.340655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
In this work, we designed a facile and label-free electrochemical biosensor based on intrinsic topological insulator (TI) Bi2Se3 and peptide for the detection of immune checkpoint molecules. With topological protection, Bi2Se3 could have robust surface states with low electronic noise, which was beneficial for the stable and sensitive electron transport between electrode and electrolyte interface. The peptides are easily synthesized and chemically modified, and have good biocompatibility and bioavailability, which is a suitable candidate as the recognition units for immune checkpoint molecules. Therefore, the peptide/Bi2Se3 was developed as a suitable working electrode for the electrochemical biosensor. The basic performance of the designed peptide/Bi2Se3 biosensor was investigated to determine the Anti-HA Tag Antibody and PD-L1 molecules. The linear detection range was from 3.6 × 10-10 mg mL-1 to 3.6 × 10-5 mg mL-1, and the detection limit was 1.07 × 10-11 mg mL-1. Moreover, the biosensor also displayed good selectivity and stability.
Collapse
Affiliation(s)
- Yujiu Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Peng Zhu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shanshan Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yetong Wu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaolu Xiong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xu Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuxiang Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangyue Bai
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zihang Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Shiqi Xu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tinglu Song
- Experimental Centre of Advanced Materials School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China; Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
13
|
Li Z, Zhang J, Huang Y, Zhai J, Liao G, Wang Z, Ning C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Chen Q, Hu J, Hu X, Koh K, Chen H. Current methods and emerging approaches for detection of programmed death ligand 1. Biosens Bioelectron 2022; 208:114179. [PMID: 35364526 DOI: 10.1016/j.bios.2022.114179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
Abstract
Various tumor cells overexpress programmed death ligand 1 (PD-L1), a main immune checkpoint protein (ICP) embedded in the tumor cells membrane, to evade immune recognition through the interaction between PD-L1 and its receptor programmed death 1 (PD-1) which is from T-cells for maintaining immune tolerance. So inhibitors targeting the PD-1 or PD-L1 can block the PD-1/PD-L1 signaling pathway to restore the recognition activity of the immune system to tumor cells, which also have been utilized as a novel approach to improve the clinical therapeutic effect for cancer patients. Since not all cancer patients can respond to these inhibitors effectively, previous diagnosis of PD-L1 is significant to target the right treatments for cancer patients. This review pays attention to the PD-L1 detection and recent progress in the measurement of PD-L1 concentration, including various detection methods based on optical sensors as well as electrochemical assays. Apart from above those, we also focus on the prospects of PD-L1 detection in precision medicine.
Collapse
Affiliation(s)
- Qiang Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Junjie Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
15
|
Li B, Pu W, Weng L, Lyu P, Xu H, Zhang W, Ge L, Kwok HF, Wu Q. Aptamer‐functionalized Ti
3
C
2
‐MXene Nanosheets with One‐step Potentiometric Detection of Programmed Death‐ligand 1. ELECTROANAL 2021. [DOI: 10.1002/elan.202100438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bin Li
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Wenyuan Pu
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Lingyan Weng
- Nanjing Institute of Tourism & Hospitality Nanjing 210023 P. R. China
| | - Peng Lyu
- College of Biological Science and Technology Fuzhou University Fuzhou, Fujian 350108 P. R. China
| | - Houxi Xu
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Wen Zhang
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Lilin Ge
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Hang Fai Kwok
- Faculty of Health Sciences University of Macau Avenida de Universidade Taipa 999078 Macau SAR
| | - Qinan Wu
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| |
Collapse
|