1
|
Sahu P, Camarillo IG, Dettin M, Zamuner A, Teresa Conconi M, Barozzi M, Giri P, Sundararajan R, Sieni E. Electroporation enhances cell death in 3D scaffold-based MDA-MB-231 cells treated with metformin. Bioelectrochemistry 2024; 159:108734. [PMID: 38762949 DOI: 10.1016/j.bioelechem.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer lacks estrogen, progesterone, and HER2 receptors and hence, is therapeutically challenging. Towards this, we studied an alternate therapy by repurposing metformin (FDA-approved type-2 diabetic drug with anticancer properties) in a 3D-scaffold culture, with electrical pulses. 3D cell culture was used to simulate the tumor microenvironment more closely and MDA-MB-231, human TNBC cells, treated with both 5 mM metformin (Met) and 8 electrical pulses at 2500 V/cm, 10 µs (EP1) and 800 V/cm, 100 µs (EP2) at 1 Hz were studied in 3D and 2D. They were characterized using cell viability, reactive oxygen species (ROS), glucose uptake, and lactate production assays at 24 h. Cell viability, as low as 20 % was obtained with EP1 + 5 mM Met. They exhibited 1.65-fold lower cell viability than 2D with EP1 + 5 mM Met. ROS levels indicated a 2-fold increase in oxidative stress for EP1 + 5 mM Met, while the glucose uptake was limited to only 9 %. No significant change in the lactate production indicated glycolytic arrest and a non-conducive environment for MDA-MB-231 growth. Our results indicate that 3D cell culture, with a more realistic tumor environment that enhances cell death using metformin and electrical pulses could be a promising approach for TNBC therapeutic intervention studies.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G Camarillo
- Deptartment of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy; Department of Civil, Environmental, and Architectural Engineering, University of Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Marco Barozzi
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy
| | - Pragatheiswar Giri
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy.
| |
Collapse
|
2
|
Brooks JR, Heiman TC, Lorenzen SR, Mungloo I, Mirfendereski S, Park JS, Yang R. Transepithelial Electrical Impedance Increase Following Porous Substrate Electroporation Enables Label-Free Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310221. [PMID: 38396158 PMCID: PMC11186731 DOI: 10.1002/smll.202310221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Porous substrate electroporation (PSEP) is a promising new method for intracellular delivery, yet fundamentals of PSEP are not well understood, especially the intermediate processes leading to delivery. PSEP is an electrical method, yet the relationship between PSEP and electrical impedance remains underexplored. In this study, a device capable of measuring impedance and performing PSEP is developed and the changes in transepithelial electrical impedance (TEEI) are monitored. These measurements show TEEI increases following PSEP, unlike other electroporation methods. The authors then demonstrate how cell culture conditions and electrical waveforms influence this response. More importantly, TEEI response features are correlated with viability and delivery efficiency, allowing prediction of outcomes without fluorescent cargo, imaging, or image processing. This label-free delivery also allows improved temporal resolution of transient processes following PSEP, which the authors expect will aid PSEP optimization for new cell types and cargos.
Collapse
Affiliation(s)
- Justin R. Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Tyler C. Heiman
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sawyer R. Lorenzen
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ikhlaas Mungloo
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Siamak Mirfendereski
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jae Sung Park
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
3
|
Brooks JR, Heiman TC, Lorenzen SR, Mungloo I, Mirfendereski S, Park JS, Yang R. Transepithelial Electrical Impedance Increase Following Porous Substrate Electroporation Enables Label-Free Delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562630. [PMID: 37905105 PMCID: PMC10614851 DOI: 10.1101/2023.10.17.562630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Porous substrate electroporation (PSEP) is a promising new method for intracellular delivery, yet fundamentals of the PSEP delivery process are not well understood, partly because most PSEP studies rely solely on imaging for evaluating delivery. Although effective, imaging alone limits understanding of intermediate processes leading to delivery. PSEP is an electrical process, so electrical impedance measurements naturally complement imaging for PSEP characterization. In this study, we developed a device capable of measuring impedance and performing PSEP and we monitored changes in transepithelial electrical impedance (TEEI). Our measurements show TEEI increases following PSEP, unlike other electroporation methods. We then demonstrated how cell culture conditions and electrical waveforms influence this response. More importantly, we correlated TEEI response features with viability and delivery efficiency, allowing prediction of outcomes without fluorescent cargo, imaging, or image processing. This label-free delivery also allows improved temporal resolution of transient processes following PSEP, which we expect will aid PSEP optimization for new cell types and cargos.
Collapse
Affiliation(s)
- Justin R. Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Tyler C. Heiman
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sawyer R. Lorenzen
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ikhlaas Mungloo
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Siamak Mirfendereski
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jae Sung Park
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communications, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
4
|
Lee GW, Kim B, Lee TW, Yim S, Chandrasekharan A, Kim H, Choi S, Yang SY. Nanoporous electroporation needle for localized intracellular delivery in deep tissues. Bioeng Transl Med 2023; 8:e10418. [PMID: 37476054 PMCID: PMC10354752 DOI: 10.1002/btm2.10418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 07/22/2023] Open
Abstract
The exogenous control of intracellular drug delivery has been shown to improve the overall efficacy of therapies by reducing nonspecific off-target toxicity. However, achieving a precise on-demand dosage of a drug in deep tissues with minimal damage is still a challenge. In this study, we report an electric-pulse-driven nanopore-electroporation (nEP) system for the localized intracellular delivery of a model agent in deep tissues. Compared with conventional bulk electroporation, in vitro nEP achieved better transfection efficiency (>60%) with a high cell recovery rate (>95%) under a nontoxic low electroporation condition (40 V). Furthermore, in vivo nEP using a nanopore needle electrode with a side drug-releasing compartment offered better control over the dosage release, time, and location of propidium iodide, which was used as a model agent for intracellular delivery. In a pilot study using experimental animals, the nEP system exhibited two times higher transfection efficiency of propidium iodide in the thigh muscle tissue, while minimizing tissue damage (<20%) compared to that of bulk electroporation. This tissue-penetrating nEP platform can provide localized, safe, and effective intracellular delivery of diverse therapeutics into deep tissues in a controlled manner.
Collapse
Affiliation(s)
- Gyeong Won Lee
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| | - Byeongyeon Kim
- Department of Biomedical Engineering, Department of Electronic Engineering, Hanyang Institute of Bioscience and BiotechnologyHanyang UniversitySeoulSouth Korea
| | - Tae Wook Lee
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| | - Sang‐Gu Yim
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| | - Ajeesh Chandrasekharan
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| | - Hyewon Kim
- Department of Biomedical Engineering, Department of Electronic Engineering, Hanyang Institute of Bioscience and BiotechnologyHanyang UniversitySeoulSouth Korea
| | - Sungyoung Choi
- Department of Biomedical Engineering, Department of Electronic Engineering, Hanyang Institute of Bioscience and BiotechnologyHanyang UniversitySeoulSouth Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| |
Collapse
|
5
|
Wan F, Dong Z, Liu B, Yan S, Wu N, Yang M, Chang L. Sensitive Interrogation of Enhancer Activity in Living Cells on a Nanoelectroporation-Probing Platform. ACS Sens 2022; 7:3671-3681. [PMID: 36410738 DOI: 10.1021/acssensors.2c01187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enhancers involved in the upregulation of multiple oncogenes play a fundamental role in tumorigenesis and immortalization. Exploring the activity of enhancers in living cells has emerged as a critical path to a deep understanding of cancer properties, further providing important clues to targeted therapy. However, identifying enhancer activity in living cells is challenging due to the double biological barriers of a cell cytoplasmic membrane and a nuclear membrane, limiting the sensitivity and responsiveness of conventional probing methods. In this work, we developed a nanoelectroporation-probing (NP) platform, which enables intranuclear probe delivery for sensitive interrogation of enhancer activity in living cells. The nanoelectroporation biochip achieved highly focused perforation of the cell cytoplasmic membrane and brought about additional driving force to expedite the delivery of probes into the nucleus. The probes targeting enhancer activity (named "PH probe") are programmed with a cyclic amplification strategy and enable an increase in the fluorescence signals over 100-fold within 1 h. The platform was leveraged to detect the activity of CCAT1 enhancers (CCAT1, colon cancer-associated transcript-1, a long noncoding RNA that functions in tumor invasion and metastasis) in cell samples from clinical lung cancer patients, as well as reveal the heterogeneity of enhancers among different patients. The observations may extend the linkages between enhancers and cancer cells while validating the robustness and reliability of the platform for the assay of enhancer activity. This platform will be a promising toolbox with wide applicable potential for the intranuclear study of living cells.
Collapse
Affiliation(s)
- Fengqi Wan
- Key Laboratory of Biomechanics and Mechanobiology (Ministry of Education), Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.,Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zaizai Dong
- Key Laboratory of Biomechanics and Mechanobiology (Ministry of Education), Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Mingzhu Yang
- Key Laboratory of Biomechanics and Mechanobiology (Ministry of Education), Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology (Ministry of Education), Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.,School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| |
Collapse
|